Bioenergy and sustainable development

Presentation for the UNECE 9th International Forum on Energy for Sustainable Development, Session: The role of bioenergy in light of changes to the energy landscape, Kiev, Nov 7, 2018

Uwe R. Fritsche
Scientific Director, IINAS
IEA Bioenergy Task 40 Deployment Leader & Task 45 Sustainability Co-Lead

IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries.
Before we start...

- Who is a biomass or bioenergy producer?
- Who is a biomass or bioenergy user?
- Who wants sustainable development?
A Matter of Scale: Biomass & Energy

Source: IINAS calculation for 2010 based on data from IEA and nova
Competing uses of biomass...

POTENTIALS
- Biomass cultivation (= land)
- Biogenic residuals
- Wind, water, etc.

DEMAND SECTORS
- Heat
- Power
- Motorised transport
- Food & Feed
- Raw materials

GOALS / CONSTRAINTS
- Nature conservation
- Climate change mitigation
- Security of supply
- Employment
- Costs
SDGs: all countries are “developing”

Source: https://sustainabledevelopment.un.org/sdgs
15 out of 17 SDGs are directly or indirectly linked to bioenergy, especially:

- 2 (food & agriculture)
- 4 (water)
- 7 (energy)
- 8 (growth, employment)
- 11 (cities)
- 12 (consumption & prod.)
- 13 (climate change)
- 15 (forests, land)

SDG links indicate tradeoffs.

Source: own elaboration based on SDG (2015). Bold text: SDG related to energy; (✓) = partially relevant.
Sustainability approaches

<table>
<thead>
<tr>
<th>International</th>
<th>Regional level (EU)</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Environment and Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN conventions (e.g. CBD, FCCC)</td>
<td>NLBI Forests</td>
<td>EU Bioeconomy & Biodiversity Strategies</td>
</tr>
<tr>
<td>* Forestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest processes C&I SFM</td>
<td>Several voluntary guidelines</td>
<td></td>
</tr>
<tr>
<td>Voluntary harvesting guidelines</td>
<td>Voluntary forest certification schemes</td>
<td></td>
</tr>
<tr>
<td>* Bioenergy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBEP</td>
<td>FAO-UNEP UN Energy Tool</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>WWF/WB scorecard</td>
<td></td>
</tr>
<tr>
<td>IDB scorecard</td>
<td>GEF standards</td>
<td></td>
</tr>
<tr>
<td>Voluntary certification schemes: bioenergy (liquid biofuels and/or woody bioenergy)</td>
<td>EU RED (for 2G biofuels)</td>
<td></td>
</tr>
<tr>
<td>* Biomaterials (&procurement)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible purchasing processes</td>
<td>Responsible cultivation areas</td>
<td>CEN</td>
</tr>
<tr>
<td>* Financing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financing institutions safeguards</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forest biomass & climate effects
Bioenergy in the bioeconomy

- **Not** food vs. fuel but **land** use (agro, forest...) is key: biofuels **can and must** be **part of sustainable food systems & landscapes**

- Wastes (cascading) and residues: **yes**, but consider biodiversity and soil C stocks (straw...)

- Marginal/degraded land: **yes**, but biodiversity and social safeguards → **synergies** (soil, jobs) – yet: **cost**!

- **GBEP Sustainability Indicators** should be used
Sustainable Bioeconomy: a scenario

www.bio-based.eu/nova-papers

IEA Bioenergy www.ieabioenergy.com
OK – but how to make it happen?
It always seems impossible until it’s done

Nelson Mandela
Example: Canada

Complex forest and social ecosystems
- Remote region (>200 km from Quebec main cities)
- Public forests under ecosystem-based management (high level of naturalness)
- Communities historically built on the development of natural resources (hydropower, forestry)
- Active forest industrial network of sawmills and pulpmills
- Presence of First Nations with deep roots into the territory

Source: IEA Bioenergy Intertask project “Measuring, governing and gaining support for sustainable bioenergy supply chains”
Wood pellet production in the southeastern United States

- Pellets <3% of total wood products
- Provide needed rural jobs
- Mitigate climate change by replacing coal & enhance carbon sequestration in forests via improved management

Sources: Hodges et al. (In review) Opportunities & attitudes of private forest landowners in supplying woody biomass for renewable energy. Kline et al. 2018. The importance of reference conditions... In World Biomass 2018-2019 (pp 82-86); DCM Productions U.K.
Beyond UNECE: A sustainable African bioeconomy?

- New cultivation systems – e.g. agroforestry - enrich biodiversity (but no invasive species)
- Bioenergy in waste water management
- Income from landscape/habitat management residues for bioenergy
- Rural development + access to modern energy can reduce deforestation pressure

http://www.thegef.org/gef/video/great_green_wall
Sustainable Bioeconomy: a vision

Key role for biorefineries across sectors

Sustainable food systems
(protein, fibers etc. for food & feed; organic farming, agroforestry, aquaculture, balanced diets, reduced losses)

Sustainable supply of bio-materials
based on feedstocks from forestry, marginal/degraded land, re-use of biogenic residues/wastes

Sustainable supply of bioenergy
(agroforestry, intercropping, marginal/degraded land, biogenic residues and wastes

- Global food security, secure land tenure
- Regional/local employment and value added (rural development)
- Sustainable production in agriculture, fishery and forestry
- Reduction of food losses, recycling of wastes (circularity)
- Conservation of ecosystem services (biodiversity, C sequestration, recreation, soil fertility, water...)

IEA Bioenergy
www.ieabioenergy.com
Way ahead: Transformation!

Oxford Dictionary:
• A marked change in form, nature, or appearance.
• A sudden dramatic change of scenery on stage.
• A metamorphosis during the life cycle of an animal.

Examples:
– From degraded or abandoned land to providing biomass and ecosystem services
– From waste streams to energy carriers
– Pipelines: from fossil power to open networks for renewable gases

But: What will it cost?
Transforming the gas grid?

IEA Bioenergy www.ieabioenergy.com
It may not be cost-effective to save the world, but we may decide to do so anyway.

Jørgen Nørgaard
Thanks for your attention!

More information:
http://task40.ieabioenergy.com
http://task45.ieabioenergy.com (up from Jan 2019)
http://itp-sustainable.ieabioenergy.com
http://iinas.org

For comments & contact:
Uwe R. Fritsche, uf@iinas.org