Quantifying Resources, Reservoir Testing, Feasibility Study, Gas Production Strategies, AMM Utilization Options

Clark Talkington
Advanced Resources International, Inc.

Capture and Use of Abandon Mine Methane and Mine Reclamation and Revitalization of Post Mining Areas
Cracow, Poland
26 February 2020
Quantifying AMM resources

Gas Resource

Area thickness x residual gas content after mining

Gas Reserve

Technically & economically recoverable resources

- Develop estimate based on data
 - Mine plans
 - Geological logs
 - Water inflow data
 - In situ gas measurements

Source: EPA, Advanced Resources International, REI Drilling
AMM reserves

- Mean desorbable remaining gas content in UK = 25-50% of original virgin gas content
 - 35% is a reasonable default
- Longwall mines more attractive AMM resource than board-and-pillar mines
 - Sealed goaf (gob)
 - Zone of influence: 160-200m above and 40-70m below
- 1 AMM project can produce gas from multiple worked seams
- Mine flooding can severely impact volumes of AMM reserves

Source: Creedy, D. P., and K. Garner, 2002 & UNECE AMM Best Practice Guidance, 2020
Understand existing water levels and rate of flooding

- **Mine already flooded**
 - Cannot produce gas without dewatering
 - Pumping is not economic
 - Environmental implications

- **Mine partially flooded; water levels stabilized**
 - May have gas production capacity
 - Districts isolated by flooding can impact effectiveness of vacuum

- **Mine flooding after closure and water table rising**
 - Compresses gas and can lead to short-lived high production rates
 - Eventually mine floods and gas production ends
Producing gas from abandoned mines

- Boreholes are drilled into the workings, intersecting roadways which provide pathway for gas flow underground
- CH$_4$ desorbs from coal seams entering goaf areas
- Reservoir pressure may be sufficient at the beginning to produce gas
- Eventually vacuum pumps will be required to draw gas to the surface
- May require dewatering, dust removal and gas conditioning
Forecasting AMM production

- Follows a decline curve
- Starting point is methane emissions at closure
- Measure gas flow rates to support production forecasts
 - Drill test well(s) and produce gas over a specified period of time
 - Take measurements from a vent pipe with or without vacuum
- History matching improves accuracy

Source: UNECE AMM Best Practice Guidance from Coté (2003, 2018)
AMM project feasibility

- Recoverable reserves
- Gas resources
- Surface activity
- Adjacent operations
- Site access
- Mine plan
- Mine operating history
- Alternative fuels
- Legal framework
- Project Capex/Opex
- Market access
- Offtake agreements

Photo Source: UNECE AMM Best Practice Guidance
Gas production strategies

- Extract as much CMM as possible before closure
- Maximize extraction in early years after closure and sealing
- Produce AMM to match specific user demand

Optimizing AMM

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Benefit</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce at less than maximum rate</td>
<td>Extend life</td>
<td>Lose reserves to flooding or other issue</td>
</tr>
<tr>
<td>Produce to satisfy peak demand</td>
<td>High peak tariffs</td>
<td>Tariffs may change potentially stranding reserves</td>
</tr>
<tr>
<td>Mix AMM with natural gas or CMM</td>
<td>Reduce costs/improve market access</td>
<td>Dependent on uses where lower gas quality is acceptable</td>
</tr>
<tr>
<td>Portable package systems for power gen</td>
<td>Flexibility</td>
<td>Sites need to be ready when time to move</td>
</tr>
</tbody>
</table>
AMM utilization

- Reduce risk of surface gas emissions
- Power Generation & CHP
- Opportunities for industrial park development
- Pipeline or town gas sales
- Local employment and job training
- Flaring

GHG Emission Reductions

Energy Recovery

Public health & safety

Economic development
Summary: Key features of a promising AMM project mine

- Extensive area of interconnected abandoned workings
- Large coal volume in unmined seams de-stressed by under and overworking
- Use of longwall total caving methods of extraction
- Significant residual methane in the unmined coal seams
- Minimal water ingress and ability to reduce water ingress
- Mine layout which encourages flow of water to lowest workings with little or no ponding in main roadways
Summary: Key features of a promising AMM project mine (cont.)

- Minimum number of mine entries
- An unfilled shaft or drift from which gas can be extracted or a suitable site for drilling a gas extraction borehole
- Good records of historic treatment of mine shafts
- No connections to shallow outcrop workings
- Surface access for infrastructure and development
- Local market for gas or small-scale power generation and high energy prices.
Acknowledgements

- U.S. EPA and the Global Methane Initiative
- UN Economic Commission for Europe Group of Experts on CMM
- Contributors and editors of the UNECE Best Practice Guidance on Effective Methane Recovery and Use from Abandoned Coal Mines
Thank You!

Presentation supported by U.S. EPA under the auspices of GMI

Contact Information:

Clark Talkington
Vice President
Advanced Resources International, Inc.
Phone: +1 703 528 8420
Email: ctalkington@adv-res.com