Informal document No. **GRPE-58-11-Rev.2** (58th GRPE, 8-12 June 2009, agenda item 5)

CORRIGENDA REV. 2¹

Working document ECE/TRANS/WP.29/GRPE/2009/16

Proposal for draft global technical regulation concerning the test procedure for compressionignition (C.I.) engines to be installed in agricultural and forestry tractors and in non-road mobile machinery with regard to the emissions of pollutants by the engine

Submitted by the expert from the European Commission

Working document ECE/TRANS/WP.29/GRPE/2009/16 as deposited at GRPE secretariat on the 20 March 2009 and released 1 April 2009 with changes by the GRPE secretariat.

http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpedoc 2009.html

¹ Rev.2 represents corrections (in colour) to the content of Rev.1 and adds some editorial corrections identified in the mean time

Transmitted by the expert from the JRC of the European Commission Informal document No. **GRPE-58-11-Rev.2** (58th GRPE, 8-12 June 2009, agenda item 5)

Part A and part B up to Annex 6 – Corrigendum

#	WHERE	ERRATA	CORRIGE
1	Short Title	EXHAUST EMISSIONS TEST PROTOCOL OF	EMISSIONS TEST PROTOCOL OF NON-ROAD
		NON-ROAD MOBILE MACHINERY	MOBILE MACHINERY ENGINES
2	A.STATEMENT OF	Deposited text:	The guidance document has no legal status and it does
	TECHNICAL	The guidance document has no legal status, it does not	not introduce any additional requirements
	RATIONALE AND	introduce any additional requirements	
	JUSTIFICATION;		[in order to maintain agreed content]
	1.TECHNICAL	in GRPE/2009/16:	
	AND ECONOMIC	The guidance document has no legal status <u>as</u> it does	
	FEASIBILITY;	not introduce any additional requirements	
	Paragraph 7		
3	A. STATEMENT	belive [incorrect spelling]	believe
	OF TECHNICAL		
	RATIONALE AND		
	JUSTIFICATION; 3.		
	POTENTIAL COST		
	EFFECTIVENESS;		
	Paragraph 11		
4	page 1, footnote	[wrong format] ¹	<u>1/</u>
5	7.8.3.4.	Points with negative torque values have to be	[reintroduce] Points with negative torque values have
		accounted for as zero work. [sentence mistakenly	to be accounted for as zero work.
		deleted]	
6	Table 7.3, second	Conditions (n = engine speed, T = torque)	Conditions (n = engine speed, T = torque)
	column	$n_{\rm ref} = 0$ per cent	$n_{\rm ref} = 0$ per cent
		and	and
		$T_{\rm ref} = 0$ per cent	$T_{\rm ref} = 0$ per cent
		and	and
		$T_{\rm act} > (T_{\rm ref} - 0.02 \ T_{\rm maxmappedtorque})$	$T_{\rm act} > (T_{\rm ref} - 0.02 \ T_{\rm maxmappedtorque})$
		and	and
		$T_{\rm act} < (T_{\rm ref} + 0.02 \ T_{\rm maxmappedtorque})$	$T_{\rm act} < (T_{\rm ref} + 0.02 \ T_{\rm maxmappedtorque})$

		$T \sim 1.02$ $T \sim T$	$T \leq 1.02$ $T > T$
		$n_{\rm act} \le 1.02 \ n_{\rm ref}$ and $T_{\rm act} > T_{\rm ref}$	$n_{\rm act} \le 1.02 \ n_{\rm ref} \ {\rm and} \ T_{\rm act} > T_{\rm ref}$
		and	<u>or</u>
		$n_{\rm act} > n_{\rm ref}$ and $T_{\rm act} \le T_{\rm ref}$	$n_{\rm act} > n_{\rm ref}$ and $T_{\rm act} \le T_{\rm ref}$
		and	<u>or</u>
		$n_{\rm act} > 1.02 \ n_{\rm ref} \ \text{and} \ T_{\rm ref} < T_{\rm act} \le (T_{\rm ref} + 0.02)$	$n_{\rm act} > 1.02 \ n_{\rm ref} \ \text{and} \ T_{\rm ref} < T_{\rm act} \le (T_{\rm ref} + 0.02)$
		T _{maxmappedtorque})	$T_{\text{maxmappedtorque}})$
		$n_{\rm act} < n_{\rm ref}$ and $T_{\rm act} \ge T_{\rm ref}$	$n_{\rm act} < n_{\rm ref}$ and $T_{\rm act} \ge T_{\rm ref}$
		and	or
		$n_{\rm act} \ge 0.98 \ n_{\rm ref}$ and $T_{\rm act} < T_{\rm ref}$	$n_{\rm act} \ge 0.98 \ n_{\rm ref} \ {\rm and} \ T_{\rm act} < T_{\rm ref}$
		and	<u>or</u>
		$n_{\rm act} < 0.98 \ n_{\rm ref} \ {\rm and} \ T_{\rm ref} > T_{\rm act} \ge (T_{\rm ref} - 0.02)$	$n_{\rm act} < 0.98 \ n_{\rm ref} \ {\rm and} \ T_{\rm ref} > T_{\rm act} \ge (T_{\rm ref} - 0.02)$
		$T_{\text{maxmappedtorque}}$	$T_{\text{maxmappedtorque}})$
		[4 <u>and</u> have to be replaced by <u>or</u>]	
7	8.1.10.2.4 (m)	[paragraph m, wrong subdivision in i, ii, iii]	delete sub division
			[deletion of the i, ii, iii, but not the text, which is
			contracted into 1 paragraph]
8	9.2.2	shall be maintained within one of the following	shall be maintained within one of the following ranges
		ranges(option):	(option):
		(i) between 293 and 303 K (20 and 30 °C) or	(a) between 293 and 303 K (20 and 30 °C) or
		(ii) between 293 and 325 K (20 to 52°C)	(b) between 293 and 325 K (20 to 52°C)
		The range shall be selected by the Contracting Party.	in close proximity to the entrance into the dilution
			tunnel. The range shall be selected by the Contracting
		[the half sentence 'in close proximity to the entrance	Party.
		into the dilution tunnel' was lost copying the text from	
		9.2.3.2 during its introduction by the Editorial	[use missing half sentence from paragraph 9.2.3.2]
		Committee]	
9	A.2.4. (b)	that the $\underline{\sigma}_i$ are the errors	that the ε_i are the errors

Additional editorial corrections for Part A and part B up to Annex 6

#	WHERE	ERRATA	CORRIGE
10	3.1.51.	"PTFE means polytetrafluoroethylene, commonly known as Teflon [™] ;	"PTFE" means polytetrafluoroethylene, commonly known as Teflon ™;
		[The right quotation mark is missing.]	
11	3.2	<i>RF</i> not in list of sysmbols	Response factor RF added to list of symbols
12	Eq. (7-3) in section 7.7.2.1.	$n_{\text{denorm}} = n_i$ at the maximum of $\left(n_{\text{norm}i}^2 + P_{\text{nnorm}i}^2\right)$ [Engine power with wrong subscript nnormi]	$n_{\text{denorm}} = n_i$ at the maximum of $\left(n_{\text{norm}i}^2 + P_{\text{norm}i}^2\right)$
13	7.8.2.3.		
15	1.8.2.3.	(a), (b), (c), (c), (d)	(a), (b), (c), (d), (e)
		[non-sequential numbering]	
14	Table 8.2	$ x_{\min} * (a_1 - 1) + a_0 $	$\left x_{\min}\cdot(a_1-1)+a_0\right $
		[wrong multiplier]	
15	Equation (8-7) in section 8.1.11.5.4.	$Efficiency[\%] = \left(1 + \frac{x_{\text{NOxmeas}} - x_{\text{NOx}+\text{O2mix}}}{x_{\text{NOx}+\text{O2mix}} - x_{\text{NOmeas}}}\right) \times 100$	$Efficiency[\%] = \left(1 + \frac{x_{\text{NOxmeas}} - x_{\text{NOx+O2mix}}}{x_{\text{NO+O2mix}} - x_{\text{NOmeas}}}\right) \times 100$
		[Transcription mistake in subscript]	

Ar	Annex A.7 – Corrigendum			
#	WHERE	ERRATA	CORRIGE	
1	Title Annex 7	Emission molar based calculation	Molar based emission calculation	
2	Para A.7.0.1. footnote	$x_{ m dil}$	$\chi_{ m dil/exh}$	
	(2) 2nd line			
3	A.7.0.1. footnote (2)	x _{dil}	$x_{\rm dil/exh}$	
	3rd line			
4	Eq. (A.7-3)	$x_{\rm H_2O} = \frac{p_{\rm H2O}}{n}$	$x_{\rm H2O} = \frac{p_{\rm H2O}}{r_{\rm H2O}}$	
		p_{abs}	p_{abs}	
5	A.7.1.2.2.; A.7.1.2.3.	vapor	vapour [English spelling]	
6	Eq. (A.7-28)	$m_{\rm gas} = M_{\rm gas} \cdot \prod \dot{n}_{\rm exhwet} \cdot x_{\rm gaswet} \cdot dt$	$m_{\rm gas} = M_{\rm gas} \cdot \int \dot{n}_{\rm exh} \cdot x_{\rm gas} \cdot {\rm d}t$	
7	Legend Eq. (A.7-28)	$\dot{n}_{ m exhwet}$	\dot{n}_{exh}	
8	Legend of Eq. (A.7-	x_{gaswet} = instantaneous generic gas molar concentration	x_{gas} = instantaneous generic gas molar concentration	
	28)		on a wet basis	
9	Eq. (A.7-29)	$m_{\rm gas} = M_{\rm gas} \cdot \prod \dot{n}_{\rm exhwet} \cdot x_{\rm gaswet} \cdot dt \implies$	$m_{\rm gas} = M_{\rm gas} \cdot \int \dot{n}_{\rm exh} \cdot x_{\rm gas} \cdot dt \implies$	
		$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i} \cdot x_{\text{gaswet},i}$	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exh}i} \cdot x_{\text{gas}i}$	
10	Legend Eq. (A.7-29)	$\dot{n}_{\mathrm{exhwet},i}$	$\dot{n}_{\mathrm{exh}i}$	
11	Legend Eq. (A.7-29)	$x_{\text{gaswet},i}$ = instantaneous generic gas molar concentration	x_{gasi} = instantaneous generic gas molar concentration	
			on a wet basis	
12	Eq. (A.7-30)	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i} \cdot x_{\text{gaswet},i}$	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exh}i} \cdot x_{\text{gas}i}$	
13	Legend Eq. (A.7-30)	$\dot{n}_{\mathrm{exhwet},i}$	$\dot{n}_{\mathrm{exh}i}$	
14	Legend Eq. (A.7-30)	$x_{\text{gaswet},I}$ = instantaneous generic gas molar	x_{gasi} = instantaneous generic gas molar concentration	
		concentration	on a wet basis	
15	Eq. (A.7-31)	$m_{\rm gas} = M_{\rm gas} \cdot \overline{\dot{n}}_{\rm exhwet} \cdot \overline{x}_{\rm gaswet} \cdot t_{\rm cycle}$	$m_{\rm gas} = M_{\rm gas} \cdot \dot{n}_{\rm exh} \cdot \overline{x}_{\rm gas} \cdot \Delta t$	

Annex A.7 – Corrigendum

16	Legend Eq. (A.7-31)	$\overline{\dot{n}}_{\text{exhwet}}$ = mean exhaust gas molar flow rate on a wet basis	$\dot{n}_{\rm exh}$ = exhaust gas molar flow rate on a wet basis
17	Legend Eq. (A.7-31)	$\overline{x}_{\text{gaswet}} = \text{mean gaseous emission molar fraction}$	\overline{x}_{gas} = mean gaseous emission molar fraction on a wet
			basis
18	Legend Eq. (A.7-31)	$t_{\text{cycle}} = \text{test time interval}$	Δt = time duration of test interval
19	Eq. (A.7-32)	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \overline{x}_{\text{gaswet}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i}$	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \overline{x}_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exh}i}$
20	Legend Eq. (A.7-32)	$\dot{n}_{\mathrm{exhwet},i}$	$\dot{n}_{\mathrm{exh}i}$
21	Legend Eq. (A.7-32)	$\overline{x}_{\text{gaswet}}$ = mean gaseous emission molar fraction	\overline{x}_{gas} = mean gaseous emission molar fraction on a wet
		500000	basis
22	Para A.7.3.2. 3rd line	X _{gaswet}	x _{gas}
23	Eq. (A.7-33)	$x_{\text{gasdry}} = \frac{x_{\text{gaswet}}}{1 - x_{\text{H2O}}}$	$x_{\text{gasdry}} = \frac{x_{\text{gas}}}{1 - x_{\text{H2O}}}$
24	Eq. (A.7-34)	$x_{\text{gaswet}} = \frac{x_{\text{gasdry}}}{1 + x_{\text{H2Odry}}}$	$x_{\rm gas} = \frac{x_{\rm gasdry}}{1 + x_{\rm H2Odry}}$
25 26	Legend Eq. (A.7-34)	X _{H2O,dry}	<i>X</i> H2Odry
26	Eq. (see A.7-29)	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i} \cdot x_{\text{gaswet},i}$	$m_{\rm gas} = \frac{1}{f} \cdot M_{\rm gas} \cdot \sum_{i=1}^{N} \dot{n}_{\rm exhi} \cdot x_{\rm gasi}$
27	Eq. (see A.7-31)	$m_{\rm gas} = M_{\rm gas} \cdot \overline{\dot{n}}_{\rm exhwet} \cdot \overline{x}_{\rm gaswet} \cdot t_{\rm cycle}$	$m_{\rm gas} = M_{\rm gas} \cdot \dot{n}_{\rm exh} \cdot \overline{x}_{\rm gas} \cdot \Delta t$
28	Eq. (see A.7-32)	$m_{\text{gas}} = \frac{1}{f} \cdot M_{\text{gas}} \cdot \overline{x}_{\text{gaswet}} \cdot \sum_{i=1}^{N} \dot{n}_{\text{exhwet},i}$	$m_{\rm gas} = \frac{1}{f} \cdot M_{\rm gas} \cdot \overline{x}_{\rm gas} \cdot \sum_{i=1}^{\rm N} \dot{n}_{\rm exhi}$
29	A.7.44.1.(a):	Changing exhaust flow rate shall be extracted. [the first line of the paragraph had been lost while editing]	If a batch sample from a changing exhaust flow rate is collected, a sample proportional to the changing exhaust flow rate shall be extracted.
30	Eq. (A.7-45)	$m_{\rm PM} = \overline{M}_{\rm PM} \cdot \overline{n} \cdot t_{\rm cycle}$	$m_{\rm PM} = \bar{M}_{\rm PM} \cdot \dot{n} \cdot \Delta t$
31	Legend Eq. (A.7-45)	$\overline{\dot{n}_{i}}$ = mean exhaust molar flow rate	\dot{n} = exhaust molar flow rate

32	Legend Eq. (A.7-45)	$t_{\text{cycle}} = \text{test interval}$	Δt = time duration of test interval
33	Legend eq. (A.7-46): $DR 2^{nd}$ line	$m_{\rm dil} (DR = m/m_{\rm dil})$	$m_{\rm dil/exh} (DR = m/m_{\rm dil/exh})$
34	Legend Eq. (A.7-46): $DR 3^{rd}$ line	$x_{ m dil}$	<i>x</i> _{dil/exh}
35	Eq. (A.7-47)	$DR = \frac{1}{1 - x_{\rm dil}}$	$DR = \frac{1}{1 - x_{\text{dil/exh}}}$
36	A.7.7.1. and A.7.7.2.	A.7.7.1. and A.7.7.2 [incorrect numbering]	replace numbering by A.7.6.4. and A.7.6.5.
37	A.7.8.1. to A.7.8.4.	A.7.8.1. to A.7.8.4. [incorrect numbering]	replace numbering by A.7.7.1. and A.7.7.4.

Additional editorial corrections for Annex A.7 – Corrigendum

#	WHERE	ERRĂTA	CORRIGE
38	A.7.0.3.; A.7.1.1.	sulfur	sulphur
			[English spelling]
39	Eq. (A.7-1)	$\log_{10}(p_{ m H_2O})$	$\log_{10}(p_{H2O})$
		[No double subscript]	
40	Eq.(A.7-3)	$x_{\rm H_2O} = \frac{p_{\rm H2O}}{p_{\rm H2O}}$	$x_{\rm H2O} = \frac{p_{\rm H2O}}{p}$
		p_{abs}	p_{abs}
		[No double subscript]	
41	A.7.1.2.3.	If humidity is measured as a relative humidity RH_a , the	If humidity is measured as a relative humidity <i>RH%</i> ,
		amount of water of an ideal gas x_{H2O} [mol/mol] is	the amount of water of an ideal gas x_{H2O} [mol/mol] is
		calculated as follows	calculated as follows
		[mistyped variable name <i>RH</i> _a]	[replaced by <i>RH%</i>]
42	Eq. (A.7-4)	$x_{\rm H2O} = \frac{RH\% \cdot p_{\rm H2O}}{r}$	$x_{\rm H2O} = \frac{RH\%}{100} \cdot \frac{p_{\rm H2O}}{p_{\rm abs}}$
		p_{abs}	$n_{\rm H2O} = 100 p_{\rm abs}$
			[As the value of <i>RH</i> % is a per cent value between 0 and
			100, the value has to be divided by 100]
43	A.7.1.4.1. (b)	For the NMHC determination described in paragraph	For the NMHC determination described in paragraph
		(b) of this paragraph, $x_{\text{THC[THC-FID]}}$ shall be corrected	A.7.1.4.2., $x_{\text{THC[THC-FID]}}$ shall be corrected
		[wrong reference to '(b) of this paragraph']	[reference '(b) of this paragraph' replaced by

			'A.7.1.4.2.']
44	A.7.1.4.2.	If the NMHC calculations are omitted as described in paragraph A.7.1.4.(c), the background corrected mass of NMHC [wrong reference 'as described in paragraph A.7.1.4.(c)']	If the NMHC calculations are omitted, the background corrected mass of NMHC [reference 'as described in paragraph A.7.1.4.(c)' deleted]
45	Eq. (A7-6)	$x_{\text{NMHC}} = \frac{x_{\text{THC[THC-FID]cor}} - x_{\text{THC[THC-FID]}} \cdot RF_{\text{CH4[THC-FID]}}}{1 - RFPF_{\text{C2H6[NMC-FID]}} \cdot RF_{\text{CH4[THC-FID]}}}$ [Transcription mistake in subscript]	$x_{\text{NMHC}} = \frac{x_{\text{THC[THC-FID]cor}} - x_{\text{THC[NMC-FID]}} \cdot RF_{\text{CH4[THC-FID]}}}{1 - RFPF_{\text{C2H6[NMC-FID]}} \cdot RF_{\text{CH4[THC-FID]}}}$
46	A.7.1.4.2. (b)	 (i) The following equation for penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.4. shall be used: (ii) For penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.5., the following equation shall be used: (iii) For penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.6., the following equation shall be used: [Wrongly referenced sections] 	 (i) The following equation for penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.4.1. shall be used: (ii) For penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.4.2., the following equation shall be used: (iii) For penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.4.3., the following equation shall be used: (iii) For penetration fractions determined using an NMC configuration as outlined in paragraph 8.1.10.3.4.3., the following equation shall be used:
47	Eq. (A.7-57)	$\dot{n}_{ref} = \frac{\dot{V}_{srdref} \cdot p_{std}}{T_{std} \cdot R} = \frac{\dot{V}_{actref} \cdot p_{act}}{T_{std} \cdot R} = \frac{\dot{m}_{ref}}{M_{mix}}$ [Transcription mistake in subscript; reference should be to mixed conditions]	$\dot{n}_{\rm ref} = \frac{\dot{V}_{\rm srdref} \cdot P_{\rm std}}{T_{\rm std} \cdot R} = \frac{\dot{V}_{\rm actref} \cdot P_{\rm act}}{T_{\rm act} \cdot R} = \frac{\dot{m}_{\rm ref}}{M_{\rm mix}}$ [Reference to mixed conditions]
48	Legend Eq. (A.7-57)	$p_{act} =$ actual pressure of the flow rate [Pa] $T_{act} =$ actual temperature of the flow rate [K] $M_{mix} =$ molar mass of the diluted flow rate [g/mol]	$p_{act} = actual \text{ pressure of the gas [Pa]} \\ T_{act} = actual \text{ temperature of the gas [K]} \\ M_{mix} = molar mass of the gas [g/mol] \\ [p_{act}, T_{act} \text{ and } M_{mix} \text{ are gas properties]} $
49	Legend Eq. (A.7-66)	$Re^{\#} = \frac{4 \cdot M_{\text{mix}} \cdot \dot{n}_{\text{ref}}}{\pi \cdot d_{\text{t}} \cdot \mu}$ Where	$Re^{\#} = \frac{4 \cdot M_{\text{mix}} \cdot \dot{n}_{\text{ref}}}{\pi \cdot d_{\text{t}} \cdot \mu}$ Where

d_{t} = diameter of the SSV throat [m] M_{mix} = mixture molar mass [kg/mol] \dot{n}_{stdref} = reference molar flow rate [mol/s]	d_{t} = diameter of the SSV throat [m] M_{mix} = mixture molar mass [kg/mol] \dot{n}_{ref} = reference molar flow rate [mol/s]
[Transcription mistake in subscript]	

Annex A.8 – Corrigendum

#	WHERE	ERRATA	CORRIGE
1	Eq. (A.8-1)	$c_{\rm NMHC} = \frac{c_{\rm HC(w/oCutter)} \cdot (1 - E_{\rm CH4}) - c_{\rm HC(w/Cutter)}}{E_{\rm C2H6} - E_{\rm CH4}}$	now covered by #15 below
2	Eq. (A.8-2)	$c_{\rm CH4} = \frac{c_{\rm HC(w/Cutter)} - c_{\rm HC(w/oCutter)} \cdot (1 - E_{\rm C2H6})}{E_{\rm C2H6} - E_{\rm CH4}}$	now covered by #15 below
ad 1	Legend Eq. (A.8-2)	C _{HC(w/Cutter)}	now covered by #15 below
ad 2	Legend Eq. (A.8-2)	C _{HC(w/oCutter)}	now covered by #15 below
3	Eq. (A.8-22)	$f_{\rm c} = 0.5441 \cdot \left(c_{\rm CO2d} - c_{\rm CO2d}\right) + \frac{c_{\rm COd}}{18,522} + \frac{c_{\rm HCw}}{17,355}$	$f_{\rm c} = 0.5441 \cdot \left(c_{\rm CO2d} - c_{\rm CO2d,a}\right) + \frac{c_{\rm COd}}{18522} + \frac{c_{\rm HCw}}{17355}$
4	Legend Eq. (A.8-22)	C _{CO2ad}	$c_{\rm CO2d,a}$
ad 3	Eq. (A.8-37)	$m_{\rm ed,i} = 1.293 \cdot V_0 \cdot n_{\rm P,i} \cdot \frac{p_p}{101.3} \cdot \frac{273}{\overline{T}}$	$m_{\text{ed},i} = 1.293 \cdot V_0 \cdot n_{\text{P},i} \cdot \frac{p_p}{101.3} \cdot \frac{273}{\overline{T}}$ [the index i at <i>m</i> shall be in italic <i>i</i>]
5	Eq. (A.8-38)	$m_{\rm ed} = \frac{1.293 \cdot t \cdot K_{\rm V} \cdot p_{\rm P}}{T^{0.5}}$	$m_{\rm ed} = \frac{1.293 \cdot t \cdot K_{\rm V} \cdot p_{\rm p}}{T^{0.5}}$
			[the index to the pressure variable shall be small and roman p]
6	Legend Eq. (A.8-38)	рр	p_{p} [the index to the pressure variable shall be small and roman p]
7	Eq. (A.8-39)	$m_{\text{ed},i} = \frac{1.293 \cdot \Delta t_i \cdot K_{\text{V}} \cdot p_{\text{P}}}{T^{0.5}}$	$m_{\text{ed},i} = \frac{1.293 \cdot \Delta t_i \cdot K_{\text{V}} \cdot p_{\text{p}}}{T^{0.5}}$
			[the index to the pressure variable shall be small and roman p]
8	Legend Eq. (A.8-39)	<i>p</i> _P	$p_{\rm p}$ [the index to the pressure variable shall be small and roman

	Eq. (A.8-40)	m = -1.203, $a = -0.4t$	p]
10		$m_{\rm ed} = 1.293 \cdot q_{\rm SSV} \cdot \Delta t$	$m_{\rm ed} = 1.293 \cdot q_{\rm VSSV} \cdot \Delta t$
10	Eq. (A.8-41)	$q_{\rm SSV} = A_0 d_{\rm V}^2 C_{\rm d} p_{\rm P} \sqrt{\left[\frac{1}{T} \left(r_{\rm p}^{1,4286} - r_{\rm p}^{1,7143}\right) \cdot \left(\frac{1}{1 - r_{\rm D}^4 r_{\rm p}^{1,4286}}\right)\right]}$	$q_{VSSV} = A_0 d_V^2 C_d p_p \sqrt{\left[\frac{1}{T} \left(r_p^{1.4286} - r_p^{1.7143}\right) \cdot \left(\frac{1}{1 - r_D^4 r_p^{1.4286}}\right)\right]}$
11	Eq. (A.8-42)	$m_{\mathrm{ed},i} = 1.293 \cdot q_{\mathrm{SSV}} \cdot \Delta t_i$	$m_{\mathrm{ed},i} = 1.293 \cdot q_{V\mathrm{SSV}} \cdot \Delta t_i$
ad 4	Legend Eq. (A.8-42)	$q_{ m SSV}$	$q_{ m vssv}$
	Legend Eq. (A.8-51)	$m_{\rm ed}$ = mass of equivalent diluted exhaust gas over the cycle [kg]	$m_{\rm ed}$ = mass of diluted exhaust gas over the cycle [kg]
	Annex 8 appendix 1, A.8.1., A8.1.1. to A.8.1.3.	A.8.1., A8.1.1. to A.8.1.3. [incorrect numbering]	replace numbering by A.8.5., A.8.5.1 to A.8.5.3
	Annex 8 appendix 2, A8.2	A8.2 [incorrect numbering]	replace numbering by A.8.6
15			
	Determination	of methane and non-methane HC concentration	
	The concentration of NMHC (c_{NMHC} [-]) and CH ₄ (c_{CH4} [-]) shall be calculated as follows:		
	$c_{\rm NMHC} = \frac{c_{\rm HCO}}{c_{\rm NMHC}}$	$\frac{W/OCutter)}{E_{C2H6}} \cdot (1 - E_{CH4}) - c_{HC(W/Cutter)}}{E_{C2H6} - E_{CH4}}$	(A.8-1)

$$c_{\rm CHI} = \frac{c_{\rm HC[wcOmer]} - c_{\rm HC[wcOmer]} \cdot (1 - E_{\rm C2HB})}{E_{\rm C2HB} - E_{\rm CHI}}$$
(A.8-2)
Where:

$$C_{\rm HC[wcOmer]} = HC$$
 concentration with sample gas flowing through the NMC [ppm]

$$C_{\rm HC[wcOmer]} = HC$$
 concentration with sample gas bypassing the NMC [ppm]

$$E_{\rm CHA} = - \text{methane efficiency, as determined in paragraph 8.1.10.3. [-]}$$

is replaced by the modified text for A.8.1.1.:
Determination of methane and non-methane HC concentration
The calculation of NMHC and CH₄ depends on the calibration method used. The FID for the measurement without NMC, shall be
calibrated with propane. For the calibration of the FID in series with NMC, the following methods are permitted.
(a) calibration gas – propane, propane bypasses NMC,
(b) calibration gas – methane; methane passes tNMC,
(c) calibration gas – methane; methane passes tNMC,
(b) calibration gas – methane; methane passes tNMC,
(c) calibration gas – methane; methane passes tNMC,
(c) calibration gas – methane; methane passes tNMC,
(d) calibration gas – fropane (c) passes through NMC
The concentration of NMHC (commc [-]) and CH₄ (ccm₄[-]) shall be calculated as follows for (a):

$$c_{\rm NMHC} = \frac{c_{\rm HC(wiONMC)} \cdot (1 - E_{\rm C1H})}{RF_{\rm C1H4[THC+HD]} \cdot (E_{\rm C2H6} - E_{\rm CH4})}$$
(A.8-1a)

$$c_{\rm CH4} = \frac{c_{\rm HC(wiONMC)} \cdot (1 - E_{\rm C1H4})}{E_{\rm C2H6} - E_{\rm CH4}}$$
(A.8-2a)
The concentration of NMHC and CH₄ shall be calculated as follows for (b):

$$C_{\text{NMHC}} = \frac{c_{\text{HC}(\text{w/NMC})} \cdot (1 - E_{\text{CH4}}) - c_{\text{HC}(\text{w/NMC})} \cdot RF_{\text{CH4}[\text{THC-FID}]} \cdot (1 - E_{\text{CH4}})}{E_{\text{C2H6}} - E_{\text{CH4}}}$$
(A.8-1b)

$$c_{\text{CH4}} = \frac{c_{\text{HC}(\text{w/NMC})} \cdot RF_{\text{CH4}[\text{THC-FID}]} \cdot (1 - E_{\text{CH4}}) - c_{\text{HC}(\text{w/NMC})} \cdot (1 - E_{\text{C2H6}})}{RF_{\text{CH4}[\text{THC-FID}]} \cdot (E_{\text{C2H6}} - E_{\text{CH4}})}$$
(A.8-2b)
Where:

$$c_{\text{HC}(\text{w/NMC})} = HC \text{ concentration with sample gas flowing through the NMC [ppm]}{RF_{\text{CH4}[\text{THC-FID}]} = HC \text{ concentration with sample gas bypassing the NMC [ppm]} RF_{\text{CH4}[\text{THC-FID}]} = methane response factor as determined in paragraph 8.1.10.1.4. [-]}{E_{\text{CH4}} = methane efficiency, as determined in paragraph 8.1.10.3. [-]}$$

If $RF_{\text{CH4}[\text{THC-FID}]} < 1.05$, it may be omitted in equations A.8-1a, A.8-1b and A.8-2b.

Additional editorial corrections for Annex A.8 – Co	orrigendum
---	------------

#	WHERE	ERRATA	CORRIGE
16	A.8.0.3.	sulfur	sulphur [English spelling]
17	Eq.(A.8-3)	$q_{mgas,i} = k_{\rm h} \cdot k \cdot u_{gas} \cdot q_{mew,i} \cdot c_{gas,i} \cdot \frac{3600}{1000}$	$q_{mgas,i} = k_{\rm h} \cdot k \cdot u_{gas} \cdot q_{mew,i} \cdot c_{gas,i} \cdot 3600$
		[No division by 1000, as this factor from the conversion of the unit has been already considered in prior equations, such as Eq. A.8-13, Table A.8-1.]	
18	Legend Eq.(A.8-3)	u _{gas} = component specific factor or ratio between densities of gas component and exhaust gas (see paragraph §A.8.2.4.) [wrong reference'(see paragraph §A.8.2.4.)']; [missing unit [-]]	u_{gas} = component specific factor or ratio between densities of gas component and exhaust gas [-]; to be calculated with equations (A.8-12) or (A.8-13) ['(see paragraph §A.8.2.4.)' replaced by 'to be calculated with equations (A.8-12) or (A.8-13)']; [added missing unit [-]]
19	Legend Eq. (A.8-4)		[add missing unit [-] to parameter <i>u</i>]
20	Legend Eq.(A.8-6)	H_a = intake air humidity [g H ₂ O/kg dry air] (see paragraph A.8.1.2.) [Wrong reference]	H_{a} = intake air humidity [g H ₂ O/kg dry air] [Elimination of wrong reference]
21	Legend Eq. (A.8-14)	Where;	Where;
		α = molar hydrogen-to-carbon ratio [-] δ = molar sulphur-to-carbon ratio [-] ε = molar oxygen-to-carbon ratio [-] [δ is the nitrogen to-carbon ratio and definition of γ is missing]	α = molar hydrogen-to-carbon ratio [-] δ = molar nitrogen-to-carbon ratio [-] ε = molar oxygen-to-carbon ratio [-] γ = atomic sulphur-to-carbon ratio [-]
22	Legend Eq. (A.8-18), (A.8-19) and (A.8-20)	δ = molar sulphur-to-carbon ratio [-] γ = molar nitrogen-to-carbon ratio [-] [δ is the nitrogen to-carbon ratio and γ is the atomic sulphur to carbon ratio]	δ = molar nitrogen-to-carbon ratio [-] γ = atomic sulphur-to-carbon ratio [-]
23	Legend Eq. (A.8-24)	Where: u_{gas} = ratio between density of exhaust component and density of air (tabulated values) [-] [Wrong reference to '(tabulated values)']	Where: u_{gas} = ratio between density of exhaust component and density of air, as given in table A.8.2 or calculated with equation (A.8-35) [-]

	[
			['(tabulated values)' replaced by 'as given in table A.8.2
			or calculated with equation (A.8-35)']
24	Eq. A8-35	M_{gas} M_{gas}	M_{gas} M_{gas}
		$u = \frac{M_{\text{gas}}}{M_{\text{d,w}}} = \frac{M_{\text{gas}}}{M_{\text{da,w}} \cdot \left(1 - \frac{1}{D}\right) + M_{\text{r,w}} \cdot \left(\frac{1}{D}\right)}$	$u = \frac{M_{\text{gas}}}{M_{\text{d,w}} \cdot 1000} = \frac{M_{\text{gas}}}{\left(M_{\text{da,w}} \cdot \left(1 - \frac{1}{D}\right) + M_{\text{r,w}} \cdot \left(\frac{1}{D}\right)\right) \cdot 1000}$
			For unit alignment of <i>u</i> , the equation shall be divided
			by 1000.
25	Eq. (A.8-41) as corrected by #10 above	$q_{VSSV} = A_0 d_V^2 C_d p_p \sqrt{\left[\frac{1}{T} \left(r_p^{1.4286} - r_p^{1.7143}\right) \cdot \left(\frac{1}{1 - r_D^4 r_p^{1.4286}}\right)\right]}$	
		1171	W/h - max
		Where:	Where:
		$A_{\rm a} = 0.0056940$ collection constant for $m^3 K^{\frac{1}{2}}$	A_0 = collection of constants and units conversions =
		$A_0 = 0.0056940 \text{ collection constant for} \left[\frac{\text{m}^3}{\text{min}} \cdot \frac{\text{K}^{\frac{1}{2}}}{\text{kPa}} \cdot \frac{1}{\text{mm}^2} \right]$ $d_V = \text{diameter of the SSV throat [m]}$	0.0056940 $m^3 K^{\frac{1}{2}}$ 1
			$\frac{1}{1}$ $\frac{1}$
		$d_{\rm V}$ = diameter of the SSV throat [m]	
		p_{in} = absolute pressure at venturi inlet [kPa]	$d_{\rm V}$ = diameter of the SSV throat [mm]
			$p_{\rm p}$ = absolute pressure at venturi inlet [kPa]
		[wrong term 'collection constant for';	['collection constant for' replaced by ' collection of
		wrong unit for diameter and wrong subscript for the	constants and units conversions';
		absolute pressure at venturi inlet]	Correction of wrong unit for diameter and wrong
			subscript for the absolute pressure at venturi inlet]
26	Legend Eq. (A.8-46)	n = number of measurements [-]	N = number of measurements [-]
		[wrong symbol for the number of measurements]	[N is symbol for the number of measurements]
27	Eq. (A.8-56) and legend	$m_{\rm sep} = \sum_{i=1}^{N} m_{\rm sepi} \qquad (A.8-56)$	$m_{\rm sep} = \sum_{i=1}^{N} m_{\rm sepi} \tag{A.8-56}$
			Where
		[N wrongly in Italic and N missing from legend]	N = number of measurements [-]
			[<i>N</i> corrected to Roman and N now defined in legend]
28	Eq.(A.8-60)	$W_{\text{act}} = \sum_{i=1}^{N} P_i \cdot \Delta t_i = \frac{1}{f} \cdot \frac{1}{3600} \cdot \frac{1}{10^3} \frac{2 \cdot \pi}{60} \sum_{i=1}^{N} (n_i \cdot T_i)$	$W_{\text{act}} = \sum_{i=1}^{N} P_i \cdot \Delta t_i = \frac{1}{f} \cdot \frac{1}{3600} \cdot \frac{1}{10^3} \frac{2 \cdot \pi}{60} \sum_{i=1}^{N} (n_i \cdot T_i)$

		[<i>N</i> wrongly in Italic]	[N corrected to Roman]
29	Legend Eq. (A 8-72)	d_v = diameter of the SSV throat [m]	d_v = diameter of the SSV throat [mm]
		[wrong unit]	
30	Legend Eq. (A.8-73)	Where:	Where:
	and (A.8-74)	$A_1 = 25.55152$ in units of $\left(\frac{1}{m^3}\right) \left(\frac{\min}{s}\right) \left(\frac{mm}{m}\right)$	A_1 = collection of constants and units conversions =
		$m^3 / s / m$	$27.43831 \left[\frac{1}{m^3} \cdot \frac{\min}{s} \cdot \frac{\min}{m} \right]$
		[Wrong value for constant A ₁ ;	$\begin{bmatrix} \frac{1}{m^3} & s & m \end{bmatrix}$
		wrong term 'in units of' ';	[value for constant A ₁ corrected;
		units wrongly in Italic;	'in units of replaced by 'collection of constants and
		units not in square brackets]	units conversions'; units in Roman;
			units in square brackets]
	Legend Eq. (A.8-73)	$d_{\rm V}$ = diameter of the SSV throat [m]	$d_{\rm V}$ = diameter of the SSV throat [mm]
	and (A.8-74)	[wrong unit for diameter]	

Additional Corrections for guidance text - Corrigendum

#	WHERE	ERRATA	CORRIGE
1	Example following Eq. (GD.A.7-4a)	$M_{\rm H} = 1.01 {\rm g/mol}$	$\frac{M_{\rm H} = 1.00794 \text{ g/mol}}{[\text{Use of un-rounded value}]}$
2	Example following Eq. (GD.A.7-4a)	sulfur	sulphur [English spelling]
3	Legend Eq. (A.8-28)	Where: H_a = intake air humidity [g H ₂ O/kg dry air] (see paragraph on wet air) H_d = dilution air humidity [g H ₂ O/kg dry air] (see paragraph on wet air) [Missing paragraph references]	Where: $H_a = \text{intake air humidity [g H_2O/kg dry air]}$ (see paragraph A.8.1 on wet air) $H_d = \text{dilution air humidity [g H_2O/kg dry air]}$ (see paragraph A.8.1 on wet air)
4	Legend (Eq.A.8-33)	Where: $H_d = intake air humidity [g H2O/kg dry air] (see paragraph on wet air)$	Where: H_d = intake air humidity [g H ₂ O/kg dry air] (see paragraph A.8.1 on wet air)

		[Missing paragraph reference]	
5	Legend (Eq.A.8-35)	Where:	Where:
		$M_{\rm gas}$ = molar mass of the gas component [g/mol] (see	$M_{\rm gas}$ = molar mass of the gas component [g/mol] (see
		paragraph on basic data for stoichiometric calculation)	paragraph A.8.1. on basic data for stoichiometric
		[Missing paragraph reference]	calculation)