Research Activities of HFCV in Korea

May 26 ~ 29, 2009

Ministry of Land, Transport and Maritime Affairs,
Korea Transportation Safety Authority
(Korea Automobile Testing and Research Institute)
In corporation with Hyundai Motor Company
Contents

- Hydrogen Leakage Test
 - Driving Mode
 - Stop Mode

- Rear Impact Test
 - Possibility of Hydrogen Discharge
 - Storage Verification Test

- Summaries
Hydrogen Leakage Test: Driving Mode

- **Goal**: Verification of single failure conditions

- **Conditions**
 - Driving speed: 36 km/h
 - Open space: 14.1 m x 12 m x 6 m
 - Leaking point: fitting area between high pressure fuel line and refilling line in the rear of vehicle
 - Leaking flow: 131 NL per minute

- **Simulation Model**
 - Tool: STAR-CCM+
 - Mesh: polyhedral mesh (1,060,000)
 - Turbulence model: $\kappa-\varepsilon$ model
 - Steady-state analysis
Driving Mode Simulation Results

- **Results**
 - Hydrogen was diffused by outside air flow
 - Hydrogen concentration level over 4% by volume in air is localized near leaking area

![Vehicle underbody view](image1)

![Section A-A](image2)

![Detail of B](image3)

![Air flow outside vehicle](image4)

![Velocity profile near storages area](image5)
Stop Mode Test Conditions (1)

- Positions of hydrogen sensor

- Expected hydrogen leaking points:
 - High(5)/low(4) pressure lines and engine room(2)
Stop Mode : Test Conditions (2)

- Conditions of hydrogen leaking flow
 - 10 NL per minute : low leaking mode
 - 40 NL per minute : max. leaking mode before activation of excess flow valve
 - 131 NL per minute : leaking limit in FMVSS 301
Hydrogen Leakage Test Results

- **Driving Mode**
 - Diffused rapidly due to wind flowing outside vehicle
 - Sensors did not detect leaking hydrogen except sensors near leaking area

- **Stop Mode**
 - Leaking hydrogen may enter into vehicle through holes on the bottom if hydrogen leaks underneath the body
 - Leaking hydrogen may enter into vehicle through running HFCV system if hydrogen leaks in engine room ➔ Preventive measure needed
 - Hydrogen continued to leak for about 10 seconds before shutdown after 2% hydrogen was detected
 ➔ There were some area where hydrogen up to 4% was detected before shutdown.
 But concentration dropped below 4% within one minute

- **Conclusions**
 - Optimization of number of sensors and their locations is needed for effective detection depending on vehicle structure
 ➔ 2-3 sensors out of 5 sensors may be removed in case of HFCV SUV
 - Interior sensors should be considered for detecting hydrogen entering from outside
Rear Impact Test (Fuel System Integrity)

- Goal: Verification of fuel system integrity

- Test Vehicle
 - Mock up fuel cell vehicle

- Test Conditions
 - KMVSS article 91 (FMVSS 305): 48 km/h rear impact test
 - Filled with helium 90% of normal working pressure
 - During the crash, opened storage valve (severe condition)
 - After crash test, evaluate hydrogen discharge
Rear Impact Test Results: Hydrogen Discharge

- After impact, no hydrogen discharge
 - High pressure sensor: 30 MPa
 - Low pressure sensor: 1 MPa
Rear Impact Test Results: Verification Test of Storage

- Verification Test of Storage
 - Storage was damaged due to deformation of suspension during impact
 - Verification test of damaged storage ➔ No noticeable degradation

Under body rear suspension

- Damaged carbon fiber layers of storage

Verification test of damaged storage ➔ Passed after 11,250 cycling tests at 103 MPa
Summaries

- Hydrogen Leakage Test (Single Failure Conditions)
 - Optimization of number of sensors and their locations is needed for effective detection depending on vehicle structure
 - In this particular model of HFCV SUV, some sensors are redundant
 - Interior sensors should be considered for detecting hydrogen entering from outside

- Rear Impact Test (Fuel System Integrity)
 - Exterior of storage was damaged due to deformation of suspension during impact
 - No noticeable strength degradation after endurance test
 - No malfunction in other storage components
 - Impact absorbing structure should be devised
Thank you very much for your attention!

Acknowledgement
This research was supported by a grant (07-Transport System-Furture-02) from Transportation System Innovation Program funded by MLTM