

WG20 Static Geometric UK Cost-Benefit

David Hynd GTR Meeting, Basildon

8th November, 2007

Introduction

General scope

- Cost-benefit analysis for UK
- Costs of whiplash casualties based on DfT willingness-topay approach
- Savings based on number of casualties saved x cost of casualty
- Cost to industry based on NHTSA 202a costs to make modifications to seats and head restraints

Basis for whiplash injury costing

DfT willingness-to-pay approach

- Hopkin and Simpson [1995]
- Whiplash costed separately to other slight injuries
- c.f insurance cost look at which components of H&S included in insurance payout

DfT Casualty valuations (2005 values)

- Fatal £1,428,460
- Serious £160,510
- Slight £12,380
- Slight = average of whiplash (high cost) and other slights (very low cost)

Hopkin and Simpson [1995]

Category			All slight	Whiplash cost
Lost output	Up to 1 year (90% of slights)	1-3 years (whiplash) (10% of slights)		
	£390	£8,620	£1,220	£8,620
Medical and support costs	Recover 3-4 months	Mild disability		
	£201	£633	£520	£520
Human costs	Minor slights (80%)	Whiplash (20%)		
	£120	£25,490*	£5,190	£25,490
Total			£6,920 (sic)	£34,630

Basis for whiplash injury costing

Hopkin and Simpson [1995]

- Human cost of injury = $\pounds 25,490$
 - Half 'state W' (recover 3-4 months) = £14,570
 - Half 'reduced state X' (recover 1-3 years) = £36,420
 - (Full 'state X' = 40,060 reduced as respondents considered 1-3 year whiplash slightly better than 'state X')

H&S Inflated to 2005 values

• Whiplash value = £61,362

Basis for whiplash injury costing

• However...

- Seems very high for short-term whiplash
- Galasko et al. [1996] (part of H&S study) found that 59.1% whiplash injuries (all impact directions) were > 6 months
- Recent Thatcham data suggests 70% UK rear impact whiplash injuries are long-term: mean 9 month recovery

• So...

- Apply £61k casualty value to *long-term* injuries only
- Assume 59.1% for rear and front impact
- Casualty cost for short-term = £1,260

Cost of whiplash in UK

• Slight injuries UK 2005

	Male driver	Male FSP	Female driver	Female FSP	Totals
Rear impact	15223	3047	15197	6481	
Front impact	29919	6423	21142	9711	
Total	45142	9470	36339	16192	107143

• **Proportion under reported 45%**

• Galasko et al. [1996] (part of H&S study)

Proportion with whiplash

- 58% rear impact
- 34% front impact

• **Proportion long-term injury 59.1%**

• Galasko et al. [1996]

• Value of long-term whiplash injury £61,326

• UK willingness-to-pay value

Cost of whiplash in UK

Long-term whiplash injury value

	Male driver	Male FSP	Female driver	Female FSP	Totals
Rear impact	582	116	581	248	
Front impact	670	144	474	218	
Total	1,252	260	1,055	465	3,032

• Total cost of long-term whiplash injuries = £3 billion

Cost-benefit options

- Option 1: Do nothing
- Option 2: Increase head restraint height
 - In the range 800 to 850 mm
- Option 3: Control head restraint backset
 - In the range 40 to 100 mm
- Option 4: Increase head restraint height and control backset
 - Height in the range 800 to 850 mm, combined with
 - Backset in the range 40 to 100 mm

Cost-benefit options

Option 1: Do nothing

- Assumptions for benefit
 - No additional benefit derived from Regulatory activity
 - No increase in benefit from consumer testing
- Assumptions for cost
 - No cost to industry from Regulatory activity

• Option 2: Increase head restraint height (800 to 850 mm)

- Assumptions for benefit
 - No direct benefit from increase in height requirement
 - Increased height allows proportion of backset benefit
 - Benefit to backset 'all-or-nothing' i.e. if HR level with CoG of 'ramped-up' occupant, improved backset can work, else backset cannot be effective
- Assumptions for cost
 - NHTSA costs for adjustable and fixed head restraints
 - Proportional to height increase

Cost-benefit options

Option 3: Control head restraint backset (40 to 100 mm)

- Assumptions for benefit
 - Benefit can arise from this, but only for occupants whose HR is high enough
 - Benefit for different backsets only proportion of occupants protected by current 800 mm Reg height
- Assumptions for cost
 - No cost for changing backset (NHTSA assumption)

• Option 4: Increase head restraint height and control backset

- Assumptions for benefit
 - Increased backset benefit for progressively higher head restraints (protecting greater proportion of UK population)
- Assumptions for cost
 - Option 2 cost only proportional to height increase

Option 2: Head restraint height

 Calculation of head restraint height required to protect proportions of the UK population

- Calc method
 - Essentially the same as used by Hans Amerlaan (WD136)
 - Slightly different values for some parameters
 - 40 mm used for ramping-up
- Justification for ramping-up value (40 mm)
 - Japan GTR doc giving ramping-up (10 mm) separate from spine straightening - but only at 8 km.hr⁻¹ ∆v - gives ~30 mm (to 60 mm) at 25 km.hr⁻¹

Option 2: Head restraint height

Justification for ramping-up value (40 mm)

Biofidelity test condition	Ramping-up (mm)	Test subjects	Seat type	Peak acceleration (g)	Delta- <i>v</i> (km.hr ⁻¹)
LAB	20-60	PMHS	Lab seat	12	10
Chalmers/Allianz	20-35	Volunteers	Lab seat with stiffness designed to represent a Volvo 850 seat	3-4	7
JARI	20-40	Volunteers	Lab seat	3.5	7
TRL	28-40	Volunteers	Lab seat	2	7

Ramping-up from WG12 rear impact dummy biofidelity tests

Option 2: Head restraint height

Justification for ramping-up value (40 mm)

• Japan GTR doc HR-7-9

Option 3: Head restraint backset

Injury risk for different backsets

Risk of >6 Month Injury vs. Backset [Olsson et al., 1990]

Option 3: Head restraint backset

Injury risk for different backsets

Assumptions

- Rear impact pulse in 1980s Volvo's struck by a.n.other 1980s car is similar to pulses in modern fleet
 - Pulse so dependent on other factors, probably OK
 - Over-ride and under-ride
 - Overlap of impact
 - Mass ratio of impact partners
 - Stiffness ratio of impact partners
 - Bumper design
 - ...
- Seat back stiffness of 1980s Volvo's similar to current fleet
 - Volvo had already stiffened seat backs by this time to combat ramping in rear impact (e.g. Carlsson *et al.* [1985])

Option 4: Height and backset

Product of height and backset

Long-term whiplash injury savings

Issue with Reg17 height test

Issue with Reg17 measurement method

- Measures to top-back corner of the head restraint
- Example of height overestimation for seat in UTAC presentation - plus matching benefit overestimation based on height calcs above
- Implications for US benefit analysis
 - Note can't base height improvements on RCAR data as head restraint test positions different (highest use position in Reg, mid notch or lowest adjustment position in RCAR)
- Reg 17 Height Measurement Presentation

WG20 Static Geometric UK Cost-Benefit

Presented by David Hynd GTR Meeting, Basildon 8th November, 2007

