Leading Sustainable Energy Transformation in an Uncertain World

Experience-based Reflections

Dr. Bartosz Wojszczyk

- President & CEO, Decision Point Global, USA
- Adjunct Professor, University of North Carolina, USA
- Innovation Advisor, AGH University of Science and Technology, Krakow, Poland
- Board Member, Internet of Things, Asia
- Member, IEEE PES and US Energy Policy

2nd Geneva Energy Conversation
26 May 2015
Graduate Institute Geneva, Geneva

United Nations Economic Commission for Europe
No “Sustainable Energy” definition ...however, we need to understand the “WHY” and under what condition “WHAT” will no longer work.

Exponentially Increasing Energy Industry Volatility, Uncertainty, Complexity & Ambiguity (VUCA)
"Different" Energy Industry Context

We all TALK mega trends and shocks but, we DO NOT fully understand transformative nature of changes.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>Existing energy infrastructure reaching end of lifetime</td>
</tr>
<tr>
<td>20%</td>
<td>World without electricity</td>
</tr>
<tr>
<td>75%</td>
<td>Expected increase in electricity demand by 2030</td>
</tr>
<tr>
<td>80%</td>
<td>Primary energy consumption hydro-carbon based by 2025</td>
</tr>
<tr>
<td>65%</td>
<td>Population living in cities by 2040</td>
</tr>
<tr>
<td>12k</td>
<td>Total number of natural disasters world-wide likely by 2025</td>
</tr>
</tbody>
</table>

e.g. social/political unrest, financial/investment uncertainty, etc.

Why? Historical approaches insufficient to effectively address EXPONENTIAL (x-Time) changes (reactive, bottom-up, technology centric, etc.)

Decision Point Global, LLC
3rd Industrial Revolution-Resource Scarcity

- **Mechanization (1740 – 1840):** first industrial revolution triggered by the steam engine revolutionized labor productivity and offered potential for wealth creation while also killing off companies and industries that could not keep up
 - 13% (∼130m) of the world’s population industrialized (Western Europe)
 - The UK needed 150 years for its GDP per capita to double
 - Daily energy use per person (middle class) around 2000 calories (food)

- **Urbanization and Electrification (1880 – 1920):** second industrial revolution created equally large productivity opportunities as well as established global corporations and banks
 - 16% of the world industrialized for the first time (the United States, Canada, Australia, Russia, and Japan)
 - The USA needed 50 years for its GDP per capita to double

- **Resource Revolution (1990 – 2030):** combining information technology, nano-scale materials science, biology, with industrial technology. Zero-waste manufacturing, 3-D printing, hardware as software, etc.
 - By 2030, 2.5B of new middle class will be industrialized for the first time (emerging economies) + 29 new mega cities (min. 10m population)
 - Today, a member of the middle class uses more than 200,000 calories of energy a day, including gasoline, electricity, natural gas, etc. – 100x increase
 - China needed less than 15 years for its GDP per capita to double
Four (4) Dimensional Changes with Uneven Speed

- Conventional vs. Information technology
- Obsolescence (shorter ROI)
- Interoperability, Open-Standards & Seamless Adoption
- “Behavior-based” Choice & socio-economic benefits
- Energy Broker (Transactive Energy)
- Seamless (“When and Where” needed)
- Non-traditional competition
- OPEX vs. CAPEX (“cloud”)
- Organizational re-design & process agile
- Aging professional workforce
- Regulation and Policy: slow, reactive, tactical, etc.

“Mission Impossible”

...information technology vs. cognitive psychology vs. business culture vs. reactive regulation and policy...
Cross-industry Convergence...Cloud, Distributed Computing, Aviation, Banking, Social Media, etc.
Evolution of Scale and Performance Requirements

| Computing (Moore’s Law): 2x every 18 months | Communication (Fiber Law): 2x every 9 months | Content (Community Law): 2^n $(n=number \ of \ connected \ people)$ |

...around 50 Billion machines connected by 2020...

- Twitter usage: 80 GB/day
- Generation Turbine Data: 588 GB/day
- 500 gigabytes (10^9) of data from a single wind turbine blade
- In 2013, 2 ½ zettabyte (10^{21}) of data produced a day vs. all of 2008

...and yet, 99% of the world is still NOT connected...
Not About Technology Itself
Technology Investment: $8.1B in 2015; approx. $40B by 2020 (Source: ABI Research)

Max. Value Through Integrated Approach Across Value Chain

• Connected People, Processes, “Things”

• De-centralized and autonomous operations

• Integrated business models (e.g. microgrids, sustainable community, etc.) and customer services (e.g. “energy broker”, bitcoin of energy, eliminating poverty of energy, etc.)
Disrupt or Be Distributed *(examples)*

Automotive industry: Software Car, Direct Sales, Free “Fuel”, #3 best selling EV cars in the world

Energy industry: energy storage GW factory, Solar City, Fast Charging stations + Free electricity for customers

- Technology that will be capable of delivering power through wireless connection: anywhere, anyone, anytime (≈24 months to commercialization)
- Will make obsolete traditional utility business model

Generation: agreements to fund $1.5B in wind and solar projects

Retail: $3.2B investment in NEST (energy management)

Wholesale *(130 FERC-61,107, effective February 23, 2010):* Google Energy authorized to be a power marketer, purchasing electricity and reselling it to wholesale customers

Today: using 2.2B kWh of renewable electricity annually

Future: by 2020 - produce or procure 7B kWh of renewable energy globally

Future: by 2020 - reduce the energy intensity per square foot required to power all buildings around the world by 20%
How to Deal with VUCA Situation?

January 15, 2009, Captain Chesley Sullenberger and First Officer Jeffrey Skiles, made an unpowered water landing in the Hudson River ... IN JUST 208 seconds

“The fact that we got so much, so right, so quickly, under those conditions is a testament to our training, our preparation and years of experience, and the judgment that we’d developed” Captain Ch. Sullenberger

Informed/On-Demand Action in VUCA situation
INSIGHT + CONTEXT + EXPERIENCE
How to capture the biggest industry sustainable energy opportunity in a century? (1/3)

Insight – Customer Centricity

- Behavioral psychology...customer choice / access to competitive choice
- Sustainable Outcome...It is not about price but it is about value/benefits vs. convenience vs. “share of valet” (affordability)
- Seamless experience (developed economies)...seamless and quality access at any time and anywhere (emerging economies)
- Socio-economic approach...customer is not energy unit (kWh/BTU), etc.
- Emerging trend...“energy broker”...transactive approach
Community, socio-economic & regional differences exist and will exist…not one size fits all

Solutions and market design for de-centrallized, autonomous, abnormal weather conditions

Paradigm shift in resource utilization (“consumption”)

Finding opportunities to substitute away from scarce resources

Eliminating energy waste throughout the system – from production to end use

Moving energy products, services and the processes that develop or deliver them from the “physical world” to the “virtual realm”
How to capture the biggest industry sustainable energy opportunity in a century? (3/3)

Experience

- “X-ponential” changes require much less regulation (no regulation) and more disruptive innovation to deliver sustainable energy outcomes at scale for a fraction of TOTEX
- Open-market enabling competitive diversity and choice
- Grid obsolescence paradigm—the future is about: local flexible demand and supply markets, transactive energy and customer as a energy broker business model, de-centralized & autonomous operations…possibly enabled by non-energy companies
Thank You