Technology Options for New Coal Units

Advanced Ultra-Supercritical (A-USC) Power Plants

Revis W. James
Senior Technical Executive
Generation Sector Research and Development

Workshop on Best Practices in Production of Electricity from Coal
United Nations Economic Commission for Europe
29 October 2015
EPRI Overview

Mission
- Assure long-term availability of affordable, reliable, and environmentally responsible electricity through collaborative research, development and demonstration.

Key Facts
- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- Approximately $380M annual funding.
- International funding of nearly 25% of EPRI’s research, development and demonstrations
- Non-profit, independent, collaborative R&D institution
Technology Transfer Considerations

- **Key approaches**
 - Training from technology developers/researchers
 - Development of in-house experts
 - Proficiency evaluations
 - Development of reference tools: best practices guidelines, field guides, mobile phone/tablet applications

- **Key challenges**
 - Inconsistent levels of technical experience in receiving organization
 - Maintaining continuity in technical staff
 - New technology must be understood in context of related research/technology
 - Integration into engineering, operations and maintenance
 - Integration into training and procedures
Increasing Non-Emitting Generation

Flexible, dispatchable assets support increasing variable generation

Flexible CO₂ capture technology will enable fossil unit support of renewables

Increasing Gas & Coal Efficiency

Improving CO₂ Capture Technology

Improved CO₂ capture technology enables continued availability of dispatchable fossil units

A-USC plays a key role
Key Benefits of Advanced Ultra-supercritical Materials

- Minimum desired strength not reached until much higher temperature (1400°F/ 760° C)

- Increasing Steam Conditions Dramatically Improve Efficiency and Reduce CO₂ Emissions
 - Efficiency: ~45% HHV (from current levels ~35%)
 - Reduced CO₂ emissions intensity on the order of 28-32%

- Higher-strength alloys provide an avenue for cost savings (comparison of 740H vs. alloy 617 for a main steam and hot-reheat piping system)
 - Reduced piping material cost (less material) by a factor of ~2
 - Reduced welding cost (less welding material, less welds due to longer extrusions)
Key Features of A-USC Materials

Materials Technology Evaluation
- Focus on Nickel-based alloys
- Numerous successes: fabrication technology now proven, ASME Code Acceptance Granted for Alloy 740H

Key Aspects of A-USC Materials
- High strength at high temperature capability (760° C)
- For Boilers:
 - Corrosion resistance with different coals
 - Recent Success: 2+ year boiler exposure at 760° C)
- For Turbines:
 - Recent Success: Haynes 282 Triple Melt ingot for rotor forging
 - Recent Success: Haynes 282 full-size casting: ~17,500lbs
A-USC Increases Limit on Minimum Desired Strength

- **9-12Cr Creep-Strength Enhanced Ferritic Steels (Gr. 91, 92, 122)**
- **Standard 617**
- **Haynes 282**
- **Nickel-Based Alloys**
- **Inconel 740**
- **CCA617**

Average Temperature for Rupture in 100,000 hours (°C)
- Steels = USC 620°C (1150°F)
- Solid Sol’n = A-USC ~700°C (1300°F)
- Age Hardenable = A-USC 760°C (1400°F)
Higher-strength alloys provide cost savings

- A-USC plant design study looked at using 740H compared to alloy 617 for a main steam and hot-reheat piping system:
 - Reduced piping material cost (less material) by a factor of ~2
 - Reduced welding cost (less welds)
 - Provided a buffer for nickel-based alloy price fluctuations
Increasing Steam Temperature and Pressure Significantly Improves Heat Rate

Note: HHV Basis
A-USC Materials/Components Enable Transformational Technologies

A-USC Materials R&D Consortium (Boiler and Turbine)

A-USC Component Test

A-USC DEMO Plant

A-USC DEMO Topping/ Retrofit/ Repowering

sCO2 R&D

sCO2 PILOT

sCO2 DEMO
Alternative Supercritical CO\textsubscript{2} Power Cycles Need Advanced Materials Technology

- **NET Power Cycle 25MW Demo**
 - Gas-fired 100% carbon capture modified sCO\textsubscript{2} Brayton Cycle will use Inconel 740H for high-temp. CO\textsubscript{2} piping
 - Scale-up to 250MW will require large- diameter nickel-based alloy piping

- **DOE Sun-Shot sCO\textsubscript{2} Brayton Cycle**
 - 1 MW closed-cycle test facility being developed
 - Piping, valves, castings, forgings, welding are applicable
A-USC Expands Coal Unit Capabilities

- **Heat rate**
 - Higher temperature and pressure conditions
 => lower heat rate and higher efficiency

- **Reduced plant emissions intensities**
 - A-USC plants would reduce CO₂ capture needs.
 - Levelized cost of electricity thus would also be better.

- **U.S. Department of Energy proceeding with A-USC component testing.**
Supercritical Retrofit to an Existing Subcritical Plant

- UK’s DTI Project 407 based on Ferrybridge Unit

- Current subcritical unit cycle efficiency 36.7% (LHV)
 - Replacement of boiler, within existing boilerhouse
 - Pipework and turbine modifications
 - Add FGD and SCR to new plant standards
 - Reuse bulk of ancillary equipment
 - Maximize use of existing infrastructure
 - Designed to be CO₂ capture ready

- A-USC retrofit, SCR & FGD, cycle efficiency 44.7% (LHV)
 - 22% increase in overall efficiency
 - Significant improvement despite SCR / FGD penalty
 - CO₂ reductions, at a load factor of 70%, are 483,500 te/yr (18%)
Summary

- Higher-strength A-USC alloys have an economic advantage.

- A-USC technology could offer significant heat-rate advantages and emissions intensity reductions compared to current coal generation.

- Research has made excellent progress on the materials technology for A-USC boilers & turbines
 - Fireside corrosion & oxidation (include in-plant data)
 - Welding and fabrication for boilers
 - Long-term data leading to ASME code rules/code cases
 - Rotor scale-up and testing
 - Casing technology scale-up

- Component testing (underway in the U.S.) and A-USC plant demonstration are next steps.

- Retrofit options are also being researched.
Together...Shaping the Future of Electricity
A-USC Materials: Broad-Based Consortium

Federal – State – National Laboratory - Non Profit – For Profit

© 2012 Electric Power Research Institute (EPRI), Inc. All rights reserved. Other marks and logos are the property of their respective owners.
A-USC ComTest Objectives

- Evaluation of advanced materials and components under coal fired, A-USC conditions

- Minimize risk for a utility desiring to build an A-USC Plant
 - Demonstrate turbine operation
 - Demonstrate reliability and safety
 - Understand manufacturing and cost

- Evaluation of the constraints in the supply chain for advanced materials, including all necessary components, instruments, valves and fittings

- Validation of fabrication techniques, and the ability to construct, install and repair ComTest with on-site labor (i.e. avoid necessity of using specialized vendor staff.)
Specific Goals (Defined by Power Companies)

- Boiler: Design, install, start-up, operate and cycle high temperature nickel components (740H & others)
 - Large diameter piping
 - Header and tubes (gas fired heater)
 - Superheater materials exposure (at pressure)

- Turbine: Design, install, start-up, operate and cycle full size steam valves & steam turbine for 760°C (1400°F).
 - Periodic testing of steam valves at high temperature
 - Materials & coatings
 - Turbine architecture
 - Oxidation, deposits, solid particle erosion (SPE)
 - Non-destructive examination/testing (NDE/NDT)

• Fabrication methods & supply chain for super-alloys
A-USC Component Test (ComTest) Approach

• Extended testing (~8000 hours) at high temp., press.
• Steady state and ramping conditions
• Complete by 2020
Key A-USC Component Testing Issues

- Testing A-USC turbine at low vs. high pressure
 - Design of an A-USC turbine operable at full high pressure conditions associated with A-USC still presents a technical challenge and requires additional research.
 - Insights gained from testing at high temperatures and lower pressures will definitely be valuable and will inform this research.
 - EPRI is investigating development of a separate project to retrofit an A-USC turbine to an existing power plant to test at reheat process conditions.

- Testing under dynamic conditions
 - Needs for flexible operations are anticipated to be increasingly more frequent for a growing proportion of the existing coal and gas fleet.
 - Varying combinations of temperature and pressure, and testing under dynamically changing conditions will be very valuable for understanding the performance of A-USC components under cycling conditions.
 - Thinner-walled A-USC piping is likely to successfully sustain greater thermal gradients, a critical capability.
Notable Results for Inconel 740H

- Shows lower wastage after 2 years exposure in a coal-fired boiler at A-USC temperatures
- Testing at 760°C (1400°F) in an operating steam corrosion test loop shows minimal wastage
- No significant changes to fabrication techniques appear to be required
- Successful pipe extrusion
- Successful welding demonstrations, e.g. 76 mm (3”) circumferential pipe weld
- 2011 approved ASME Boiler & Pressure Vessel code case for maximum temperature use of 800°C (1472°F)
Timeline for U.S. A-USC Development

Boiler Phase I Boiler Phase II
Turbine Phase I Turbine Phase II

Precompetitive Materials R&D

A-USC ComTest (Materials & Components)

A-USC Demonstration (Topping / Retrofit / New)

EU Materials R&D ComTest (700C) Japanese AUSC
Follow-on Projects

Chinese Program Chinese Demo?
India R&D Program India Demo?

Design Procure & Construct Initial Ops.
Eng. & Procure Build/ Ops.
Post Test

A-USC Commercial Readiness