

Sveučilište u Zagrebu Fakultet prometnih znanosti

UNIVERSITY OF ZAGREB
Faculty of Transport and Traffic Sciences
Department of Inteligent Transport System

THE BENEFITS OF ADAPTIVE TRAFFIC CONTROL FOR EMISSION REDUCTION IN URBAN AREAS

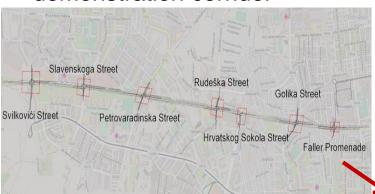
Dedić Luka, univ. bacc.lng. traff

INTRODUCTION

- The most important cause of pollution is traffic
 - IEA: "By 2050. more than 50% of spent fuel will be caused by traffic and transport"
 - EEA: "Traffic in urban areas causes 40% of CO₂ emission and over
 70% of other exhaust emission
- According to the eCoMove research exhaust emissions have different causes;
 - 22% is the consequence of ineffective acceleration/deceleration
 - 15% is caused by congestions
 - 11% is caused by excessive speed and inefficient traffic control

How to solve a problem?

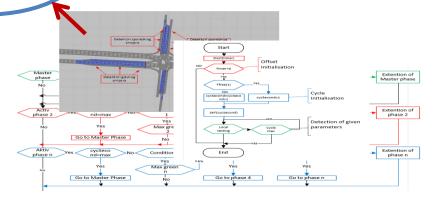
- Rational usage of time and energy with:
 - better traffic management
 - rerouting traffic in congestion areas
 - improving traffic comunication-V2V and V2I
 - increasing awareness within traffic participants
- ITS solution:
 - adaptive traffic management :
 - exhaust emission reduction (CO2, NOx, PM10) } Primary goal
 - stop-and-go action reduction
 - vehicle delay reduction
 - overall LOS improvement



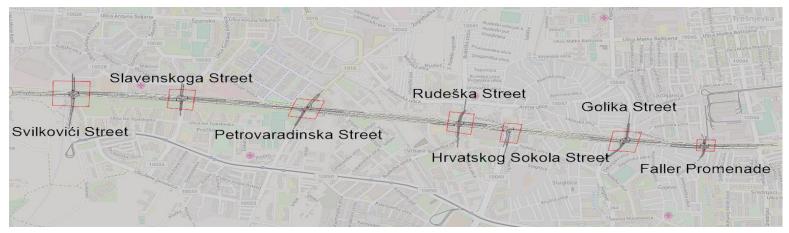
Research description

Selecting an eligible demonstration corridor

2. Data collection and analysis



3. Calibration of microsimulation and emission models


Evaluation & Results

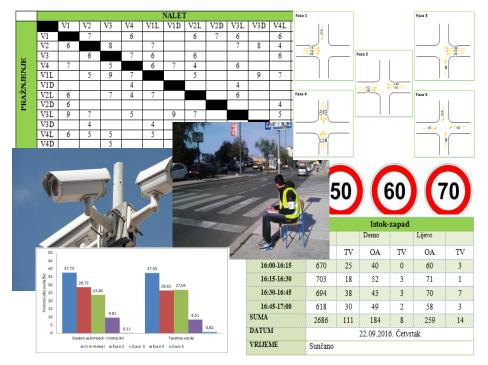
4. Algorithm development

Corridor description

- West part of the Zagrebačka Avenue Zagreb, Croatia
- 3500 [m] long
- Seven signalized intersections:
 - six intersection with four aproaches
 - one intersection with three aproaches
- Longest distance 870 [m]
- Shortest distance -150 [m]

Data collection and analysis

Data collection:

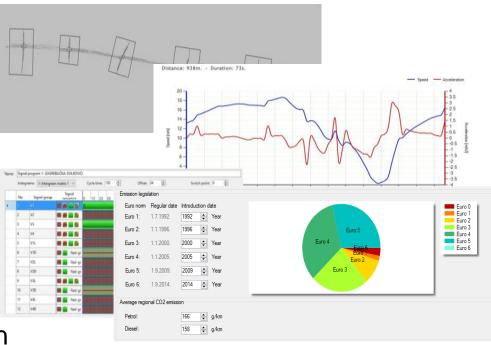

- afternoon peak hour (4 PM 5 PM)
- 500 minutes of video records
- over 13 000 recorded vehicles
- vast amount of field research

Data analysis:

- OD matrix
- protection time matrix
- signal plan
- vehicle composition
 - 95,95 % personal vehicles (PV)
 - 4,05 % heavy duty vehicles (HDV)
- saturation flow oversaturated

eastbound - 26,3%

Examples of data collection


Calibration of microsimulation and emission models

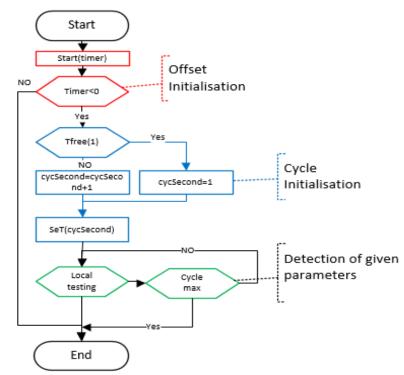
PTV Vissim

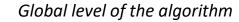
- creating traffic network
- vehicle routing (OD matrix)
- speed limit
- fixed traffic signalization
- simulation parameters for evaluation

EnViVer

- connecting to Vissim
- creating vehicle composition
- EURO norm compatibility

Algorithm development

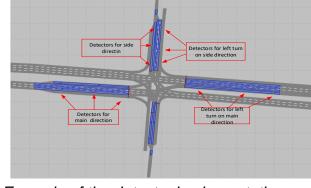

- VisVap algorithm developing softver
- Algorithm for adaptive traffic control:
 - separate implementation on every intersection
 - global and local level


Global level

- traffic flow harmonization
- elimination of stop-and-go-actions

Consisted of:

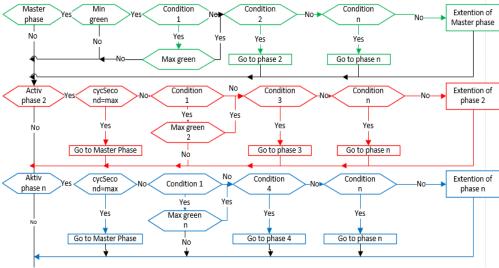
- offset initialisation
- cycle initialisation
- local level testing



Algorithm development cont.

Local level

- controled by Global level restrictions
- conected to Vissim by detectors
- second-by-second mesuremant
- phase activation in every cycle



Example of the detector implementation

maximum utilization of effective green times

Consisted of:

- three master phases
- four aditional phases
- adapting phase activation
- vast amount of condition for traffic optimization

Local level of the algorithm

Evaluation

Vissim

- two scenarios
 - fixed control simulation
 - adaptive control simulation
- 10 simulation runs for each scenario
- random seed number increment of 1
- node and link evaluation (LOS)
 - 7 nodes
 - 178 links

EnViVer

- samples of 10 simulations from both scenarios
- evaluation of exaust gases:
 - **CO**₂ carbon dioxide
 - NO_x nitrogen oxides
 - PM₁₀ particulate matter

Results

The results of exhaust emission for fixed traffic control situation

	CO ₂	NO _x	PM ₁₀
PV	278,236 g/km	666,605 mg/km	55,381mg/km
HDV	1922,519 g/km	13,3112 g/km	289,7118mg/km

The results of exhaust emission for adaptive traffic control situation

	CO ₂	NO _x	PM ₁₀
PV	261,530 g/km	615,945 mg/km	52,1993 mg/km
HDV	1785,776 g/km	12,3195 g/km	272,0898 mg/km

- Reduction regarding PV:
 - CO₂ emission 6,014 %
 - NO_x emission 7,593 %
 - PM₁₀ emission 5,740 %

- Reduction regarding HDV:
 - **CO**₂ emission **7,115** %
 - NO_x emission 7,452 %
 - *PM*₁₀ emission 6,081%

Results cont.

Node evaluation of fixed traffic control situation

	Q-length average [veh]	Q-length max [veh]	Traffic flow [veh/h]	Vehicle delay [s]	Average number of stops	Fuel consumption [mg/m/s]
1.Svilkovići street	24,46	314,70	6119	34,13	0,67	114,813
2.Slavenskog street	21,07	290,73	6246	33,84	0,64	104,870
3.Petrovaradinska	20,36	216,15	6380	29,33	0,46	96,620
4.Rudeška street	34,41	508,50	6670	37,12	0,60	115,976
5.Hrvatskog S. street	11,20	244,86	5789	17,65	0,33	62,330
6.Drvinje street	42,98	510,21	6706	35,45	0,51	112,629
7.Faller promenade	29,02	384,80	6250	22,74	0,37	75,179

Node evaluation of adaptive traffic control situation

	Q-length average [veh]	Q-length max [veh]	Traffic flow [veh/h]	Vehicle delay [s]	Average number of stops	Fuel consumption [mg/m/s]
1.Svilkovići street	30,40	323,35	6180	37,69	0,67	126,509
2.Slavenskog street	17,63	225,08	6322	25,56	0,44	86,524
3.Petrovaradinska	24,82	230,20	6455	32,99	0,54	105,854
4.Rudeška street	27,19	458,66	6884	35,59	0,61	117,924
5.Hrvatskog S. street	6,98	156,84	6033	9,07	0,17	47,352
6.Drvinje street	19,51	194,77	7041	20,78	0,34	88,620
7.Faller promenade	25,33	383,88	6564	22,07	0,38	79,047

Results cont. II

- Reduction in:
 - Q-length average [veh] by 17,24 %
 - Q-length max [veh] by 20.1 %
 - Vehicle delay [s] by 12,60 %
 - Fuel consumption [mg/m/s] by 4,48 %
 - Averege number of stops by 11,93 %

Level of service comparison

- Improvement in:
 - Traffic flow [veh/h] by 2,9%
- Increased performances of LOS

LOS	Fixed control	Adaptive control
1.Svilkovići street	С	D
2.Slavenskog street	С	С
3.Petrovaradinska	С	С
4.Rudeška street	D	D
5.Hrvatskog S. street	В	А
6.Drvinje street	D	С
7.Faller promenade	С	С

Conclusion

- Sustainable growth of traffic in urban areas is not possible without the advanced ITS solutions
- Research show the impact of adaptive traffic control on:
 - exhaust gases emission reduction
 - trafic flow harmonization
 - quality improvement of urban traffic network
- Future research:
 - upgrade of the algorithm with the self-learning ability
 - AI- based algorithm
 - q-learning algorithm

References

- IEA Tehnology roadmap Fuel economy of road vehicles. Tehnical report, Internacional Energy Agency, Paris, 2012.
- European Commission, "Green paper-Torwards a new culture for urban mobility", COM(2007) final, Brussels, 2007.
- eCoMove Consortium, "eCoMove-Description of Work", Brussels, Belgium, 2010.
- Vujić M., Šemanjski I., Vidan P., "Improving Energy Efficiency by Advanced Traffic Control System" Transaction on maritime science Trans.marit.sci. 2015; 02:119-126

Questions

