New techniques of coal seam panels' pre-drainage - based on GasDraín project experience

Janusz Makówka, Jacek Skiba, Bartłomiej Jura – Central Mining Institute
Jerzy Król JSW S.A., Marian Zmarzły- JSW SA

Kwakow, 28th February 2018
Basic facts:

Realisation time: July 2015 – June 2018

Budget: 3.8 mln €

Partners:
GIG (Poland) – project coordinator,
JSW (Poland)
INIG-PIB (Poland),
RWTH (Germany),
INERIS (France),
Imperial College (UK),
HUNOSA (Spain)
Structure of the project:

WP0: Project Coordination and Reporting (GIG)
WP1: Characterisation of Coal Seams and Surrounding Rocks: Field Site Characterisation (RWTH)
WP2: Development of Borehole Stimulation Technologies for Coal and Rock Formations (GIG)
WP3: Numerical Modelling and Design of Field Scale Stimulated Methane Drainage Processes (Imperial College, INIG)
WP4: Field Scale Implementation of Improved Methane Drainage Systems at Mine Sites (JSW SA)
WP5: Long-term Monitoring and Assessment of Improved Methane Drainage Efficiency (GIG)
WP6: Conclusions, Recommendations and Dissemination (INERIS)
Inputs and outputs of WPs

WP1: Characterisation of coal seams
- cores/samples, geol. info
- Lab/field test data
- theoretical drainage range/parameters

WP2: Development of Borehole Stimulation
- existing equipment param.
- empirical drainage range/parameters
- boreholes layout

WP3: Numerical Modeling and Design

WP4: Field Scale Implementation
- theoretical drainage range/parameters
- boreholes layout

WP5: Long-term monitoring and Assessment
- drainage long-term characteristic

WP6: Conclusions, Recommendations and Disseminations

SAFER AND MORE EFFECTIVE MINING
Laboratory experiments to define the baseline reservoir properties

The laboratory experiments aimed at defining the baseline reservoir properties for numerical simulations. Petrophysical data comprise permeability and porosity. Physico-chemical data comprise methane sorption isotherms and gas uptake kinetics determined on different particle sizes. The database is complemented by organic petrological information and petrography of the bedrock samples.

normalized pressure decline curves for gas uptake by different grain sizes of ZOFIOWKA seam 412 coal (semi-logarithmic plot).
Assessment of the prevailing stress state at different mine layouts

The main objective of this task was to implement both numerical and empirical methods to define the state and magnitude of stresses around working longwall and sublevel caving coal faces at JSW and HUNOSA to assist the initial design of field experiments in the project.

Location of extracted panels in seam 412 and surrounding seams

Vertical stress distribution in seam 412 in Zofiowka colliery

Vertical stress distribution around longwall panel D-2 isosurfaces of 15 MPa (green), 20 MPa (orange), 25 MPa (grey) and 30 MPa (red).
In-situ measurements of coal and surrounding rock properties

This task aimed at drilling and instrumenting a number of boreholes at selected JSW and HUNOSA sites to carry out field experiments to establish the in situ stress and reservoir properties of the coal seams and surrounding rocks that are affected by coal production.

Directions and values of horizontal stresses obtained from measurements in seam 412:

\[\sigma_h = 59 \]
\[\sigma_s = 16 \]

Pressure gauge developed by INiG-PIB

Diagram of the coal permeability measurement:

- A) Hydrostatic pressure balance
- B) Removal of some fluid volume from the well
- C) Monitoring the fluid table behaviour

\[k = 0.128 \text{ mD} \]
\[k_s = 1.707 \text{ mD} \]
\[S = -4.63 \]

www.gig.eu
Task 2.1 aimed at the development and construction of the equipment and tools for the hydraulic/mechanical slotting and stimulation by blasting. Due to specific underground coal mine conditions, the equipment had to be designed and manufactured with the required specifications and certifications.
Laboratory investigations into stimulation techniques

Laboratory experiments to characterise fracture growth, frac fluid and proppant behaviour in coal seams

The newly constructed 100mm hollow cylinder testing triaxial cell during pressure testing. Large cell size and weight requires lifting and stabilising tools.

Permeability behaviour of a sand propped fracture in coal comparing baseline (un-propped) and propped N2 permeabilities.

Fractured coal samples treated with 34-40 Mesh sand proppant (left) and InterProp 30/50 ceramic proppant (right).
Laboratory investigations into stimulation techniques

Laboratory experiments to develop new blasting techniques for fracturing coal and rock masses

Test chamber for determining the explosive characteristics.

Characteristics of the pressure changes during explosion of the 10 g METANIT SPECIALNY E7H charge (Initial pressure = 1.3 MPa).

Relationship between combustion rate in the intermediate period of the course, and initial pressure for 50% time of pressure increase.
Numerical modeling to assess the performance of stimulated wellbores

Numerical modelling of hydraulic stimulation
Numerical modelling of stress relief and fracturing induced around slotted wellbores
Numerical simulation of cavity completions
Numerical simulation of the use of explosives

The effect of varying dip direction and dip angle on failure zone geometry.

Permeability profiles along the (a) coal seam strike and (b) vertical direction.
Field testing and development borehole methods

Training of the use of stabilization-turning unit USO–1.

Test boreholes used to investigate hydro cutting and hydro slotting technique.

Confirmation of hydro slotting range: water and steam flow from the monitoring borehole.
Numerical modelling of multi-seam mining layouts and gas flow patterns around longwall faces for enhanced methane drainage at JSW mines

Drainage coefficient in the vertical cross section B-B' parallel to the borehole axis, 107.5 cm from the borehole axis.
Application of large scale stimulated drainage of methane layouts at JSW

Results of aerometric tests in the experimental borehole G180c (2016) before and after slotting

Exemplary results of methane intake from borehole G180c
Map of the research area
Placement of the machinery underground
Outline of the site test
Outline of the hole in the coal seam
Positioning the USO equipment
Fixing rod elements together
Rod entering into stabilizing pipe
Drainage installation
Methane flow sensors on the pipe
Long-term Monitoring of Improved Methane Drainage Efficiency

Components of integrated methane drainage sensor ZCO

Example of methane drainage system with measuring equipment.

Block diagram of the ZCO sensor adjusted to operation with a measuring orifice plate

www.gig.eu
Findings and conclusions from Zofiowka tests

Conducted experiments and data obtained during the research in Zofiowka mine enabled the following:

• to confirm the results we came across in EM Barbara
• to confirm the possibility of applying hydroslotting system underground
• to determine the possible dangers and safety measures
• to discover the most important elements of this technology
• to find solutions to the problems that might appear during operating
• to find the correlation in the parameters in order to optimize the technology
Thank you for your attention