Drilling Solutions for Methane Drainage

Workshop on Best Practices in Coal Mine Methane Capture and Utilization
3rd International Coal Conference
Ukrainian Coal Mining Industry in the Times of Decarbonisation

Prepared By:
Clark Talkington, Vice President

Advanced Resources International, Inc.
Arlington, VA USA

12 June 2019
Dnipro, Ukraine
Mine gas drainage options

- Surface pre-drainage
- Surface gob (goaf) boreholes
- In-mine pre-drainage boreholes
- In-mine cross-measure boreholes
- Drainage galleries
- Case studies

Source: UNECE. Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines (2016)
Surface pre-drainage: vertical wells

### Vertical wells – unstimulated

**Advantages**
- Eliminates need for hydraulic fracturing (operations and costs)
- No casing across the coal seam
- In use since 1970’s
- Can pre-drain up to 10 years in advance of mining
- High CH4%

**Disadvantages**
- Not good for multiple seams
- Costs can be high in countries where not practiced
- Not cost-effective for low-permeability formations
- Requires surface access
- May require rights or license for gas resource

### Vertical wells – stimulated

**Advantages**
- Can increase production from low permeability coal seams (up to 73%)
- Provides good wellbore control
- Ideal for multiple seams
- High CH4%

**Disadvantages**
- Leaves casing across the coal seam; can use fiberglass casing
- Higher cost
- Requires necessary infrastructure
- Disposal or treatment of frac fluids
- Perceived negative impact on roof stability (note – not a problem in U.S.)
- Surface access and gas rights
Typical vertical well setup after completion

Surface pre-drainage: surface to in-seam drilling

Advantages
- Multiple laterals off single pad
- Different drilling patterns
- In right conditions, very high reduction in gas content
- Continuing technology advancement
- High CH4%

Disadvantages
- Higher cost
- Limited infrastructure or services in many countries
- Skill and experience required to steer boreholes
- Not as effective in very low permeability seams
- Requires surface access
- May require gas rights

Surface post-drainage: vertical gob (goaf) vent boreholes

Advantages
- Lower cost than pre-drainage boreholes
- Effective at capturing gas in overlying strata
- Drilled and completed above mined seam – no interference with longwall production
- Medium gas quality – can be used in gas engines, flares, boilers or upgraded to pipeline quality

Disadvantages
- May not be cost effective for very deep mines compared to in-mine drainage
- Wells have short life with rapid reduction in gas quality
- Requires surface access
- Limited effectiveness when mining multiple seams
In-mine pre-drainage: cross-panel boreholes

Advantages
- Low cost
- Widely practiced in many countries
- Can produce high quality gas

Disadvantages
- Limited by gate road development
- Poor borehole stability in soft coals
- Low permeability seams require many boreholes
- Easy to reduce gas quality with too much vacuum
- Often necessary to use with post-drainage technique
In-mine pre-drainage: directionally drilled boreholes

Advantages
- May be more cost-effective than surface pre-drainage
- Higher marginal costs than cross-panel boreholes, but may lower total costs
- Entire length of borehole is pressure sink
- Produces high quality gas
- May not be affected by gate road development – can be drilled from main entry
- Can drill to other seams to drain gas far in advance of mining

Disadvantages
- Poor borehole stability in soft coals
- Limitations in difficult geology – faulting, folding, thin seams, igneous intrusions
- Requires skilled and experience drilling crew
Application of directionally drilled borehole to future seam

Source: EPA, TengHui Mine Pre-feasibility Study (2019)
In-mine post-drainage: cross-measure boreholes

Advantages
- Lower cost than pre-drainage boreholes
- Widely practiced
- Can be drilled above or below mined seam
- Medium quality gas

Disadvantages
- Limited by gate road development
- Poor borehole sealing at many mines
- Over-pressurized vacuum often results in poor gas quality

Source: EPA, CMM Primer (2018)
In-mine post-drainage: directionally drill gob boreholes

Advantages
- Can be lower total cost where cross-measure or cross-panel boreholes are drilled at high frequency
- Can be drilled above or below mined seam
- Entire borehole is a pressure sink
- Not limited by gate road development
- Medium quality gas

Disadvantages
- Higher marginal cost than other in-mine gob gas drilling techniques
- Requires skilled and experienced drilling crew

Source: EPA, TengHui Mine Pre-feasibility Study (2019)
In-mine post-drainage: drainage galleries

Advantages
- Uses pre-existing roadway or new gallery with vacuum above mined seam to capture gas
- Does not interfere with current mining operations
- Developed in 1940’s, in use for many years in several major countries of Europe and Asia
- Can be lower cost than cross-measure boreholes

Disadvantages
- Can result in very diluted CH4 stream with too much vacuum
- May not be cost-effective if gallery does not already exist

Source: EPA, CMM Primer (2018)
Case study (Ukraine): surface vertical pre-drainage vs surface gob wells

EPA-sponsored pre-feasibility study of the Komsomolets Donbassa mine, Ukraine
https://www.epa.gov/cmop/coal-mine-methane-ukraine

- Vertical surface pre-drainage wells vs. surface gob vent boreholes
- Modeled gas production
  - Pre-drainage borehole – reservoir simulation software, COMET®
  - Gob vent borehole – U.S. NIOSH Gob Gas Venthole (GGV) Performance Prediction model
- Gob vent boreholes were better option
- Unstimulated vertical pre-drainage wells were not economic
  - Low permeability required tight spacing driving up costs
  - Even most optimistic scenario showed that pre-drainage wells would produce 1/3 of CH4 production from surface gob wells
Case study (China): cross-measure + cross-panel boreholes vs directionally drilled in-seam and gob boreholes

EPA-sponsored pre-feasibility study of the TengHui mine, China

<table>
<thead>
<tr>
<th>Case</th>
<th>Max Power Plant Capacity</th>
<th>NPV ($,000s)</th>
<th>IRR</th>
<th>Payback (Years)</th>
<th>Net CO\textsubscript{2}e Reductions (t CO\textsubscript{2}e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>5.23 MW</td>
<td>$9,491</td>
<td>22.06%</td>
<td>4.9</td>
<td>1,481,616</td>
</tr>
<tr>
<td>Base</td>
<td>3.71 MW</td>
<td>$1,684</td>
<td>12.23%</td>
<td>6.45</td>
<td>1,139,704</td>
</tr>
<tr>
<td>Low</td>
<td>3.47 MW</td>
<td>$(943)</td>
<td>8.72%</td>
<td>7.24</td>
<td>797,793</td>
</tr>
</tbody>
</table>

- **Existing degas system:**
  - 2 cross-measure boreholes and 1 cross panel borehole at 4m intervals (300m borehole every 4m)
  - Low marginal cost ($30-$40/m) but high total cost
  - Low gas concentrations: 2-8%
  - No CMM utilization

- **GMI recommended alternative**
  - Replace cross-measures and cross-panel boreholes with directionally drilled in-seam and gob boreholes
  - Gas prediction modeling: reservoir simulation for in-seam boreholes and engineering equation for gob gas

- **Results**
  - Total CMM production remains same
  - Significant improvement to gas quality allowing utilization
  - Potential for 5 MW of power generation
  - Higher marginal costs ($100-$130/m) for drilling but significant reduction in total meters drilled reducing total drilling costs
Case study (Turkey): directionally drilled in-seam and gob boreholes at

EPA-sponsored pre-feasibility study of the Amasra mine, Turkey
https://www.epa.gov/cmop/cmop-international-partners-turkey

- Study conducted during mine planning
- Gas Content: 6-13 m³/ton/Permeability: ~1 MD
- Evaluated different options for in-mine directionally drilled boreholes
  - Pre-drainage: Drilled length of the 300x1000m panel
  - compared 2 vs 4 boreholes per panel
  - Post-drainage: 1 gob well per panel
  - Gas prediction modeling: reservoir simulation for in-seam and engineering equation for gob gas
- Total CMM production remains same
  - Best case: 2 pre-drainage wells + 1 gob well draining for 5 years
Acknowledgements

- Volha Roshchanka, Valerie Askinazi and Monica Shimamura, U.S. Environmental Protection Agency
- Global Methane Initiative
- UN Economic Commission for Europe
- Jon Kelafant and Kyle Turpin, Advanced Resources International, Inc.
- Dan Brunner and Alex Schumacher, REI Drilling, Inc.
Thank You!

Clark Talkington
ctalkington@adv-res.com
Sr. Vice President
Advanced Resources International