

Code Management

User Guide
Version 1

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 2 of 29

TABLE OF CONTENTS

Contents
1 ABOUT THIS DOCUMENT .. 4

1.1 EXECUTIVE SUMMARY ... 4
1.2 STATUS OF THIS DOCUMENT ... 5
1.3 REVISION HISTORY .. 5

2 PROJECT TEAM ... 6
2.1 DISCLAIMER .. 6
2.2 PROJECT TEAM PARTICIPANTS .. 6

3 INTRODUCTION .. 7
3.1 STRUCTURE OF THIS DOCUMENT .. 7
3.2 RELATED DOCUMENTS .. 7
3.3 PURPOSE AND SCOPE .. 7

4 USER REQUIREMENTS .. 8
4.1 THE CHALLENGE OF INTEROPERABILITY.. 8
4.2 THE CHALLENGE OF CONFORMANCE ... 8

4.2.1 Conformance and UN/EDIFACT .. 8
4.2.2 Conformance and UN/CEFACT XML .. 9
4.2.3 Validation methods ... 9

5 USING CODE LISTS IN A REAL-LIFE ENVIRONMENT ..10
5.1 INTRODUCTION .. 10
5.2 EXTENDED, RESTRICTED, USER-DEFINED AND OTHER ORGANIZATIONS CODE LISTS .. 10

6 ANNEX - VALIDATING UN/EDIFACT DOCUMENT INSTANCES ...11
6.1 INTRODUCTION .. 11
6.2 RESTRICTED CODE LISTS ... 11
6.3 EXTENDED CODE LISTS ... 11
6.4 CHOOSING OR COMBINING CODE LISTS ... 11
6.5 USER-DEFINED CODE LISTS (PERMANENT OR TEMPORARY) .. 12
6.6 CODE LISTS PUBLISHED BY OTHER ORGANIZATIONS .. 12
6.7 VALIDATING DOCUMENT INSTANCES ... 12

7 ANNEX - VALIDATING UN/CEFACT XML DOCUMENT INSTANCES ...13
7.1 INTRODUCTION .. 13
7.2 ONE-PHASE VALIDATION PROCESS ... 15

7.2.1 Restricted code lists .. 15
7.2.2 Extended code lists .. 15
7.2.3 Choosing or combining code lists ... 15
7.2.4 User-defined code lists (permanent or temporary) ... 16
7.2.5 Code lists published by other organizations ... 16
7.2.6 Example for a restricted code list ... 16
7.2.7 Example for an extended code list .. 17
7.2.8 Impacts for a real-life environment .. 17

7.3 TWO-PHASE VALIDATION PROCESS ... 18
7.3.1 ISO Schematron/XSLT .. 19

7.3.1.1 Restricted code lists ...19
7.3.1.2 Extended code lists ..20
7.3.1.3 Choosing or combining code lists ..20
7.3.1.5 User-defined code lists (permanent or temporary) ...21
7.3.1.6 Code lists published by other organizations...21
7.3.1.7 Impacts for a real-life environment ..21

7.3.2 ISO Schematron/XSLT ï using Genericode/CVA ... 21
7.3.2.1 Restricted code lists ...23
7.3.2.2 Extended code lists ..24
7.3.2.3 Choosing or combining code lists ..24
7.3.2.4 User-defined code lists (permanent or temporary) ...25

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 3 of 29

7.3.2.5 Code lists published by other organizations...25
7.3.2.6 Impacts for a real-life environment ..25

9 ANNEX - PUBLICATION FORMAT CODE LISTS ...26
9.1 GENERICODE ... 26
9.2 CODE LIST DOCUMENT .. 26
9.4 EXAMPLE UNECE_DOCUMENTNAMECODE_INVOICE_D16B.GC ... 28

10 DEFINITION OF TERMS ..29

Figure 1: Compliant .. 8

Figure 2: Coupled and decoupled code lists ... 14

Figure 3: Supplementary Components (coupled and decoupled) .. 14

Figure 4: Union and choice (coupled code list modules) .. 15

Figure 5: Restricted code list (code list schema and qualified data type) .. 16

Figure 6: Extended code list (code list schema and qualified data type) ... 17

Figure 7: Two-phase validation process ... 18

Figure 8: Schematron rule (restricted code list) ... 19

Figure 9: Schematron rule (extemded code list) .. 20

Figure 10: Context levels and contest address ... 21

Figure 11: Concept of ISO Schematron/XSLT ς using Genericode/CVA . .. 22

Figure 12: Concept of masquerade... 23

Figure 13: Restricted code list .. 23

Figure 14: Extended code list .. 24

Figure 15: Combined code list .. 24

Figure 16: User-defined code list .. 25

Figure 17: Code List Document Schema ... 27

Figure 18: Example Genericode file .. 28

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 4 of 29

1 About this document

This user guideline describes how to define and apply restrictions and extensions to code lists in

UN/EDIFACT messages as well as UN/CEFACT XML messages. In addition, it describes example

processes for validating those messages. The process could be done in one-phase, for which

message structure and value constraints are validated simultaneously (so-called ‘coupled’) or in

two-phases, for which these constraints are validated separately (so-called ‘decoupled’).

Parts in this document are excerpts from the XML Naming and Design Rules (UN/CEFACT XML

NDR Rules 2.1), UN/EDIFACT Syntax Implementation Guidelines and OASIS Genericode/CVA.

They give guidance on how to apply these rules in a real-life environment. The latest version of the

UN/CEFACT XML NDR Rules, version 2.1.1, allows decoupling of selective or all qualified data

types from a set of value enumerations.

1.1 Executive summary

Codes are an essential component of any Machine-To-Machine information flow. Codes have been

developed over time to facilitate the flow of compressed, standardized values that can be easily

validated for correctness to ensure consistent semantics. In a real-life environment, there exist

external circumstances (business needs, laws) that require the extending or restricting (sub-setting)

of standardized code lists in UN/EDIFACT or UN/CEFACT XML messages. Many international,

national and sectoral agencies create and maintain code lists relevant to their area. If required to be

used within an information flow, these code lists will be stored in their own environment and

referred to as external code lists. Although the standardization procedures define how extensions

can be realized by starting a Data Maintenance Request (DMR) there may be time constraints that

solutions need to be found for the time until the final update of the standardized code lists are

published.

The UN/CEFACT Code Management project defines the procedures, rules and methodologies for

the following identified issues.

1. Version compatibility

The ability to use any version of a code list in association with any version of a message, i.e.

decoupling the versioning of code lists from the business message versions.

2. Extending code lists

Evaluate if permanent extensions are possible and desirable.

3. Restricting code lists

Provide rules and methodology for restricting code lists for use within specific context. Users of the

UN/CEFACT libraries may identify any sub-set they wish from a specific code list for their own

community requirements.

4. Code list validation rules

Provide rules and methodology for how to validate instance documents against an XML Schema or

UN/EDIFACT message type in respect to code lists.

5. Temporary codes

Provide rules and methodology for the inclusion of temporary codes that will be replaced by a

permanent code at the next UN/CEFACT standardized release, in essence a temporary extension.

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 5 of 29

6. Externally maintained code lists

Define rules and procedures for referencing code lists maintained by organizations external to

UN/CEFACT, e.g. ISO, ICC, W3C, UNECE.

7. Publication format for code lists

A standard exchange format for code lists.

1.2 Status of this document

This document has been developed in accordance with the UN/CEFACT/TRADE/22 Open

Development Process for Guidelines and approved for publication by the UN/CEFACT Bureau.

1.3 Revision history

Version Release Date Comment

0.1.1 Internal draft from SCRDM Project Team 2016-07-25

0.2.1 Adjusted by the Code Management Project Team 2017-08-08

0.2.2 Adjusted by the Code Management Project Team 2017-08-31

0.2.3 Adjusted by the Code Management Project Team 2017-09-13

0.2.4 Adjusted by the Code Management Project Team 2017-09-22

0.2.5 Adjusted by the Code Management Project Team 2017-10-11

0.2.6 Adjusted by the Code Management Project Team 2017-10-23

0.2.7 Adjusted by the Code Management Project Team 2017-11-02

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 6 of 29

2 Project Team

2.1 Disclaimer

The views and specification expressed in this document are those of the authors and are not

necessarily those of their employers. The authors and their employers specifically disclaim

responsibility for any problems arising from correct or incorrect implementation or use of

this technical specification.

2.2 Project Team Participants

Project Team Lead:

Rolf Wessel

Lead editor:

Gerhard Heemskerk

Editing Team:

Akio Suzuki

Andreas Pelekies

Eric Cohen

Tayfun Mermer

Mary Kay Blantz

Sue Probert

Niki Dieckmann

Frans van Diepen

Gait Boxman

G. Ken Holman

Lance Thompson

Jörg Walther

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 7 of 29

3 Introduction

The main audiences for this document are primarily.

- Corporate Chief Technology Officers - Government

- Corporate Chief Technology Officers – Private Sector

- UN/CEFACT Bureau and Vice Chair persons

3.1 Structure of this document

- Chapter: 4 User Requirements

- Chapter: 5 Using code lists in a real-life environment

- Chapter: 6 Annex - Validating UN/EDIFACT document instances

- Chapter: 7 Annex - Validating UN/CEFACT XML document instances

- Chapter: 8 Annex - Publication Format Code Lists

- Chapter: 9 Definition of terms

3.2 Related Documents

- UN/EDIFACT Directory, Part 4 United Nations Rules for Electronic Data Interchange

for Administration, Commerce and Transport, Chapter 2.3 - UN/EDIFACT Syntax

Implementation Guidelines.

- UN/CEFACT XML Naming and Design Rules for CCTS 2.01 Version 2.1.1.

- ISO 20625 EDIFACT - Rules for generation of XML scheme files (XSD) on the basis

of EDI(FACT) implementation guidelines

- Schematron ISO/IEC 19757-3

- OASIS Context/value association using Genericode 1.0

- OASIS Genericode 1.0

3.3 Purpose and scope

The business goals of this document are:

- To summarize the steps for creating and/or using extended, restricted, user-defined

(permanent or temporary) code lists and code lists published by other organizations

in a real-life environment.

- To give guidance for validating electronic documents (electronic business messages)

where the steps above are applied.

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 8 of 29

4 User requirements

The essence of all user requirements is flexibility to handle external circumstances (urgent

business needs, laws) that require the extension, restriction of standardized code lists and/or

user-defined code values (permanent or temporary).

The requirements gathering phase of the Code Management Project has provided below list:

- Using own code lists

- Referring to the code list version actually used

- Extending code lists (extension)

- Restricting code lists (restriction)

- Combining code lists (union)

- Choosing code lists (choice)

- Allowing temporary codes

- Validating code constraints of above requirements

- Using internationally harmonized code lists (UN/CEFACT and others)

- Maintaining code lists in an easy manner

- Obtaining code lists from a standardized publication format

4.1 The challenge of Interoperability

Interoperability is looking at how disparate systems understand each other. In this respect,

it is about receiving code values and behaving as expected. Code values take an important

role in the exchange of transaction data between trading partners. For example, in the case

of a Purchase Order, the receiving system understands the message so that it is now able to

read the Order and start or continue the process at this stage in the Supply Chain.

The challenge is that most implementations are separate and different and no one major

player is able to force alignment globally. Typically, misinterpretations occur both before

and after implementations. User-defined code values are often misinterpreted because the

use is not documented properly and therefore systems cannot process these values. The other

challenge is that not everyone needs to implement all standardized code lists and/or code

values specified in the standard as it may not be applicable to them.

4.2 The challenge of Conformance

Conformance is measuring how a document instance makes use of a given standard or

specification. Compliant means that some features in the standard specification are not

implemented, but all features implemented are covered by the specification, and in

accordance with it.

 Figure 1: Compliant

4.2.1 Conformance and UN/EDIFACT

In the case of UN/EDIFACT messages there is no technical link between the published

message structure and codes used by it. The message structure and codes values used by a

community are specified or referenced within the community Message Implementation

Guide (MIG). In practice user communities often want to be compliant with a published

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 9 of 29

United Nations Standard Message (UNSM) whilst referring to any version of code lists,

restricted, extended or user-defined code lists (permanent or temporary). To be compliant,

the community message standard must be directly derived from an approved UNSM and

having the same function. Therefore, a UN/EDIFACT document instance is commonly only

conformant with a community MIG.

4.2.2 Conformance and UN/CEFACT XML

In the case of UN/CEFACT XML messages there is a technical link between the published

message structure and codes used by it. Using other code values in a XML document

instance than published for the data elements of the message will make the document non-

conformant, unless ‘decoupling’ has been applied to the message standard (as described

within the UN/CEFACT NDR Rules). The term “decoupling” used in this document refers

to decoupling selective or all qualified data types from a set of value enumerations (in other

words separating codes from the message).

4.2.3 Validation methods

This document provides example validation methods1 to check whether a document instance

conforms or complies to a published UN message standard. The validation of tools is out of

scope of this document and so it is assumed some sort of testing will be carried out, which

can help trading partners to understand and also verify they are conformant or compliant

with the standard or specification.

It is, though, important that users will give a true reflection of the actual level of

conformance. Therefore, the conformance statements made by each party should be able to

express this in an unambiguous way.

- UN/EDIFACT document instance using code values specified or referred within the

MIG is compliant with a published and approved UNSM in case the UN/CEFACT

document instance is generate as a UNSM subset, as described in the UN/EDIFACT

Message Design Guidelines. The document instance is conformant with a published

and approved UNSM in case of pure UNSM, even if non-UN code lists or code

values are specified within the MIG.

- UN/CEFACT XML document instance using the published code values of the

message standard is conformant. It will be non-conformant in case it uses other code

values than published for the message standard, unless ‘decoupling’ of code list

enumerations (code values) has been applied, as described within the UN/CEFACT

XML NDR Rules. Decoupling implies a two-phase validation process as it separates

the checking of message structure constraints and code value constraints.

Note:

A two-phase validation process consists of checking the well-formedness of an

XML instance document and the message structure constraints. These checks are

done at the same time (first phase). In addition, the value constraints, including

code lists, will be checked within this process (second phase).

1 See annexes

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 10 of 29

5 Using code lists in a real-life environment

5.1 Introduction

Codes (or enumerated values) are an integral component of any business-to-business

information flow. Not only should they be understood by humans but also, they should be

fully validated. International standardized codes are harmonized and unambiguous in order

to enforce global trade. International standards organizations, but also many international,

national and sectoral agencies create code lists. The meaning of a code is essential, and its

metadata must be available for the code itself and for the list in which it is adopted. Only

then a code could be fully validated for correctness to ensure consistent data. When used

within an information flow, these code lists will be explicitly referred to.

5.2 Extended, restricted, user-defined and other organizations code lists

Users of the UN/CEFACT library may identify any sub-set (restriction) or superset

(extension) they wish from a specific code list for their own user community requirements

by defining code lists. These specific code lists could be based on standardized or user-

defined code lists (permanent or temporary). Each type of code list can easily be

accommodated with the solutions described in the next chapters.

Note:

The term ‘code lists’, used in this document applies to code lists and identifier lists.

6 Annex - Validating UN/EDIFACT document instances 1

6.1 Introduction 2

UNSMs are structured in such a way that they can be used by companies, governmental 3

agencies and/or other organizations in many different industries. For most industries, a sub-4

set of the UNSM has been created because of the restrictive use of the message structure. 5

Users must bear in mind that to comply with the spirit of sub-sets, any sub-set2 must always 6

be more restrictive than its parent UNSM. Though validation of restricted, extended, user-7

defined and other organizations code lists or code values is done against the ones specified 8

within the MIG. 9

For UN/EDIFACT message implementations five possible scenarios are clearly defined in 10

respect to code lists. 11

6.2 Restricted code lists 12

In order to identify the restricted UNSM code list(s), the user community concerned should 13

consider: 14

- specifying or referring to the restricted code lists or codes values within the MIG. 15

- referring to above in a Trading Partner Agreement. 16

6.3 Extended code lists 17

Since the standards maintenance time-scales may delay the implementation of the required 18

modifications to the UNSM and the code lists repository for some time, users may wish to 19

implement the needed code list(s) and/or code values immediately so that the message can 20

be used in their application. 21

In order to identify the extended code lists during the interim period, the user community 22

concerned should consider: 23

- specifying or referring to the extended code lists or code values within the MIG. 24

- including an appropriate code in element ‘1131 Code Lists Identification Code’ 25

and/or ‘3055 Code List Responsible Agency’ (if available)3, in order to identify the 26

code list properly. 27

- referring to above in a Trading Partner Agreement. 28

 29

Note on the use of 1131/3055: 30

This implies such extension is being expressed per individual code list appearing in 31

such message, combined with the more global indication on the message basis. 32

Whenever data element 3055 is used, data element 1131 is mandatory. 33

6.4 Choosing or combining code lists 34

Users may want to choose another code list for an element than published by UN/CEFACT 35

or they even want to combine values from different code lists (example: UNCL Transport 36

Means Type code list and the Transport Means Type code list of UN/CEFACT 37

recommendation 28). Most common is choosing another code list than the published one or 38

creatimg a user-defined code list for the applicable element. The user community concerned 39

should consider: 40

2 To provide a unique identification for any particular sub-set of a UNSM, users may wish to assign a code for use in

the 'Association assigned code' field of the UNH and/or UNG segments.
3 See ANNEX A (Informative) Usage of data elements 1131/3055 of the UN/EDIFACT Message Design Guidelines

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 12 of 29

- specifying or referring to the applicable code list or combined code lists within the 41

MIG. Combined code values from different code lists can be regarded as a user-42

defined code list (see next paragraph). 43

- including an appropriate code in element ‘1131 Code Lists Identification Code’ 44

and/or ‘3055 Code List Responsible Agency’ (if available), in order to identify the 45

code list properly. 46

- referring to above in a Trading Partner Agreement. 47

 48

Note on the use of 1131/3055: 49

This implies such choice or combination is being expressed per individual code list 50

appearing in such message, combined with the more global indication on the message 51

basis. Whenever data element 3055 is used, data element 1131 is mandatory. 52

 53

In practice, a combination of code values from different code lists will be stored as a user-54

defined code list and referred to within the MIG. As an alternative EDIFACT document 55

instances and code list could be converted to XML where ‘unions’ could be created by the 56

validation process. 57

6.5 User-defined code lists (permanent or temporary) 58

User-defined code lists (permanent or temporary) are not uncommon. They often exist in 59

specific industries. If needed, users could create such code lists and specify the code list for 60

the applicable element in the MIG. These code lists should be identified as described in 61

previous paragraph 6.4. 62

6.6 Code lists published by other organizations 63

For referencing code lists maintained by organizations external to UN/CEFACT, e.g. ICC, 64

W3C, CODEX, CITES etcetera the same principle as described for user-defined code lists 65

could be applied. 66

6.7 Validating document instances 67

During the decades of implementing EDIFACT messages many software tools were created 68

for validating the document instances.. 69

For users, the below options are available for validating EDIFACT files: 70

- Traditional in-house validation. 71

- Software tools provided validation techniques. 72

- ISO 20625: Converting EDIFACT document instances to XML document instances. 73

By applying this transformation standard validation tools for XML validation can be 74

applied. 75

For users which have XML parsers in use, the application of ISO 20625 will ease the 76

processing of these documents. The validation of code values might by done by the software 77

tool, using XSLT or by the inhouse application. 78

 79

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 13 of 29

7 Annex - Validating UN/CEFACT XML document instances 80

7.1 Introduction 81

UN/CEFACT XML messages are structured in such a way that they can be used by 82

companies, governmental agencies and/or other organizations in many different industries. 83

The user requirements regarding code management (see chapter 4), can all be fulfilled when 84

for these UN/CEFACT XML messages ‘decoupling’ has been applied. The present 85

published versions of UN/CEFACT XML message standards validates the messages 86

structure and code values of a document instance simultaneously. Decoupling separates code 87

value validation from message structure validation. 88

The latest UN/CEFACT XML NDR version allows flexible use of code values, code lists 89

and identifier lists by allowing ‘decoupling’ of code values. 90

This chapter highlights the example methodologies that could be applied for restricted, 91

extended, user-defined (permanent or temporary) code lists and other organizations code 92

lists or code values. 93

Users of a ‘coupled’ version of the message standard may even want to restrict or extend 94

code values to the code lists schemas or even introduce other code list schemas. By changing 95

the published message standard, the validation process will be non-conformant with the 96

published message standard. In order to be conformant with the published message standard, 97

these users should implement a ‘decoupled’ version of the message standard. The validation 98

process becomes then a two-phase process. 99

In the below simplified fragment of the qualified data type schema (left column), the 100

qualified data type ‘DocumentCodeType’ is ‘coupled’ by means of the specified code list 101

module (clm61001) which is being imported. The namespace, import declaration and 102

extension base are marked grey. 103

In the right column, the qualified data type ‘DocumentCodeType’ is ‘decoupled’ by removal 104

of the code list module import and namespace declaration. The extension base 105

‘DocumentCodeContentType’ is no longer linked to the code list module. Therefore, a 106

simple type ‘DocumentCodeContentType’ has been specified. In addition, the simple type 107

for the list agency ID ‘DocumentCodeListAgencyIDContentType’ does not have any 108

enumeration values. 109

 110

Qualified data type schema: coupled version Qualified data type schema: decoupled version
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:qdt="urn:un:unece:uncefact:data:Standard:QualifiedDataTy

pe:21"

xmlns:ccts="urn:un:unece:uncefact:documentation:standard:Core
ComponentsTechnicalSpecification:2"

xmlns:udt="urn:un:unece:uncefact:data:standard:UnqualifiedData

Type:21"

xmlns:clm61001="urn:un:unece:uncefact:codelist:standard:UNEC

E:DocumentNameCode:D16B" >

<xsd:import
namespace="urn:un:unece:uncefact:data:standard:UnqualifiedData

Type:21"
schemaLocation="UnqualifiedDataType_21p0.xsd"/>

<xsd:import

namespace="urn:un:unece:uncefact:codelist:standard:UNECE:Doc
umentNameCode_Invoice:D16B"

schemaLocation="../../codelist/standard/UNECE_DocumentName

Code_Invoice_D16B.xsd"/>

<xsd:simpleType

name=DocumentCodeListAgencyIDContentType">

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:qdt="urn:un:unece:uncefact:data:Standard:QualifiedData

Type:21"
xmlns:ccts="urn:un:unece:uncefact:documentation:standard:Cor

eComponentsTechnicalSpecification:2"

xmlns:udt="urn:un:unece:uncefact:data:standard:UnqualifiedDat

aType:21"

targetNamespace="urn:un:unece:uncefact:data:Standard:Qualifie
dDataType:21"

elementFormDefault="qualified" version="21.0">
<xsd:import

namespace="urn:un:unece:uncefact:data:standard:UnqualifiedDa

taType:21"
schemaLocation="UnqualifiedDataType_21p0.xsd"/>

<xsd:simpleType name=DocumentCodeContentType">

<xsd:restriction base="xsd:token"/>

</xsd:simpleType>

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 14 of 29

<xsd:restriction base="xsd:token">
<xsd:enumeration value="6">

</xsd:restriction>

</xsd:simpleType>
<xsd:complexType name="DocumentCodeType">

 <xsd:simpleContent>

<xsd:extension
base="clm61001:DocumentNameCodeContentType">

 <xsd:attribute name="listID" type="xsd:token"
use="optional" fixed="1001"/>

 <xsd:attribute name="listAgencyID"

type="qdt:DocumentCodeListAgencyIDContentType"
use="optional" fixed="6"/>

 <xsd:attribute name="listVersionID" type="xsd:token"

use="optional" fixed="D16B"/>
 <xsd:attribute name="name" type="xsd:string"

use="optional"/>

 <xsd:attribute name="listURI" type="xsd:anyURI"
use="optional"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:simpleType name=
DocumentCodeListAgencyIDContentType">

<xsd:restriction base="xsd:token"/>

</xsd:simpleType>

<xsd:complexType name="DocumentCodeType">

 <xsd:simpleContent>

 <xsd:extension base="qdt:DocumentCodeContentType">

 <xsd:attribute name="listID" type="xsd:token"
default="1001"/>

 <xsd:attribute name="listAgencyID"

type="qdt:DocumentCodeListAgencyIDContentType"
default="6"/>

 <xsd:attribute name="listVersionID" type="xsd:token"

use="optional" default="D16B"/>
 <xsd:attribute name="name" type="xsd:string"/>

 <xsd:attribute name="listURI" type="xsd:anyURI"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

 Figure 2: Coupled and decoupled code lists 111

 112

In the case of coupled code list modules, the supplementary components of the qualified 113

data type have ‘fixed’ values (marked blue). Using other values in the XML document 114

instance will invoke a validation error during validation. 115

In the case of decoupled code list modules, the supplementary components of the qualified 116

data type have ‘default’ values (marked yellow), which have to be changed by the user when 117

other codes values are used than those in the referenced code list. This is necessary to avoid 118

misinterpretations. 119

In the below example, the latest version ID of the code list ‘D17B’ is specified instead of 120

the default ‘D16B’ version. In addition, the code value ‘889’ from code list ‘D17B’ is used 121

for the element ‘TypeCode’. 122

 123

Qualified data type coupled Qualified data type decoupled

Supplementary components:

- listID “fixed” =1001,

- listAgencyID “Fixed” = 6,

- listVersionID “Fixed” = D16B

Supplementary components:

- listID “Default” =1001,

- listAgencyID “Default” = 6,

- listVersionID “Default” = D16B

XML document instance fragment XML document instance fragment

<ram:TypeCode listID="1001" listAgencyID="6"

listVersionID=" D16B"> 385</ram:TypeCode>

<ram:TypeCode listID="1001" listAgencyID="6"

listVersionID=" D17B"> 889</ram:TypeCode>

 Figure 3: Supplementary Components (coupled and decoupled) 124

 125

The use of default values in the supplementary components of the qualified data reminds the 126

user of UN/CEFACT available code lists and recommendations. 127

In below examples, a combination and alternative usage of code lists is specified by XML 128

declarations in the qualified data type. The code list metadata, such as agency ID, is not 129

specified because multiple code lists are declared for a single qualified data type. By this, 130

the metadata of the code lists becomes unambiguous and cannot be validated. 131

A two-phase validation process, which uses ‘decoupling’ and a rule-based validation 132

language, such as Schematron, solves the problem for these scenarios. 133

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 15 of 29

Union: XML declarations qualified data type Choice: XML declarations qualified data type
<xsd:simpleType name=AccountDutyTypeCode">

<xsd:annotation>

 ….see annotation….

</xsd:annotation>

<xsd:union memberType=

 “clm64437:AccountingTypeCodeContentType”

 “clm65153:DutyTaxFeeTyoeCodeContentType”

</xsd:simpleType>

<xsd:complexType name="PersonPropertyCodeType">

<xsd:annotation>

... see annotation ...

</xsd:annotation>

<xsd:choice>

 <xsd:element ref="clm63479:MaritalCode"/>

 <xsd:element ref="clm63499:GenderCode"/>

</xsd:choice>

</xsd:complexType>

 Figure 4: Union and choice (coupled code list modules) 134

7.2 One-phase validation process 135

In order to fulfil all user requirements, as decribed in chapter 4, existing published standardized 136

code lists have to be changed and “saved as” when choosing for a one-phase validation 137

process method4. 138

Changing existing message standards is for most users not preferable, because the XML 139

document instance will be non-conformant with the published message standard. For those 140

users, the two-phase validation process methods5 are available. 141

For UN/CEFACT XML message implementations five possible scenarios are clearly 142

defined in respect to code lists. 143

7.2.1 Restricted code lists 144

In case of allowing users to change existing code list schemas, they could create additional 145

schemas per code list defining those restricted code lists, as described in the NDR 146

specification. The software performing the validation compares the XML message 147

document instance against the restricted code list module schema. 148

To ensure interoperability the usage of restricted code lists must be agreed on in a Trading 149

Partner Agreement and/or a MIG. 150

The following steps have to be performed for restriction of a published UN/CEFACT code 151

list: 152

1. Create a new code list schema file for the restricted code list. 153

2. Modify the original qualified data type schema so that the corresponding type refers 154

to the newly created code list schema. 155

7.2.2 Extended code lists 156

The same procedure as described in previous paragraph can be applied for extending existing 157

code list module schemas. The software performing the validation compares the XML 158

message document instance against the modified code list module schema and qualified data 159

type schema. 160

7.2.3 Choosing or combining code lists 161

The UN/CEFACT NDR specification also describes choosing or combining values from 162

different code lists by using either the xsd:choice or xsd:union elements. There are examples 163

4 Both message structure and code values constraints are validated simultaneously.
5 Message structure and code values constraints are validated separately.

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 16 of 29

provided in this document for these options (see §7.2). For further details we refer to the 164

UN/CEFACT NDR specification. As mentioned in paragraph 7.2, the xsd:choice and 165

xsd:union implementation within the qualified data type, do not address supplementary 166

component differences, as they can only be declared for a single qualified data type. 167

7.2.4 User-defined code lists (permanent or temporary) 168

User-defined code lists, either permanent or temporary, are not uncommon. They often exist 169

in specific industries. If needed, users could create such code lists modules for the applicable 170

qualified data types specified within the qualified data type schema. A user-defined code list 171

can often be regarded as an extended code list (see example §7.2.7). The user creates a new 172

code list schema module and modifies the original qualified data type schema so that the 173

corresponding type refers to the user-defined code list schema. 174

7.2.5 Code lists published by other organizations 175

For referencing code lists maintained by organizations external to UN/CEFACT, e.g. ICC, 176

W3C, CODEX, CITES etcetera the same principle as described in the preceding paragraph 177

would be applied. The user modifies the original qualified data type schema so that the 178

corresponding type refers to the user-defined code list schema. 179

7.2.6 Example for a restricted code list 180

To demonstrate the methodology the use case of restricting the valid currencies in an XML 181

document instance could be looked at. In this example only the use of the Euro currency 182

should be valid in the corresponding user community. The corresponding schema then could 183

look like shown in Figure 5. In this example, the code list schema is saved as Invoice_ 184

ISO_ISO3AlphaCurrencyCode_2012-08-31.xsd. 185

The schema for the qualified data types now needs to be adjusted to the new code list file. 186

Only the relevant parts are shown in the following figure. It is allowed to alter the namespace 187

prefix accordingly. For simplification, the original namespace prefix is kept. 188

 189

Qualified data type schema Code list schema
<xs:schema ...

xmlns:clm5ISO42173A=

"urn:un:unece:uncefact:codelist:standard:

ISO:ISO3AlphaCurrencyCode:INVOICE" ...

elementFormDefault="qualified" version="1.0">

<xs:import

namespace="urn:un:unece:uncefact:codelist:standard:

ISO:ISO3AlphaCurrencyCode:INVOICE"

schemaLocation="Invoice_

ISO_ISO3AlphaCurrencyCode_2012-08-31.xsd"/>

...

</xs:schema>

<xs:schema xmlns:clmISO42173AINVOICE=

"urn:un:unece:uncefact:codelist:standard:

ISO:ISO3AlphaCurrencyCode:INVOICE"

xmlns:xs="http://www.w3.org/2001

/XMLSchema" targetNamespace=

"urn:un:unece:uncefact:codelist:standard:ISO:

ISO3AlphaCurrencyCode:INVOICE"

elementFormDefault="qualified" version="9.5">

<xs:simpleType

name="ISO3AlphaCurrencyCodeContentType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="EUR"/>

 <xs:enumeration value="USD"/>

 </xs:restriction>

</xs:simpleType>
</xs:schema>

 Figure 5: Restricted code list (code list schema and qualified data type) 190
 191

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 17 of 29

7.2.7 Example for an extended code list 192

To demonstrate the methodology the use case of extending the valid VAT category codes in 193

an XML document instance should be looked at. In this example, the existing code list 194

should be valid and a new code value ‘BB’ should be added. The corresponding code list 195

schema then could look like shown in Figure 6. In this example, the code list schema is saved 196

as VATExtended_UNECE_DutyorTaxorFeeCategoryCode_D17B.xsd. 197

The schema for the qualified data types now needs to be adjusted to the new code list file. 198

Only the relevant parts are shown in the following figure. It is allowed to alter the namespace 199

prefix accordingly. For simplification, the original namespace prefix is kept. 200

 201

Qualified data type schema Code list schema
<xs:schema ...

xmlns:

clm65305="urn:un:unece:uncefact:codelist

:standard:UNECE:

DutyorTaxorFeeCategoryCode

:D17B:VATEXTENDED ...

elementFormDefault="qualified" version="1.0">

<xs:import namespace="

urn:un:unece:uncefact:codelist:standard:UNECE

:DutyorTaxorFeeCategoryCode:D17B

:VATEXTENDED "

schemaLocation="
VATExtended_UNECE_DutyorTaxorFee

CategoryCode_D17B.xsd"/>
...

</xs:schema>

<xs:schema xmlns:clm65305=

"urn:un:unece:uncefact:codelist:

standard:UNECE:DutyorTaxorFeeCategoryCode

:D17B:VATEXTENDED"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace= "urn:un:unece:uncefact

:codelist:standard:UNECE

:DutyorTaxorFeeCategoryCode:D17B

:VATEXTENDED" elementFormDefault="qualified"

version="1.5">

 <xs:simpleType

name="DutyorTaxorFeeCategoryCodeContentType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="A"/>

 <xs:enumeration value="AA"/>

 <xs:enumeration value="AB"/>

 <xs:enumeration value="AC"/>

 <xs:enumeration value="AD"/>

 <xs:enumeration value="AE"/>

 <xs:enumeration value="B"/>

 <xs:enumeration value="BB"/>

 <xs:enumeration value="C"/>

 <xs:enumeration value="D"/>

 <xs:enumeration value="E"/>

 <xs:enumeration value="F"/>

 <xs:enumeration value="G"/>

 <xs:enumeration value="H"/>

 <xs:enumeration value="I"/>

 <xs:enumeration value="J"/>

 <xs:enumeration value="O"/>

 <xs:enumeration value="S"/>

 <xs:enumeration value="Z"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>
 Figure 6: Extended code list (code list schema and qualified data type) 202

7.2.8 Impacts for a real-life environment 203

The advantage is that still a one-phase validation can be performed. But the modified code 204

list schema needs to be published and maintained within the user community in order to 205

simplify implementation and keep consistency. In addition, both modified and original list 206

need to be maintained in parallel. All users need to agree on using the modified code list 207

schema and to be non-conformant to the published message standard. 208

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 18 of 29

The non-conformance issue can be avoided by applying a two-phase validation process (see 209

next paragraph) in which code list are decoupled from the message standard. 210

7.3 Two-phase validation process 211

In a two-phase validation process method structural validation is executed independent of 212

value validation, and done in the first phase of the process. The validation of code values is 213

performed in a second phase following a successful first phase validation. This two-phase 214

validation process method is ideal for users who prefer maximum flexibility regarding code 215

lists and/or code values. 216

The two-phase validation methods, described in this document, are rule based. Schematron 217

is used as the rule based validation language. Schematron is capable of expressing 218

constraints in ways that other XML schema languages like XML Schema and DTD cannot. 219

For example, it can require that the content of an element be controlled by one of its siblings. 220

Or it can request or require that an element must have specific attributes (e.g. code list 221

metadata and/or specific code values). 222

Figure 7 illustrates the essence of the two-phase validation process. It shows the distinction 223

between structural constraints validation (phase 1) and value validation (phase 2). Structural 224

validation is typically performed by using XSD schema (marked ‘1’) and value constraint 225

validation is typically performed by using XSLT (marked ‘2’). As constraints are specified 226

as rules using Schematron, they will be deployed as XSLT code, making it practical for 227

applications. 228

Trading partners can execute value validation using whatever tools are appropriate to their 229

environment. 230

In addition to the validation performed by the inhouse application, trading partners may use 231

one of the following commonly used standards for value constraints validation. 232

 233

1. Schematron/XSLT (ISO/IEC 19757-3 / W3C) 234

2. Schematron/XSLT using Genericode/CVA (OASIS) 235

 236

 237
 Figure 7: Two-phase validation process 238

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 19 of 29

7.3.1 ISO Schematron/XSLT 239

Schematron is a rule-based validation language that uses context expressions. A Schematron 240

schema makes assertions applied to a specific context within the XML document. If an 241

assertion fails, then a diagnostic message can be displayed. As path expressions are built on 242

top of XPath and XSLT, one could implement Schematron using XSLT (an assert element 243

has a test attribute, which is an XSLT pattern). XML documents have data elements to be 244

validated. The context location of those data elements is represented using XPath. From the 245

Schematron file an XSLT file can be generated automatically using a tool. 246

For UN/CEFACT XML message implementations five possible scenarios are clearly 247

defined in respect to code lists. In below paragraphs, these are specified for both two-phase 248

validation process methods. 249

7.3.1.1 Restricted code lists 250

The restricted (code) values for a specific context within the XML document, such as 251

ExchangedDocument/TypeCode, can be expressed as an assertion in a Schematron rule. In 252

addition, assertions for the supplementary components can be included. 253

In below example, the allowed code values and supplementary codes have been specified as 254

a Schematron rule. 255

This simplified example allows only the exchanged document type codes (in an invoice): 256

 257

Restricted code values:

380, 385
- code list ID : MyInvoiceDocTypes

- code list version : 2016

- list agency ID : X
 258

Schematron rule
 <sch:rule context="/rsm:CrossIndustryInvoice/rsm:ExchangedDocument/ram:TypeCode">

 <sch:assert test="

 ((not(.=380 or .=385))

 and (not(@listID!='MyInvoiceDocTypes'))

 and (not(@listVersionID!='2016'))

 and (not(@listAgencyID!='X')))

 ">

 Value supplied '<sch:value-of select="."/>' is unacceptable for constraints identified by

 'Restricted Document Name Code Invoice 2016' in the context

 '/rsm:CrossIndustryInvoice/rsm:ExchangedDocument/ram:TypeCode'

 </sch:assert>

 </sch:rule>

 Figure 8: Schematron rule (restricted code list) 259

A user most likely wants to link code values instead of specifying each allowed code value 260

within an assertion manually. An important feature to note is that, because of XSLT's 261

ñdocument()ò function, a Schematron assertion test can refer to data in a different document 262

from the context document. This allows Schematron to be used to validate against a code 263

list located externally to the schema (this can be in any XML document type). 264

Although the XSLT function ñdocument()ò includes external codes values for this purpose, 265

it would still be quite some time consumed to write the needed code. 266

 267

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 20 of 29

7.3.1.2 Extended code lists 268

The extended code values for a specific context within the XML document instance, such as 269

ExchangedDocument/TypeCode, can be expressed as assertions in a Schematron rule. The 270

extended code values could be added to an existing assertion or by adding an assertion next 271

to the one holding the base set of code values. In addition, assertions for the supplementary 272

components can be included as well. 273

In below example, the allowed code values and supplementary codes have been specified as 274

a Schematron rule. 275

This simplified example allows only the exchanged document type codes (in an invoice): 276

 277

Base code values:

80,81,82,83,84,261,262,325,380

381,383,384,385,386,389,395,396
- code list ID : 1001

- code list version : D16B

- list agency ID : 6

Extended code values:

889

- code list ID : ExtDocTypes

- code list version : 2017

- list agency ID: : X
 278

Schematron rule
 <sch:rule context="/rsm:CrossIndustryInvoice/rsm:ExchangedDocument/ram:TypeCode">

 <sch:assert test="

 ((not(.=80 or .=81 or .= 82 or .=83 or .=84 or .=261 or .=262 or .=325 or .=380 or

 .=381 or .=383 or .=384 or .=385 or .=386 or .=389 or .=395 or .=396))

 and (not(@listID!='1001'))

 and (not(@listVersionID!='D16B'))

 and (not(@listAgencyID!='6')))

 or

 ((not(.=889))

 and (not(@listID!='ExtDocTypes'))

 and (not(@listVersionID!='2017'))

 and (not(@listAgencyID!='X')))

 ">

 Value supplied '<sch:value-of select="."/>' is unacceptable for constraints identified by 'UNECE

 Document Name Code Invoice D16B and Extended Document Name Codes 2017' in the context

 '/rsm:CrossIndustryInvoice/rsm:ExchangedDocument/ram:TypeCode'

 </sch:assert>

 </sch:rule>

 Figure 9: Schematron rule (extemded code list) 279

A user most likely wants to link code values instead of specifying each code value within an 280

assertion manually. The XSLT function ñdocument()ò could be used to link external located 281

code values for this purpose. 282

7.3.1.3 Choosing or combining code lists 283

Combined code lists can be achieved by adding multiple assertions using XSLT function 284

ñdocument()ò in order to refer to multiple code lists or by specifying the combined code 285

values as one or multiple assertion. Alternative code lists to choose from, can be specified 286

as different Schematron rules referring to externally located code lists using the XSLT 287

function “document()ò or by specifying the code values as an assertion. 288

 289

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 21 of 29

7.3.1.5 User-defined code lists (permanent or temporary) 290

User-defined code lists, either permanent or temporary, are not uncommon. They often exist 291

in specific industries. These code lists could be regarded as additional or extended code lists. 292

For both assertions within Schematron rules can be used to specify the code values or refer 293

to externally located code lists using the XSLT function “document()ò. 294

7.3.1.6 Code lists published by other organizations 295

An external maintained code list could be treated as a user defined code list using assertions 296

to specify the needed code values or refer to externally located code lists using the XSLT 297

function “document()ò. 298

7.3.1.7 Impacts for a real-life environment 299

From a user-perspective, the Schematron/XSLT validation method requires users to take the 300

following steps: 301

¶ Create code lists (including metadata) in such a way that Schematron rules can 302

validate these data. 303

¶ Write Schematron rules for checking the allowed code value(s), supplementary 304

components, appropriate document context(s), all including error messages. 305

¶ Use a tool which generates the XSLT file from the Schematron file. 306

¶ Create an environment managing the Schematron rules in order to easy maintenance 307

on code lists and code values. 308

7.3.2 ISO Schematron/XSLT – using Genericode/CVA 309

This method uses, in addition to ISO Schematron/XSLT, a standard representation format 310

of code lists named ‘genericode’ and associations that link context and values named 311

‘ContextValueAssociation’. It is a more user-friendly and code-management-orientated 312

method and eases implementation through the use of a freely available tool for the creation 313

of the Schematron/XSLT files. 314

In this method, the base code lists remain untouched. The extended, restricted, user-defined 315

codes (permanent or temporary) are specified in separate genericode files, each with their 316

own identifying list-level metadata. The Context/Value Association (CVA) file specifies the 317

XPath contexts of an XML document instance and the genericode file(s) applicable to each 318

context. Unlike XSD enumerations binding the same enumeration to all contexts of a 319

globally-declared and re-used business artefact (BBIE) in a message standard, the use of 320

XPath in CVA provides for specifying different code lists at different contexts of one BBIE. 321

Perhaps the user needs to validate against different lists of currency codes at different 322

‘currency code locations’ of a single XML document. In other words, validation can be done 323

on different context levels: 324

 325
Context levels Context address as specified in CVA file (examples)

System-wide address="ram:SpecifiedTradeProduct/ram:TypeCode"/>

Document-wide address="/rsm:CrossIndustryInvoice//ram:InvoiceCurrencyCode"/>

Element specific address="/rsm:CrossIndustryInvoice

/rsm:SupplyChainTradeTransaction

/ram:IncludedSupplyChainTradeLineItem

/ram:SpecifiedTradeProduct

 /ram:ColourCode"/>

 Figure 10: Context levels and contest address 326

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 22 of 29

The Schematron expressions6 leverage any code list metadata found in the BBIE’s 327

supplementary components to ensure the appropriate genericode expression of codes is used 328

in the given XML element. Finally, these XML expressions also can be processed by 329

applications creating visual interfaces in order to tailor specific drop-down lists of coded 330

value domains presented to users. 331

A genericode file contains the following data which can be used during validation: 332

- code values 333

- code list metadata 334

 335

The code value found in the XML document instance will be checked against the genericode 336

files linked by association. The location of a genericode file is declared with URI address 337

and the identity of each code list is unique. An association links the document’s context with 338

a set of genericode files. 339

Any supplementary component (metadata) present in the XML document instance is also 340

checked against the code list value metadata specified in the genericode file. All community 341

members use the same message schemas for the initial structural constraints, while the many 342

and varied and contextual requirements for value validation agreed upon between trading 343

partners, perhaps even in real time, are realized as needed. 344

 345

 346
 Figure 11: Concept of ISO Schematron/XSLT – using Genericode/CVA . 347

 348

The Context/Value Association 349

The Context/Value Association file format is an XML vocabulary using address expressions 350

to specify hierarchical document contexts and their associated constraints. A document 351

6 Schematron rules are generated automatically by a free of charge tool when using CVA, but users could write the rules

themselves.

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 23 of 29

context specifies one or more locations found in an XML document or other similarly 352

structured hierarchy of information. A constraint is expressed as either an explicit expression 353

evaluation or as a value inclusion in one or more controlled vocabularies of values. 354

This file format specification assumes a controlled vocabulary of values is expressed in an 355

external resource described by the OASIS genericode standard. 356

For each code list scenario, the applicable CVA ‘Value lists’ (code lists) and ‘Contexts’ 357

(associations) will be described in the following paragraphs. 358

The concept of masquerade 359

The CVA file may employ the concept of a masquerade. The masquerade overlays the 360

orginal list’s metadata in place of the customized code list’s metadata during the validation 361

process in real time. This prevents confusion and ambiguity regarding the identity of the 362

customized code list which is not and should not be identified as a complete list in its 363

metadata. 364

A data element citing the full list will successfully validate against the extended or restricted 365

list using the masquerade of the full list. This ensures multiple extended or restricted lists of 366

the same full list can be uniquely identified and managed by their respective distinguished 367

metadata. 368

The concept of masquerade may also be used in case of combining code lists, in which one 369

of them is taken as the masquerade overlay. Different trading partners can mutually use 370

different sets of code lists. 371

 372
Masquerade
In this example, the masquerade overlays the “ISO3AlphaCurrencyCode” list’s metadata in place of the

“InvoiceCurrencyTypeCodes” code list’s metadata.
Eaxmple: Value lists
<ValueLists>

 <ValueList xml:id="InvoiceCurrencyCodesD17B"

 masqueradeUri= "../gc/ISO_ISO3AlphaCurrencyCode_2012-08-31.gc"/>

 uri="../gc/InvoiceCurrencyTypeCodes.gc"/>

</ValueLists>
 Figure 12: Concept of masquerade 373

7.3.2.1 Restricted code lists 374

A restricted code list is a shorter version of the applicable full-list genericode file. The 375

masquerade ensures re-use of the metadata specified in the UNECE full code list. 376

 377

Restricting code values
In this example, the invoice currency code list (restricting of ISO code list) is used only for the TaxCurrencyCode

element specified with the Header Trade Settlement component.

Example: Contexts Example: Value lists

<Contexts>

 <Context values=" InvoiceTaxCurrencyCodesD17B"

 metadata="cctsV2.01-code"

address=" rsm:CrossIndustryInvoice/

rsm:SupplyChainTradeTransaction/ram

:ApplicableHeaderTradeSettlement/ram:TaxCurrencyCode"/>

</Contexts>

<ValueLists>

<ValueList

xml:id="InvoiceTaxCurrencyCodesD17B"

 masqueradeUri="../gc/

ISO_ISO3AlphaCurrencyCode_2012-08-

31.gc"/>

uri="../gc/InvoiceTaxCurrencyTypeCodes.gc"/>

</ValueLists>

 Figure 13: Restricted code list 378

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 24 of 29

7.3.2.2 Extended code lists 379

The extended code list is a genericode containing only the extended code values compared 380

to the version of the applicable full-list genericode file. The masquerade offers the re-use 381

of the metadata specified in the full-list genericode file. The CVA file would express the 382

union of the full-list genericode file and the extended genericode file. The masquerade would 383

make the entire list appear to have the full-list genericode file list’s metadata. In this way at 384

no time is there an ambiguous publication of a mixed list with metadata that could be 385

confused with the metadata of the published list. When the published list is revised, the 386

extended code values are incorporated as in extended genericode file. 387

 388
Extending code values

In this example, the ISO 3 alpha currency code list (base list) has been extended by the new ISO 3 alpha

currency code list (containing only new currency code values). The code list is used for the

InvoiceCurrencyCode element used within the CrossIndustryInvoice.

Example: Contexts Example: Value lists
</Contexts>

 <Context

values="ISO_ISO3AlphaCurrencyCode_2012-08-31

NEW_ISO3AlphaCurrencyCode_2017-09-08"

 metadata="cctsV2.01-code"

address="/rsm:CrossIndustryInvoice//ram:Invoic
eCurrencyCode"/>
</Contexts>

<ValueLists>

 <ValueList xml:id="

ISO_ISO3AlphaCurrencyCode_2012-08-31"

 uri="../gc/ ISO_ISO3AlphaCurrencyCode_2012-

08-31.gc"/>

<ValueList

xml:id="NEW_ISO3AlphaCurrencyCode"

masqueradeUri=

"../gc/ISO_ISO3AlphaCurrencyCode_2012-08-

31.gc"/>

 uri="../gc/
NEW_ISO3AlphaCurrencyCode.gc"/>
</ValueLists>

 Figure 14: Extended code list 389

7.3.2.3 Choosing or combining code lists 390

Combining code values of different code lists is the essence of genericode/CVA. Users can 391

create as many code lists as needed. A union of code lists means specifying multiple ‘Value 392

lists’ and specifying these within the ‘Context value’ in the CVA file. 393

 394
Combining code values

In this example, the transport means type code list is combined with the transport means type code list of

recommendation 28.

Example: Contexts Example: Value lists

<Contexts>

 <Context values="
UNECE_TransportMeansTypeCode_2007

UNECE_Rec28_Codes_for_Types_of_

Means_of_Transport_2007"

metadata="cctsV2.01-code"

address=" rsm:CrossIndustryInvoice/rsm:

SupplyChainTradeTransaction/

ram:ApplicableHeaderTradeDelivery/

ram:RelatedSupplyChainConsignment/

ram:SpecifiedLogisticsTransportMovement/

ram:UsedLogisticsTransportMeans/ram:TypeCod

e "/>

</Contexts>

</ValueLists>

 <ValueList

xml:id="UNECE_TransportMeansTypeCode_2007"

uri="../gc/UNECE_TransportMeansTypeCode_2007.

gc"/>

 <ValueList

xml:id="UNECE_Rec28_Codes_for_Types_of_

Means_of_Transport_2007"

 masqueradeUri=

"../gc/UNECE_TransportMeansTypeCode_2007.gc"/

>

</ValueLists>

 Figure 15: Combined code list 395

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 25 of 29

7.3.2.4 User-defined code lists (permanent or temporary) 396

A user-defined code list is a genericode file containing only the user-defined code values. 397

This genericode file would have its own identity. The user-defined permanent and/or 398

temporary code values may be adopted in a new version of a standardized code list. 399

 400
User-defined code values

In this example, the user-defined end item type code list is only applicable for the element

EnditemTypeCode used within the below specified XPATH.

Example: Contexts Example: Value lists

<Contexts>

 <Context values="

User_Defined_Enditem_TypeCode_2017"

metadata="cctsV2.01-code"

address="

/rsm:CrossIndustryInvoice/rsm:SupplyChainTrad

eTransaction/ram:IncludedSupplyChainTradeLin

eItem/ram:SpecifiedTradeProduct/ram:EndItemT

ypeCode"/>

</Contexts>

</ValueLists>

 <ValueList

xml:id="User_Defined_Enditem_TypeCode_2017"

uri="../gc/

User_Defined_Enditem_TypeCode_2017.gc"/>

</ValueLists>

 Figure 16: User-defined code list 401

7.3.2.5 Code lists published by other organizations 402

An external maintained code list could be treated as a user defined code list (see previous 403

paragraph). 404

7.3.2.6 Impacts for a real-life environment 405

From a user-perspective, the Schematron/XSLT using genericode/CVA method offers users 406

the following advantages: 407

¶ A user-friendly code management solution solving all issues identified by the code 408

management project team. 409

¶ Easy implementation through the use of a freely available tool for the creation of the 410

Schematron/XSLT files. 411

¶ Users can focus on the maintenance of genericode files and context associations, 412

without having to write extensive files expressing their needs. 413

¶ Code list values and metadata are stored in a standardized file format (genericode). 414

¶ Associations between document context and applicable code lists are stored in a 415

standardized file format (CVA). 416

¶ When using the ‘masquerade’ function, unions of code lists are recognized as one 417

single code list during validation and can be presented in user dropdown lists. 418

¶ Through the existence of genericode files and the ‘masquerade’ function, the 419

supplementary components can be checked to avoid any ambiguity. 420

 421

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 26 of 29

9 Annex - Publication format code lists 422

9.1 Genericode 423

Genericode is a standard format for defining code lists. 424

The genericode standard offers: 425

- a XML format which is: 426

- designed to support interchange or distribution of machine-readable code list 427

 information between systems. 428

- transformable into formats suitable for run-time usage, or loaded into systems 429

 that perform run-time processing using code list information. 430

- a structure for code list identification metadata. 431

- a sparse-table structure for code list information: 432

- each row in the table represents a single distinct entry in the code list, i.e. each 433

row represents a single uniquely identifiable item in the code list. 434

- each column in the table represents a metadata value that can be defined for 435

each distinct entry in the code list. Each column is either required or optional. 436

Genericode files are an essential component within the code value validation method 437

‘Schematron/XSLT using Genericode/CVA’. In fact, they could be used as a component 438

within every code validation environment. In addition, the genericode standard format for 439

defining code lists is translation syntax independent. From a genericode file, XSD code list 440

schema modules or any other format could be created. This could ease the maintenance of 441

code lists in environments, such as where UN/EDIFACT and UN/CEFACT XML use the 442

same code list repository. 443

The two-phase validation method, described in this document and beyond, may benefit from 444

a publication of code lists in one single representation format. Both UN/EDIFACT and 445

UN/CEFACT XML message processors may reference one or more code lists during a two-446

phase validation process. 447

9.2 Code list Document 448

The OASIS Code List Representation format7, “genericode”, is a single model and XML 449

format (with a W3C XML Schema) that can encode a broad range of code list information. 450

The XML format is designed to support interchange or distribution of machine-readable 451

code list information between systems. Note that genericode is not designed as a run-time 452

format for accessing code list information, and is not optimized for such usage. Rather, it is 453

designed as an interchange format that can be transformed into formats suitable for run-time 454

usage, or loaded into systems that perform run-time processing using code list information. 455

 456

7 http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.pdf

http://docs.oasis-open.org/codelist/cs-genericode-1.0/doc/oasis-code-list-representation-genericode.pdf

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 27 of 29

 457
 Figure 17: Code List Document Schema 458

 459

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 28 of 29

9.4 Example UNECE_DocumentNameCode_Invoice_D16B.gc 460

 461

?xml version="1.0" encoding="UTF-8"?> 462
<gc:CodeList xmlns:gc="http://docs.oasis-open.org/codelist/ns/genericode/1.0/"> 463
 <Identification> 464
 <ShortName>DocumentNameCode_Invoice</ShortName> 465
 <LongName xml:lang="en">Document Name Code_Invoice</LongName> 466
 <Version>D16B</Version> 467
 <CanonicalUri>urn:un:unece:uncefact:codelist:standard:UNECE:DocumentNameCode_Invoice</CanonicalUri> 468
<CanonicalVersionUri>urn:un:unece:uncefact:codelist:standard:UNECE:DocumentNameCode_Invoice:D16B</CanonicalVe469
rsionUri> 470
 <Agency> 471
 <LongName xml:lang="en">United Nations Economic Commission for Europe</LongName> 472
 <Identifier>6</Identifier> 473
 </Agency> 474
 </Identification> 475
 <ColumnSet> 476
 <Column Id="code" Use="required"> 477
 <ShortName>Code</ShortName> 478
 <Data Type="normalizedString"/> 479
 </Column> 480
 <Column Id="name" Use="required"> 481
 <ShortName>Name</ShortName> 482
 <Data Type="string"/> 483
 </Column> 484
 <Column Id="description" Use="required"> 485
 <ShortName>Description</ShortName> 486
 <Data Type="string"/> 487
 </Column> 488
 <Key Id="codeKey"> 489
 <ShortName>CodeKey</ShortName> 490
 <ColumnRef Ref="code"/> 491
 </Key> 492
 </ColumnSet> 493
 <SimpleCodeList> 494
 <Row> 495
 <Value ColumnRef="code"> 496
 <SimpleValue>80</SimpleValue> 497
 </Value> 498
 <Value ColumnRef="name"> 499
 <SimpleValue>Debit note related to goods or services</SimpleValue> 500
 </Value> 501
 <Value ColumnRef="description"> 502
 <SimpleValue>Debit information related to a transaction for goods or services to the relevant party.</SimpleValue> 503
 </Value> 504
 </Row> 505
 …………………………….. 506
 ………………………………. 507
 </SimpleCodeList> 508
</gc:CodeList> 509

 Figure 18: Example Genericode file 510

Code Management User Guide v1

5 March 2018 UNECE - UN/CEFACT Page 29 of 29

10 Definition of Terms 511

Term Definition

Choice (of code lists)

XML Schema choice element allows only one of the elements contained in the <choice>

declaration to be present within the containing element. In other words one one of the code

lists is applicable for the element involved.

Conformance
Conformance is measuring how a document instance makes use of a given standard or

specification.

Complaint
Compliant means that some features in the standard specification are not implemented, but

all features implemented are covered by the specification, and in accordance with it.

Coupled
During the validation of the document instance, code values are validated simultaneously

with the message structure constraints (one-phase validation process).

Extension
Adding new code values to an existing code list or by saving the changed one as a new

code list.

Externally maintained

code list

A code list maintained by organizations external to UN/CEFACT, e.g. ISO, ICC, W3C,

UNECE.

Genericode Genericode is a standard format for defining code lists.

Interoperability Interoperability is looking at how disparate systems understand each other.

One-phase validation

process
Both message structure and code values constraints are validated simultaneously.

Restriction
Removing code values from an existing code list or by saving the restricted one as a new

code list.

Schematron
Schematron ISO/IEC 19757-3 is a rule-based validation language for making assertions

about the presence or absence of patterns in XML trees.

Sub-set See restriction

Superset See extension

Temporary codes Codes that will be replaced by a permanent code.

Trading Partner

Agreement

Agreements made betwee the sending and/or receiving parties involved in exchanging

electronic business messages.

Two-phase validation

process
Only message structure constraints are validated during this process phase.

Union (of code lists)
The union element defines a simple type as a collection (union) of values from specified

simple data types. In other words it combines one or more code lists.

Uncoupled

During the validation of the document instance, code values are not validated

simultaneously with the message structure constraints, but validated in a next phase (two-

phase validation process).

User-defined code list
A user-defined code list contains a set of values that a user has assigned as valid for a data

element.

Validating

Checking that a document instance meets specifications and fulfills its intended purpose. It

uses routines, often called "validation rules" or "validation constraints", that check for

correctness and meaningfulness of data that are input to a system.

Version compatibility
The ability to use any version of a code list in association with any version of a message,

i.e. decoupling the versioning of code lists from the business message versions.

XML parser
It is a tool which “reads” the XML file/string and getting its content according to the

structure, usually to use them in a program.

XSLT transformation

XSLT or XSL Transform (Extensible Stylesheet Language Transformations), is a standard

for converting (transforming) data in a XML document to another format or another

structured XML document.

 512

