Technology Options for Existing Coal Units

Revis W. James
Senior Technical Executive
Generation Sector Research and Development

Workshop on Best Practices in Production of Electricity from Coal
United Nations Economic Commission for Europe
29 October 2015
EPRI Coal Research Programs

- Existing coal plant technology
 - Major Component Reliability
 - Boiler Life and Availability Improvement
 - Steam Turbines-Generators and Auxiliary Systems
 - Generation Maintenance Applications Center
 - Boiler and Turbine Steam and Cycle Chemistry
 - Fossil Materials and Repair
 - Instrumentation, Controls, and Automation
 - Maintenance Management & Technology
 - Operations Management & Technology
 - Water Management in Power Plants

- Environmental controls
 - CO₂ Capture and Storage Technology
 - Combustion Performance and Emissions Control
 - Post-Combustion NOₓ Control
 - Integrated Environmental Controls
 - Particulate and Opacity Control
 - Continuous Emissions Monitoring

- Advanced Coal Generation Technology
Heat Rate Improvements are a Key Enabling Technology

- Reducing thermal energy necessary to produce electricity (i.e. heat rate) increases economic viability of unit:
 - Lower emissions
 - Lower fuel consumption
 - Lower operating costs

- Creates margin to enable compliance with existing or future requirements:
 - Enables use of less-water intensive cooling technology
 - Offsets adverse impacts on plant efficiency potentially caused by addition of environmental controls (e.g. CO2 capture.)
 - Enables compliance to more stringent limits on CO\textsubscript{2} or other pollutants
 - Enables unit flexible operations
Common Issues

- **Performance issues**
 - Feedwater heater performance problems
 - Low final feedwater temperature
 - Low hot reheat temperature
 - Low main steam temperature
 - Low HP turbine efficiency
 - High condenser backpressure
 - High air heater exit gas temperature

- **Leakages**
 - High reheat spray flow
 - High main steam spray flow

- **Reduce auxiliary power consumption**
Common Recommendations

- **Testing/monitoring**
 - Increase routine feedwater heater monitoring
 - Perform cycle alignment checks on a regular, routine basis

- **Operator awareness/information**
 - Provide Heat Rate awareness training to operations staff
 - Improve utilization of controllable losses information by operations
 - Make Heat Rate information readily available to all

- **Optimize sootblower operation / restore & repair**
EPRI Field Research on Heat Rate Improvements
Evaluation of Capital and Maintenance Projects

- Wide range of potential actions and modifications to improve efficiency were evaluated in detail

- Potential gains are unit specific

- Projected heat rate improvements range: 0.1% to >2%

- Steam turbine path modifications were worth 2 - 4% heat rate improvements

- Implementing a cycle alignment (isolation of high energy fluid leaks) program was documented to be worth >0.5% improvement in heat rate
Capital and Maintenance Projects for Plant Efficiency Improvements

- **HP, IP, LP Turbines**
 - Replace Seals
 - Steam Path Upgrade
 - Replacement

- **LP Turbines**
 - Replace last stage buckets
 - Exhaust Hood / Flow Guide Modifications

- **Generator**
 - Rewind
 - Hydrogen purity
Capital and Maintenance Projects for Plant Efficiency Improvements

- Intelligent Soot Blowing
- Economizer retrofit
- Vacuum / clean economizer
- Automate boiler drains
- Repair boiler air in-leakage sources
- Cleaning air heater
- Electrostatic Precipitator Variable Power
Capital and Maintenance Projects for Plant Efficiency Improvements

- Steam Condensers / Cooling System
 - Clean condenser tubes
 - Replace condenser tubes
 - Spongy ball cleaning system
 - Waterbox vacuum priming, automated fill system
 - Circulating water strainers
 - Restore / upgrade circulating water pumps
EPRI Field Research on Heat Rate Improvements
Evaluation of Production Cost Optimization Projects

- Identified potential 3-5% heat rate improvements through various means.

- Sliding pressure operations can yield a 2% heat rate improvement at partial load.

- The use of remote monitoring centers was documented to improve heat rate 2.5 - 4%.
EPRI Field Research on Heat Rate Improvements
Summary

- Overall, Heat Rate improvements documented between 0.5% – 5%

- Actual improvements are unit-specific.

- Specific improvements may not always be possible or justifiable.

- Gains from individual measures may not be additive.
Heat Rate Improvements to Enable Cycling

- Sliding pressure operation
- Variable-speed drives for main cycle and auxiliary equipment.
- Automated pulverizer supervisory controls and variations with mill design.
- Optimum partial load operation of air quality control systems.
- Feedwater heater drain system modifications for cycling.
- Cooling system optimization.
- Performance monitoring.
- Reducing warm-up flow for idle boiler feed pumps.
- Minimizing flow, pressure, and temperature oscillations during cycling operation
EPRI Heat Rate Research
Long Term Priorities

- **Improve heat rate**
 - Identify and evaluate new methods and hardware
 - Field tests and/or engineering studies with cost benefit analyses

- **Improve monitoring and diagnostics**
 - Applications of Advanced Analytics
 - Real-time Diagnostics
 - Update Test Methods

- **Address industry performance issues**
 - Identify common failures and degradation scenarios
 - Determine causes
 - Evaluate options for mitigation, recovery, and restoration
EPRI Research
Plant Efficiency Improvements

- Capital and Maintenance Projects for Efficiency Improvements (EPRI Report #1019002)

- 57 Detailed Evaluations of potential projects
 - 32 Capital projects
 - 25 Maintenance projects

- Not all had positive payback!
EPRI Research on Range and Applicability of Heat Rate Improvements

- Summarizes methodologies and tools for assessing and implementing measures for improving heat rate in coal-fired power plants

- Brackets the range of achievable improvements possible for an existing coal-fired power plant, based on EPRI research.

- Provides references to related EPRI research.

- Publically available to all.

- EPRI report #3002003457.
Together…Shaping the Future of Electricity