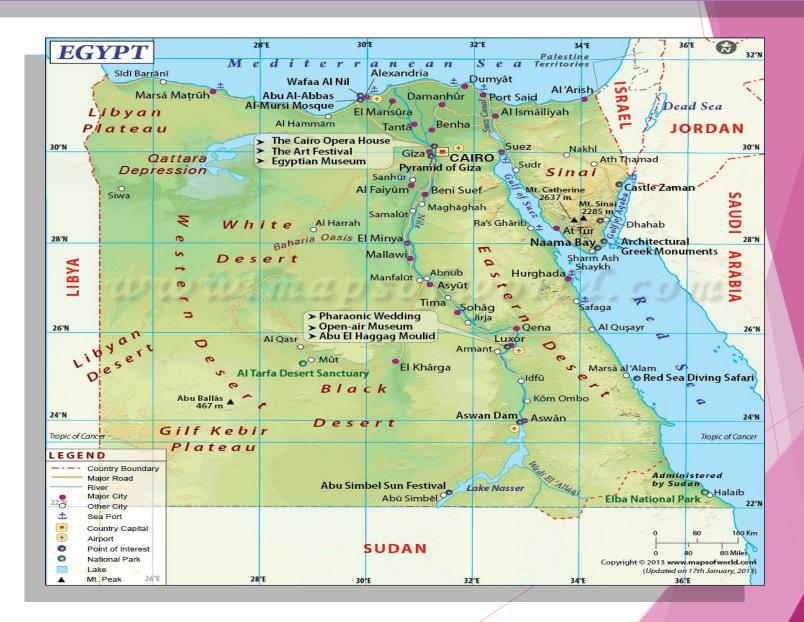


Uranium from phosphates – Current status of Egyptian UxP project

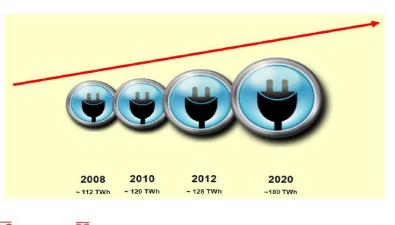
Dr. Mohamed H. Taha

Regional Training Course on "United Nations Framework Classification – 2009 for evaluation of uranium and thorium resources and to leverage transparent and effective communications"

Venue: Luxor, Egypt


18 - 22 October, 2015

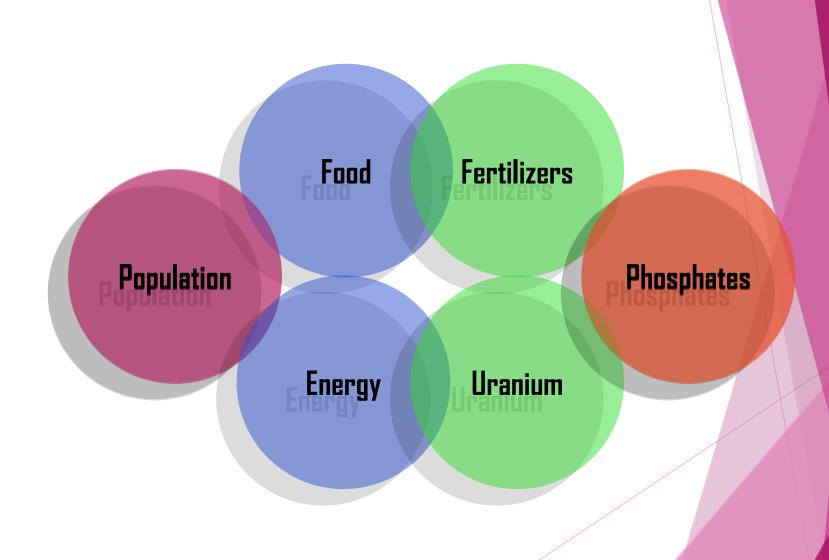
OUTLINES


- I. Introduction (why phosphate?????).
- II. Uranium Resources in Egyptian Phosphate Rocks. Uranium Resources in Egyptian Phosphate Rocks.
- III. NMA-IAEA National Project (EGY 2011/01).

I. Introduction (why phosphate??)

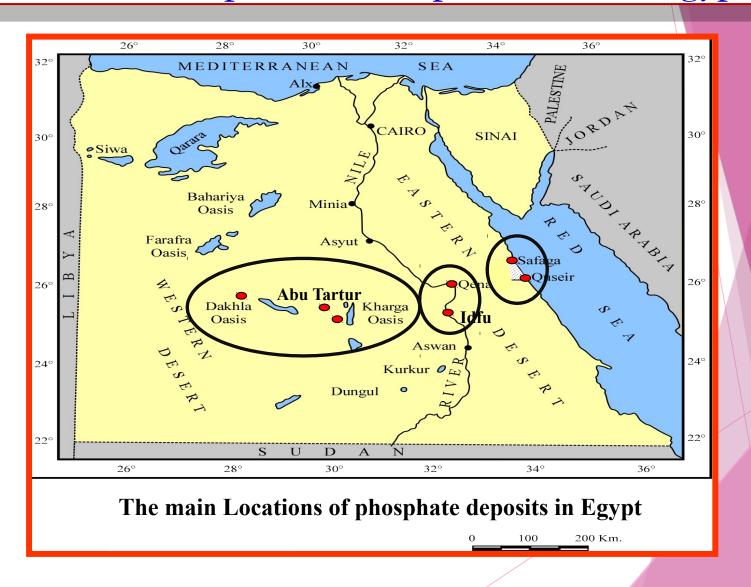
Sustainable Development, 21 Century

Egyptian Energy Consumption



- Main Challenges for sustainable development in the 21 century are food security and energy security.
- These Challenges are in favors of U recovery from phosphoric acid.

Phosphate Importance



II. Uranium Resources in Egyptian Phosphate Rocks

Major phosphate producing countries in 2014, Mt. Major phosphate producing countries in 2014, Mt.

	Mine production		Reserves ⁴
11.7. 101.1	<u>2013</u>	2014 ^e	4 400 000
United States	31,200	27,100	1,100,000
Algeria	1,500	1,500	2,200,000
Australia	2,600	2,600	1,030,000
Brazil	6,000	6,750	270,000
Canada	400		76,000
China ⁵	108,000	100,000	3,700,000
Egypt	6,500	6,000	715,000
India	1,270	2,100	35,000
Iraq	250	250	430,000
Israel	3,500	3,600	130,000
Jordan	5,400	6,000	1,300,000
Kazakhstan	1,600	1,600	260,000
Mexico	1,760	1,700	30,000
Morocco and Western Sahara	26,400	30,000	50,000,000
Peru	2,580	2,600	820,000
Russia	10,000	10,000	1,300,000
Saudi Arabia	3,000	3,000	211,000
Senegal	800	700	50,000
South Africa	2,300	2,200	1,500,000
Syria	500	1,000	1,800,000
Togo	1,110	1,200	30,000
Tunisia	3,500	5,000	100,000
Vietnam	2,370	2,400	30,000
Other countries	2,580	2,600	300,000
World total (rounded)	225,000	220,000	67,000,000

The Main Exploited Phosphate Ore in Egypt

Average Chemical Composition of Egyptian Phosphates

Constituent, %	Nile Valley	Red Sea	New Valley
P_2O_5	24.8	19.3	27.3
CaO	43.5	43.9	40.1
MgO	1.5	5.3	1.2
Fe ₂ O ₃	2.2	1.2	2.9
Al_2O_3	1.8	2.2	1.7
SiO ₂	12.1	3.7	6.1
$C_{ m total}$	2.1	4.6	1.9
S_{total}	1.3	0.5	3.5
Na ₂ O	1.6	1.7	0.7
F	1.1	1.2	3
Moisture	2.0	2.1	2.2
U, ppm	100	150	30

In Egypt, the proved phosphate reserves are estimated at about 100 million tons while the geological reserves are calculated as about 2000 million tons. The average assay of uranium in the Egyptian phosphate ores is about 90 ppm, consequently, the phosphate assured reserves are estimated to contain about 9,000 tons uranium at least.

Phosphoric Acid Production

In Egypt; Phosphoric acid is produced mainly at Abuin Egypt; Phosphoric acid is produced mainly at Abu-

Zaable Fertilizer Company and El-Nassar Company. Zaable Fertilizer Company and El-Nassar Company.

The total phosphoric acid production capacity is about the total phosphoric acid production capacity is about 200,000 ton/year.

200,000 ton/ year. 200,000 ton/ year.

Average uranium content in produced phosphoric acid Average uranium content in produced phosphoric acid

is ≈ 60 ppm. is ≈ 60 ppm

Yranium Extraction Unit

In 1996, Nuclear Materials Authority has established a semi-pilot plant for experimental uranium extraction a semi-pilot plant for experimental uranium extraction from di-hydrated phosphoric acid using D₂EHPA & TOPO system.

Phosphoric Acid Pretreatment Stage

First Cycle

Second Cycle

Uranium Extraction Unit

Uranium Extraction

Safe Room

Pre-Treatment Tanks

Uranium Stripping

The phosphoric acid industry is now undergoing a gradual shift towards using the Hemihydrate Process and Hemi-Dihydrate Process for economic reasons. The main Advantages of this process are the direct production of strong phosphoric acid \$\approx 45\% P_O_5.

III. NMA-IAEA National Project EGY 2011/01

•Basic Information:

Country	Egypt		
Institution	Nuclear Materials Authority		
Counterpart	Drof Dr Nagdy Mahamad Farag		
Name	Prof. Dr. Nagdy Mohamed Farag		
Project Number &	EGY 2011/01 & Separation and estimation of valuable rare		
Title:	metal during uranium ore processing in the Eastern Desert		
Effective Starting	1/1/2014		
Date:			
Expected End	31/12/2015		
Date:			
Total Project	IAEA TCF: 160,000.0 €		
Budget:			

Project Objectives:

Main Project Objectives:

- Contribution to the Egyptian energy plan by supplying uranium for the Egyptian Peaceful Nuclear program.
- Development the Egyptian phosphate industry.

• Project Objectives:

Detailed Project Objectives & Dependencies:

- Classification of Egyptian phosphate resources based on UNFC2009
 Classification of Egyptian phosphate resources based on UNFC2009 system.
 system.
- Pretreatment of high strength phosphoric acid. Pretreatment of high strength phosphoric acid.
- Design new Mixer-settler unit for high strength phosphoric acid. Design new Mixer-settler unit for high strength phosphoric acid.
- Achievement the infrastructure for the revamped unit. Achievement the infrastructure for the revamped unit.
- Organic solvent making up.
- Evaluating the experimental data for UxP pre-feasibility study. Evaluating the experimental data for UxP pre-feasibility study.
- Utilization of PG to increase the economy of phosphate industry.
- Recovery of REEs from PG to add value for phosphate industry.

Expert Mission:

(1) Julian Hilton& Tapan Haldar during 7-111 September 2014

• Expert Mission:

Recommendations:

• NMA should adopt an Integrated Program Management
• NMA should adopt an Integrated Program Management
approach to gather all current projects with potential to
approach to gather all current projects with potential to
contribute to the national uranium fuel need into a single Integrated Program. Integrated Program.

Work Breakdown Structure:

- Experiments in the Laboratory: Experiments in the Laboratory:
- Design, Engineering & construction of the 'Bench Scale Facility': Design, Engineering & construction of the 'Bench Scale Facility':

Expert Mission:

(2) Hassan El-Shall

during26-30 July24015

Expert Mission:

Recommendations:

- Continue the financial support of this project to replace missing equipment and provide sensors and automatic control.
- Provide support for the efforts to conduct feasibility Provide support for the efforts to conduct feasibility studies for commercial size plants to: studies for commercial size plants to:
- A. recover uranium and REE from concentrated phosphoric acid. phosphoric acid.
- B. various uses of phosphogypsum.

• Equipments

- 1) Complete set of Mixer-Settlers unit.
- (delivered)
- 2) Spring return metering pump (delivered)
- 3) Quality control lab equipments. (delivered)

• Fellowships & Scientific visit:

- 1) Fellowships were already submitted to IAEA; 12
- Japan, 3 Brazil, 2 France, 1 Poland,....).
- 2) Scientific still looking for a hosting place.

· Achieved Objectives:

- 1) Clearly defined value proposition; Project team, partners and techolearly defined value proposition; Project team, partners and techoeconomic feasibility study in place.
- 2) Studying pretreatment of high strength phosphoric acid. 2) Studying pretreatment of high strength phosphoric acid.
- 3)Design a new Mixer-settler unit for high strength phosphoric acid. 3)Design a new Mixer-settler unit for high strength phosphoric acid.
- 4)Investigating uranium extraction from high strength phosphoric 4)Investigating uranium extraction from high strength phosphoric acid (lab scale).
- 5) Classification of Egyptian phosphate resources based on UNFC-5) Classification of Egyptian phosphate resources based on UNFC-2009 system.
- 6) Design, Engineering & construction of the. 6) Design, Engineering & construction of the.

· Partially Achieved Objectives:

- 1) Evaluating the experimental data to help in the UxP pre-1) Evaluating the experimental data to help in the UxP prefeasibility study.
- 2) Feasibility study for PG application in bricks & fertilizers. 2) Feasibility study for PG application in bricks & fertilizers.
- 3) Feasibility study for low grade phosphate utilization. 3) Feasibility study for low grade phosphate utilization.


·Not Achieved Objectives:

- 1) Scale up the existing unit to commercial scale. 1) Scale up the existing unit to commercial scale.
- 2) Recovery of REEs from PG. 2) Recovery of REEs from PG.
- 3)Pre-feasibility study for food grade phosphoric acid production process production process

•The obstacles:

- 1) Needing an expert mission for helping us to scale up the 1) Needing an expert mission for helping us to scale up the existing unit to commercial scale. existing unit to commercial scale.
- 2) Needing suitable places to host the required fellowships 2) Needing suitable places to host the required fellowships and scientific visits.
- 3) Needing to more time and more fund to achieve the other 3) Needing to more time and more fund to achieve the other objectives.

Comprehensive extraction lifecycle

Accurate and transparent management of essential materials throughout the lifecycle

