The Problem of AMM: Fugitive emissions, composition, accumulation, migration and potential hazards

Raymond C. Pilcher, P.G.
President, RAVEN RIDGE RESOURCES, INCORPORATED
Chair: Group of Experts on Coal Mine Methane
Vice-Chair: Committee on Sustainable Energy
United Nations Economic Commission for Europe

Post-Mining Perspectives:
Capture and Use of AMM and Mine Reclamation and Revitalization of Post Mining Areas
Cracow, Poland 25 February 2020
Introduction and outline

• Future use of coal
• Coal mining life cycle, hazards and gas composition
• Abandoned mine emission modeling and IPCC inventory guidelines
• Conclusions
World energy demand under differing policy scenarios

New policies scenario

Sustainable development scenario
Coal production and consumption by region 1993-2018

Coal: Production by region
Million tonnes of equivalent

Coal: Consumption by region
Million tonnes of equivalent

- Asia Pacific
- Africa
- Middle East
- CIS
- Europe
- S. & Cent. America
- North America

BP Statistical Review of World Energy, 2019
Coal mining life cycle, hazards and gas composition
Opportunities for methane emission mitigation and lowering coal-fired power generation carbon footprint
Closed and abandoned coal mines are thought of as hazards—not resources
CMM and AMM flow toward the lowest pressure environment.
Example of gas composition from Illinois Basin, USA

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>CO₂</th>
<th>O₂</th>
<th>N₂</th>
<th>CH₄</th>
<th>C₂H₆</th>
<th>C₃H₈</th>
<th>Heating Value (MJ/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>33-167</td>
<td>nd-16</td>
<td>nd-14.4</td>
<td>nd-79</td>
<td>nd-90</td>
<td>nd-9.5</td>
<td>nd-0.1</td>
</tr>
</tbody>
</table>
Abandoned mine emission modeling and IPCC inventory guidelines
Modeling provided type curves for emissions decline

- Reservoir models were developed to investigate the most important attributes in coals seams that are extracted in major American coal basins.
- Inputs for models were gathered from literature, private sector data sets and field measurements.
- We recognized that the natural decline for coal associated gas deposits are hyperbolic.
- The curve varies by an exponent that reflects, coal rank, permeability and formation pressure.
Abandoned mine methane production, or emissions follow a hyperbolic decline—unless the mine is flooding.
The basis of IPCC Guidance on estimating emissions
West Elk coal mine, Colorado, USA

- This mine has been open since 1978
- The mine has never used or destroyed methane that has been liberated from mining.
- In the years 2011-2018 44.2 million tons of coal was mined,
- 13.4 billion cubic feet of methane was liberated
- This represents 5.4 million tonnes of CO$_2$E using a GWP of 25, but 18.6 million tonnes using the more appropriate GWP value of 86.
- When this mine closes it could produce methane for another 20-30 years
Conclusions

• Inventories of coal mining and abandoned mine emissions need to improve
  – Need more information relative to rank of coal, isotherms, and measured emissions and methane production for developing more robust models
  – Mapping of mines is critical, location and depth of underground workings is critical information—not just for present work, but investigations of future generations
  – Promote widespread use of satellite detection and other airborne methane detection

• Active coal mine and abandoned mine emissions are largely due to the consumption of the power sector, the entire value chain of emissions from mining related methane through carbon dioxide emitted from coal combustion, should be comprehensively studied and affordable solutions found to lower the carbon footprint

• Finance is critical, we need to change the way carbon credits are established and priced

• Our aim should be to recover more methane, repurpose the lands, and use the waste products for future benefit
Thank you!

Contact:
Ray Pilcher – pilcher@ravenridge.com, +1 970.245.4088 ext. 216
Website – www.ravenridge.com