Good Practices in Effective Ventilation of Underground Coal Mines

Polish Practices and Regulations

25th of July 2018

Henryk Koptoń

www.gig.eu
Location of major Polish coal basins
Absolute methane bearing capacity, methane drainage, amount of economically utilized methane and coal production output in Polish hard coal mines in the years 2007-2017

<table>
<thead>
<tr>
<th>Specification</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute methane bearing capacity (mln m³/year)</td>
<td>878.9</td>
</tr>
<tr>
<td>Methane drainage (mln m³/year)</td>
<td>268.8</td>
</tr>
<tr>
<td>Amount of economically utilized methane (mln m³/year)</td>
<td>165.7</td>
</tr>
<tr>
<td>Number of the hard coal mines</td>
<td>31</td>
</tr>
<tr>
<td>Hard coal output (mln tones)</td>
<td>87.4</td>
</tr>
</tbody>
</table>
THE POLISH MINING LAW

ACT of 9 June 2011, Geological and Mining Law

and two main executive acts of this act related to ventilation:

➢ Regulation of the Minister of the Environment of 29 January 2013 on natural hazards in mining plants
➢ Regulation of the Minister of Energy of 23 November 2016 on detailed requirements for the operation of underground mining plants
CATEGORIES OF METHANE HAZARD IN POLAND

• **I**\(^{st}\) methane hazard category - 0.1 to 2.5 m\(^3\)/Mg (daf)
• **II**\(^{nd}\) methane hazard category - 2.5 to 4.5 m\(^3\)/Mg (daf)
• **III**\(^{rd}\) methane hazard category - 4.5 to 8.0 m\(^3\)/Mg (daf)
• **IV**\(^{th}\) methane hazard category - >8.0 m\(^3\)/Mg (daf) or if there was sudden outflow of methane or outburst of methane and rocks
Workings in methane fields in underground coal mines can be classified:

- to the endangered with methane explosion (degree "a"), if the concentration of methane in the ventilation air above 0.5% are excluded,
- to "b" degree of methane explosion hazard if in normal ventilation conditions the concentration of methane in air higher than 1% is excluded,
- to "c" degree of methane explosion hazard, if in normal ventilation conditions the concentration of methane in air can be higher than 1%.

PRINCIPLES OF CLASSIFYING WORKINGS IN METHANE FIELDS IN UNDERGROUND COAL-MINING TO THE DEGREES OF METHANE EXPLOSION HAZARD

Instruction No. 18 issued by the Central Mining Institute
Distribution of permissible content of methane within a longwall ventilated using the “U” method along the body of coal
Diagram of the intersection of the longwall ventilated in the “U” system with the ventilation roadway, with the location of methane sensors and the system of auxiliary ventilation equipment for dilution of methane.
Methane hazard monitoring

- Measurements of methane concentration (automatic and individual)
- Measurement of methane concentration in the methane drainage pipelines
- Measurement of air flow speed in the workings
- State of closure of ventilation dams, that affects the ventilation conditions, as well as changes in the distribution of aerodynamic potentials in the environment of longwalls
PRINCIPLES OF LONGWALL CONDUCTING IN METHANE HAZARD CONDITIONS

Instruction No. 17 issued by the Central Mining Institute

Criterion absolute methane bearing capacity V_{KR}, V_{KR-O}

Absolute methane bearing capacity (predicted or real)

$$V_{KR} = \frac{V_p c_m k}{100n} + \frac{V_L \left(\frac{c_m - c_p}{n} \right)}{100 - \frac{c_m}{n}} - V_{D(CH_4)}$$

$V_{KR-O} = 100 \cdot \frac{V_{KR}}{100 - E}$

where:

- V_p – volume of the air flow rate flowing through the longwall, m3/min
- V_L – volume of the air flow rate supplying the outlet from the longwall – the auxiliary air duct (longwall U) or air flow rate supplying the longwall (Y type ventilation), m3/min
- c_m – acceptable content of methane in the air current of the outlet, $c_m = 1.5\%$
- c_p – content of methane in the air supply,
- k – factor determining the non-uniformity of the velocity distribution in the longwall, $k = 0.85$
- n – factor determining the non-uniformity of methane emission, $n = 1.55$
- $V_{D(CH_4)}$ – the amount of methane flowing into the longwall from other sources, m3/min
- E - efficiency of the methane drainage of the exploited longwall, %.
Methane prevention for the longwalls:

- Selection of the proper ventilation system for the longwall
- Ensuring the required air volumes in the area of the longwall
- Methane hazard monitoring system
- Effective actions to combat the methane accumulations in the places of possible initiation of ignition or explosion
- Technology of methane drainage of the longwall environment
Thank you for your attention

Henryk Koptoń hkopton@gig.eu
Central Mining Institute, Poland
Experimental mine „Barbara”
Dept. of Gas Hazard Control

www.gig.eu