Workshop on Attaining Carbon Neutrality in the ECE region – Role of Nuclear Energy to Attain Carbon Neutrality in the UNECE region

Day 1
23 November 2020
Mute your microphone if you are not speaking

Use “Chat” function to ask questions and share comments
What we will cover?

Welcome & Opening remarks

Vladimir Budinský, Acting Chair, Group of Experts on Cleaner Electricity Systems

Nuclear Energy Technology & Policy Brief

King Lee, Director Harmony Programme, World Nuclear Association & Vice-Chair Group of Experts on Resource Management & Group of Experts on Cleaner Electricity Systems

Nuclear technology & applications

Henri Paillere, Head of Planning and Economic Studies Section, International Atomic Energy Agency (IAEA)

Economic & cost curves

Michel Berthélemy, Nuclear Energy Analyst, OECD Nuclear Energy Agency

Environmental & health impact of nuclear energy

Thomas Gibon, Research & Technology Associate, Luxembourg Institute of Science and Technology
What we will cover?

National perspective on the future role of nuclear energy

Nuclear energy for Net Zero – UK energy system appraisal

James Murphy, Chief Strategy Officer, National Nuclear Laboratory (NNL)

Poland nuclear energy development plan

Józef Sobolewski, Poland Director at National Center of Nuclear Research and Adviser to the Minister of Climate and Environment in Poland

Closing Remarks

King Lee, Director Harmony Programme, World Nuclear Association & Vice-Chair Group of Experts on Resource Management & Group of Experts on Cleaner Electricity Systems
Opening Remarks

Vladimir Budinský

Acting Chair, Group of Experts on Cleaner Electricity Systems
King Lee

Director Harmony Programme, World Nuclear Association & *Vice-Chair* Group of Experts on Resource Management & Group of Experts on Cleaner Electricity Systems
Technology Brief on Nuclear Energy

- Role of nuclear energy in attaining carbon neutrality
 - Technology focus
 - Policy focus

CCS Team Mid-term Objectives:

- Apr: Task Force decided to do a deep-dive into nuclear energy technologies
- May-Jun: Building a case for nuclear energy
- Jul-Aug: Technology Briefs: Role of nuclear energy in attaining Carbon Neutrality
- Sep-Oct: Strengthen assumptions that feed into model
- Nov: Modelling exercise
- Workshop on Nuclear Energy 23 November 2020

Results
Policy plan
Nuclear energy provides the largest contribution of low carbon electricity in ECE.

20 ECE Member States currently operate nuclear power plants. These nuclear countries produce 85% of ECE total electricity generation. 22 countries have new reactor under construction or planning new nuclear development.
Nuclear energy is a mature technology that provide reliable low carbon source of electricity today.
Current and future nuclear technologies can support all three energy vectors of electricity, heat and hydrogen (including synthetic fuels).
Cost effectiveness of nuclear energy - UK nuclear project

National Audit Office’s report June 2017 – review the Hinkley Point C (HPC) deal

HPC CFD, similar to contracts for other low-carbon technologies

- No Government subsidy as such (commitment at the time)
- All up front risk under the private sector.
- In return: Guaranteed price for the electricity.
- By 2016, UK had set 40 CFDs with low-carbon electricity generators: 6.7 GWe – 15 year, £80 to £150/MWh (2012).
- HPC deal is competitive in price at the time.
Nuclear projects – alternative structuring and financing

UK government is currently exploring Regulated Asset Base (RAB) model for the financing of nuclear project.

Capital cost of Sizewell C is estimated to be 20% lower than HPC, cost reduction from fleet effect, saving from ‘One off’ First of a kind cost, and lessons learned from previous build.

EDF has stated that the all-in cost for Sizewell will be between £40-£60/MWh versus the £92.5/MWh (2012 prices) for Hinkley Point C.
Nuclear technology & applications

Henri Paillere

Head of Planning and Economic Studies Section, International Atomic Energy Agency (IAEA)
Nuclear power technologies and non-power applications

Dr. Henri PAILLÈRE
Section Head
Planning and Economics Studies Section
International Atomic Energy Agency

Role of Nuclear Energy to Attain Carbon Neutrality in the UNECE region
23 November 2020
Planning and Economic Studies Section

- Energy Planning support to Member States
- Nuclear power projections to 2050
- Technical and economic analysis of nuclear power and integrated nuclear/renewables systems
- Assessing contribution of nuclear energy to Climate Change mitigation
- Water-Energy Nexus, Resilience and adaptation to CC

Nuclear power today

- **442** reactors in operation in 32 countries, including two units in newcomer countries (Belarus, UAE)
- 392 GW installed capacity
- 365 are **Light Water Reactors** (83%)

- In 2019, **10.4%** share of electricity

- **53** units under construction in 14 countries including 8 units in 4 newcomer countries (Bangladesh, Belarus, Turkey, UAE)
- 56 GW installed capacity
- 45 are **Light Water Reactors** (85%)
A track record CO$_2$ emissions avoidance

- A third of world’s low carbon electricity

Annual avoided emissions: ~ 2 Gt CO$_2$

(this will decrease in the future, as the carbon footprint of the electricity mix decreases)

Cumulative avoided emissions over last 50 years: $\sim 60-70$ Gt CO$_2$
(depending on methodology)
Reactor technologies in operation today

Pressurised Water Reactor (PWR)

Boiling Water Reactor (BWR)

PWR, BWR = Light Water Reactor, with ordinary water used as coolant and moderator (to slow down fast neutrons produced in the fission reactor), Enriched uranium (3 to 5% 235U) as fuel

Other reactors include:
- Pressurized Heavy Water Reactor: e.g. Canada (CANDU)
- Gas cooled reactors: cooled by CO2 (AGR in the UK)
- Fast Neutron reactors (cooled by liquid metals): e.g. BN600 and BN800 in Russia
By size

- **Large reactors**: typically 1GW or more (majority of reactors under construction today, in particular PWR)
- **Small Modular Reactors**: typically < 300MW
 - SMR based on LWR technologies
 - Including for Floating Nuclear Power Plants
 - SMR based on other technologies – “advanced” SMRs
- **Micro-reactors**: ~ 10MW$_{th}$
- **Generation IV reactors / Advanced reactors**
 - Fast Neutron Reactors (closed fuel cycles), cooled by Sodium, lead or helium
 - (Very) High Temperature Reactors
 - Molten Salt Reactors
 - Supercritical Water-cooled Reactors
Large reactors: Economies of Scale

Shippingport PWR (1958, **60MW**)

EPR Taishan 1 PWR (2018, **1750MW**)
Small Modular Reactors

- **Economics based on “serial production”, modular design with factory fabrication, etc**

Latest IAEA Booklet on Advanced in SMR Technology Developments:

- Design description and main features of 72 SMR designs being updated (56 in 2018)

- SMRs are categorized in types based on coolant type/neutron spectrum:
 - Land Based Water-cooled Reactors
 - Marine Based Water-cooled Reactors
 - High Temp gas cooled reactors
 - Fast Reactors
 - Molten Salt Reactors
 - Micro reactors

Towards net-zero emissions

Decarbonising the power sector will not be sufficient.

Need to decarbonize other sectors, representing 60% of emissions today:

- **Electrification** whenever possible (so increased demand for clean electricity)
- Need for **low C heat sources** (eg. fossil + CCS, nuclear heat, solar thermal)
- Use of **low C fuels**, including hydrogen, produced from clean electricity (Sector Coupling)
Beyond power generation: District Heating

- Decades of experience, in Russia, Hungary, Switzerland, etc
- In June 2020, the new Floating Nuclear Power Plant Akademic Lomonosov, powered by two SMR units, provided 1st heat to Pevesk district (1st grid connection in Dec 2019)

Source: http://fnpp.info/
Beyond power generation: Process Heat, Desalination
Beyond power generation: Hydrogen

How to produce “clean” / Low Carbon Hydrogen:

- Low temperature electrolysis with low carbon electricity (renewables, nuclear)
- High temperature steam electrolysis (current or advanced reactors)
- Thermo-chemical splitting (advanced reactors)
Take-aways

- Mature technology, over 50 years experience, with an observed consolidation of technologies towards (large) water cooled reactors – essentially for power
- 10.4% share electricity, 1/3 low carbon electricity today
- Future trends/technologies:
 - Large water-cooled reactors (Gen III)
 - Small water-cooled reactors (SMRs)
 - Advanced reactors (large and small)
 - Power but also non-power applications: heat, hydrogen
- Nuclear energy = low carbon source of power and heat!
Economic & cost curves

Michel Berthélemy

Nuclear Energy Analyst, OECD Nuclear Energy Agency
Perspectives on the economics of nuclear power

Dr. Michel Berthélemy

Role of Nuclear Energy to Attain Carbon Neutrality in the UNECE region
23 November 2020
The actual cost of electricity should reflect not only plant-level GENERATION costs but also grid-level SYSTEM costs and SOCIAL & ENVIRONMENTAL costs.
Nuclear production typical costs breakdown

Note: With discount rate at 7%, Return of capital refers to interest during operation, OCC: Overnight construction cost, IDC: Interest during construction

Typical investment costs represent 78% of nuclear production costs on a levelised cost basis (LCOE)
The nuclear industry is at a critical juncture with the completion of FOAK Gen-III reactors

- Gen-III initial costs estimates driven by low level of design maturity and the specific political context of announced budgets

- Recent trend in projected costs reflects increased design maturity and lessons learned for post-FOAK projects

- Gap between two sets of projections has impacted overall perceived investment risks and has potential to impact public acceptance

Affordable financing key for the economic performance of nuclear: A range of government support can be envisaged

LCOE of a new nuclear power plant project according to the cost of capital

<table>
<thead>
<tr>
<th>Direct Financial support</th>
<th>Indirect financial support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power purchasing agreements</td>
<td>Equity, debt, ECAs, loan guarantee</td>
</tr>
<tr>
<td>Contract-for-difference (UK), Mankala model (Finland)</td>
<td>Rate-of-return (US), Regulated Asset Base (UK)</td>
</tr>
</tbody>
</table>

Equity stake can be transitional as additional sources of financing should become available once the plant is operational.

PPAs focus on market risks but often do not address explicitly construction risks, which impact risk premium.

Specific conditions can be specified for the allocation of certain risks (e.g. cost sharing and cap with hybrid RAB model).

Note: Overnight cost of 4500 USD/kWe, a load factor 85%, 60-year lifetime and 7-year construction time.

© 2020 Organisation for Economic Co-operation and Development
Key result from the forthcoming IEA/NEA
Projected Cost of Electricity 2020

With the right policy framework new nuclear to remain in a competitiveness range in OECD countries

Source: IEA/NEA (forthcoming) with cost of capital of 7% and CO2 price @ 30 USD/tCO2
Assessing the System Costs of Electricity

- Total system costs are the sum of plant-level generation costs and grid-level system costs
- System costs are mainly due to characteristics intrinsic to variable generation

System costs depend on:
- Local & regional factors and the existing mix
- VRE penetration and load profiles
- Flexibility resources (hydro, storage, interconnections)

Additional impacts on load factors of dispatchable generators and prices.

Profile costs (Changing mix)
VREs are not always available

Balancing costs (Short-term variations)
VREs are difficult to predict

Transmission and distribution costs
Good VRE sites are distant from load centers
High VRE Shares Result in Large Inefficiencies

10% Variable Renewables

- High VRE penetration result in challenges for system management.
- Residual demand (BLUE line) – the available market for dispatchable generation becomes volatile and unpredictable.

75% Variable Renewables

Annual Excess production = 37%
As VRE Share Increases System Costs Grow Quickly

Total Costs

- System costs are large and increase with VRE generation share - Profile costs are the dominant component.

Breakdown of System Costs

- Plant-level Costs
- Profile Costs
- Connection Costs
- Balancing Costs
- Grid Costs

Average Costs of electricity provision (USD/MWh)

<table>
<thead>
<tr>
<th>Base Case</th>
<th>10% VRE</th>
<th>30% VRE</th>
<th>Reference</th>
<th>No Intc</th>
<th>No Intc, no hydro</th>
<th>75% VRE</th>
</tr>
</thead>
</table>

System costs (USD/MWh, val)

<table>
<thead>
<tr>
<th>10% VRE</th>
<th>30% VRE</th>
<th>Reference</th>
<th>No Intc</th>
<th>No Intc, no hydro</th>
<th>75% VRE</th>
</tr>
</thead>
</table>

© 2020 Organisation for Economic Co-operation and Development
Recent NEA Work:

Broad Conclusions

- To meet global energy and environmental requirements, all low-carbon technologies must be optimally applied—with all costs accurately allocated.
- The electricity markets must be modernized. Existing market structures make investment in any unsubsidised low-carbon technology very difficult.
- Large deployment of VRE will occur around the world – but the contribution of VRE in each country will depend on the cost of available resources.
- To the degree dispatchable capacity is needed, nuclear can serve a large role—if it is economically compatible with evolving markets.
Thank you for your attention

More information @ www.oecd-nea.org
All NEA reports are available for download free of charge.
Follow us: facebook twitter linkedin
Environmental and health impact of nuclear energy

Thomas Gibon

Research & Technology Associate, Luxembourg Institute of Science and Technology
Life cycle assessment as a decision-support tool in energy policy

Thomas Gibon
Research & Technology Associate
Luxembourg Institute of Science and Technology (LIST)

November 23rd, 2020
UNECE 16th Session Group of Experts on Cleaner Electricity Systems

Includes results based on work carried out at NTNU, Norwegian University of Science and Technology under the auspices of UN Environment Programme and International Resource Panel.
Life cycle assessment

Definition

A method and tool for attributing environmental impacts to products and services

Considering impacts over the life cycle
Production, use, end-of-life

Considering impacts upstream in supply chains
Resource extraction, transport, etc.

And typically:
Considering hundreds of emitted substances and extracted resources
Considering a range of impact types
Human health, ecosystem health, natural resource use

Figure: Adapted from Hellweg & Mila i Canals (2014)
Life cycle assessment

LCA as a standardized method with many applications

ISO 14040 series
overarching principles of life cycle assessment, framework ensuring robustness and comparability

EN 15804
rules for the environmental assessment of products used in construction, principles of Environmental Product Declarations

GHG Protocol
guidelines for the carbon footprinting of organizations, rules for the accounting of direct and indirect greenhouse gas emissions

EU TEG Taxonomy
setting the environmental eligibility criteria for green investments in the European Union
Carbon footprint of electricity in 2050

Life cycle greenhouse GHG per kWh in 2050, compared with IPCC AR5 values (2010)

As the economy decarbonizes, so does electricity production, in a virtuous cycle

Life cycle impact assessment

Beyond greenhouse gas emissions

Life cycle impact assessment

Aggregating impact categories

Results based on UNEP IRP “Green Energy Choices” report

Indicators can be aggregated into damage to human health (top) or to ecosystems (bottom)

Air pollution, toxicity, concerns for human health

Land occupation concern for ecosystems

Global Scenarios to uncover co-benefits, trade-offs

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Base</th>
<th>FullTech</th>
<th>Conv</th>
<th>NewRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No emissions constraint</td>
<td>Cumulative 2011-2050 power sector emissions limited to 240 GtCO₂</td>
<td>Wind and solar power limited to 10%</td>
<td>Nuclear phase-out, no CCS in the power sector</td>
<td></td>
</tr>
<tr>
<td>Full portfolio</td>
<td>Full portfolio</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Co-benefits in phasing out coal power (air emissions)

Potential trade-offs in land use (biomass and grid extension), as well as material requirements (wind, CSP, PV)

Take away messages

Life cycle assessment allows to consider all impacts across the life cycle and a wide range of impact categories.

All electricity technologies have environmental impacts, transitioning away from fossil fuels will lead to trade offs.

Low-carbon technologies offer co-benefits (lower air pollution, no fossil depletion) but may entail higher land and material requirements.

Grid extension will be needed in any case, slightly more because of intermittent sources.

Nuclear power remains low over all categories (including land use and materials) with moderate water use.
Thank you!

For more info
thomas.gibon@list.lu
WHERE TOMORROW BEGINS

LIST.lu
Nuclear energy for Net Zero – UK perspectives

UNECE Nuclear Energy Workshop

23rd November 2020

James Murphy, Chief Strategy Officer
The UK has a requirement – enshrined in law – to achieve net zero emissions by 2050 and a responsibility to ‘rebalance’ its economy.
Three zero carbon vectors require unprecedented scale-up to displace fossil fuels in the UK

Could mean:

- Unabated Fossil Fuel consumption down from ~1500TWh to <300TWh
- Electricity: 600-800TWh
- Hydrogen: 200-300TWh
- District Heat: Up to 150TWh

![Final Energy Consumption (TWh)]
Modelling has shown that nuclear needs to be the centrepiece technology of a net zero energy system
UK policy makers have been given clear and direct advice from nuclear experts: Act Now!

"Over 80% of the UK’s nuclear low-carbon [electricity] generating capacity will be lost in the next decade"
A three-pronged nuclear technology approach gives the UK a chance to hit Net Zero: GW, SMR and Gen IV together.
The UK government has now acted decisively and recognised the importance of nuclear in decarbonisation

£525m government investment in new nuclear projects:

- £215m for Rolls-Royce led UKSMR consortium (matched by additional £300m from UKSMR partners)
- £170m for advanced nuclear and a commitment to build a demonstrator by early 2030s
- £40m to enable regulations and supply chain
- £100m to enable final investment decisions on new GW plant

Coming soon…
The shift in thinking to recognise nuclear as an enabler for multiple low-carbon energy vectors has been key.
Followed through, the Ten Point Plan could be seen by future generations as a seminal moment in UK history.

“The UK was home to the world’s first full-scale civil nuclear power station more than sixty years ago, and this industry now employs around 60,000 people in the UK. We see the ongoing potential of this technology.

Whether a large-scale power plant, or next generation technologies such as Small and Advanced Modular Reactors, new nuclear will both produce low carbon power and create jobs and growth across the UK.”
Poland nuclear energy development plan

Polish Nuclear Power Programme for electricity generation
High Temperature Gas Reactor programme for nuclear cogeneration

Dr Jozef Sobolewski
National Centre for Nuclear Research
Polish Nuclear Power Programme

Target

To build 6-9 GWe of installed nuclear power capacity based on large, proven PWR type reactors for electricity generation.

Rationales

Energy security:
- Diversification of fuel base in electricity generation sector.
- Replacement of old coal-fired power plants with zero-emission dispatchable sources.

Protection of environment and climate:
- Significant role of nuclear energy in efforts to prevent climate change.
- Nuclear energy is a Polish solution to achieve EU climate and energy policy goals.
- All electricity generation technologies have pros and cons for environment. Energy mix with RES only is unachievable and unrealistic. Mix without NPP means RES and fossils.

Economic benefits:
- Stable price over long period of time
- Can include district heating and hydrogen production (electrolysis).
Polish Nuclear Power Programme

Key elements of nuclear power implementation.

Model (ownership relations):
- Project company (51% State’s Treasury, 49% Strategic co-investor connected with technology supplier).
- One technology for all NPP’s.

Technology (reason for large PWR’s):
- The most extensive experience in construction and operation of NPP.
- No history of important radiological accidents.
- Common knowledge of PWR technology by Regulators.
- More options for NPP siting due to smaller emergency zone.
- Competitive supplier market.

Siting: one in North and one in Central of Poland
Polish Nuclear Power Programme

Schedule

2021 – selection of technology for NPP1 and NPP2
2022 – obtaining of an environmental and siting decision for NPP1
2022 – signing an agreement with the vendor of technology and EPC contractor
2026 – obtaining of a construction permit and start of the construction of NPP1
2032 – obtaining of a construction permit and start of the construction of NPP2
2033 – the issuance of an operating licence by the Regulator and the commissioning of the first reactor of NPP1
2035 - 2043 every 2 years – the issuance of an operating license and the commissioning of further 2 reactors at NPP1 and 3 reactors at NPP2.
Status of nuclear cogeneration activities

Primary target for HTGR is Polish heat market. Today 100% heat market is dominated by fossil fuels; mostly coal in district heating and coal and gas in industry heat generation. 13 largest chemical plants need 6500 MW of heat at T=400-550°C.

Secondary target is the hydrogen production.

• Minister of Energy appointed Committee for deployment of high-temperature nuclear reactors in Poland in July 2016. Report with results of the Committee’s works published in January 2018. Minister accepted the report, took note that deployment of HTGR reactors in Poland is desirable and requested Ministry to prepare further steps.

• Strategy for Responsible Development - the governmental program for Polish economic development - adopted in February 2017, contain e.g.: Deployment of HTR for industrial heat production. The project for this action is: Nuclear cogeneration – preparation for construction of the first HTR of 200-350 MWth supplying technological heat for industrial installation.
Status of nuclear cogeneration activities

• The NOMATEN Center of Excellence has received 7 years (2018-2025) of joint financial support (€37M) from the Foundation for Polish Science (FNP) and the European Commission. NOMATEN focus on the studies and development of novel materials, specifically those designed to work under harsh conditions – radiation, high temperatures and corrosive environments.

• In 2019 Ministry of Entrepreneurship and Technology (now Ministry of Development) qualified HTR in the list of National Smart Specializations. This opens a way for NCNR to conduct research in this field with aid from the EU funds, among other things.

• In frame of national strategy program GOSPOSTRATEG the National Centre for Research and Development accepted the grant of about $5M for joint project of MoE, NCNR and INChT for preparation of law, organization and technical instruments to deploy the HTR reactors in years 2019 - 2022.
Status of nuclear cogeneration activities

What next with HTGR in Poland:

In January 2020 The Ministry of Science and Higher Education has published the Polish Map of Research Infrastructure, which contains a list of 70 key research infrastructures. One of the high priority project is a construction of European High Temperature Experimental Reactor (EUHTER) in Poland. We plan to put this project on the list of European Strategy Forum on Research Infrastructures.

• We have running projects connected to HTGR: GEMINI+, GOSPOSTRATEG-HTR, and cooperation agreement with JAEA.
• We have strong positive signals for HTGR deployment coming from Polish Government, and also from Polish Parliament.
• We have also interest from Polish industry, but most of them hold distance due to long development work and lack of positive signals from EU.
• We are working on a new version of national strategic energy program (PEP2040) containing elements of HTGR program.
• We are working on preparation of EUTHER program (design and construction of small experimental HTGR, being also the technology demonstrator) for implementation based on national finance sources.
• You are invited to visit SNETP/NC2I webpages for more information (https://snetp.eu/).
Poland nuclear energy development plan

Thank you
Closing Remarks

King Lee

Director, Harmony Programme, World Nuclear Association & Vice-Chair Group of Experts on Resource Management & Group of Experts on Cleaner Electricity Systems
24 November 2020 (Tuesday)

11h00 – 13h00 Sub-regional workshop on attaining carbon neutrality (via Interprefy)

Join to discuss & learn about:

• **Role of CCUS to attain Carbon Neutrality in East Europe and Central Asia**
 - Country Cases – Kazakhstan, Russian Federation, North Macedonia and Albania

• **Role of Nuclear Energy to attain Carbon Neutrality in East Europe and Central Asia**
 - Country Cases – Belarus, Uzbekistan, Russian Federation (TBC), Ukraine (TBC)