

Informal document GRSG-119-05 (119th GRSG, 6-9 October 2020, Agenda item 4b)

# Future Ideas for Regulation 151

Patrick Seiniger, BASt



### **Motivation**

Regulation 151-00 guarantees that drivers of heavy vehicles are notified about endangered bicyclists in due time.

Main critisicm: Information signal is given too early

Focus of this presentation: reasons and proposed improvements

Presented for first feedback from GRSG members



### Possible information signal timings

- 1 before potential swerving (as implemented in current R151)
- 2 for comfortable stopping (as proposed in initial document)
- 3 possible auto-brake activation



### R151 requirements ...



- The BSIS shall inform the driver about nearby bicycles that might be endangered during a potential turn, by means of an optical signal, so that the vehicle can be stopped before crossing the bicycle trajectory.
- It shall also inform the driver about approaching bicycles while the vehicle is stationary before the bicycle reaches the vehicle front, taking into account a reaction time of 1.4 seconds. This shall be tested according to paragraph 6.6.
- The BSIS shall warn the driver, by means of an optical signal, acoustical signal, haptic signal or any combination of these signals, when the risk of a collision increases.

## Needs additional definitions or at least interpretation

### Clear performance requirement

#### **Needs interpretation**

### ... & pass-fail criteria



| Test | v <sub>bicyclee</sub><br>[km/h] | V<br>Vehicle | d <sub>lateral</sub><br>[m] | d <sub>a</sub> [m] | d <sub>ь</sub> [m] | d <sub>c</sub> [m] | d <sub>d</sub> [m] | d <sub>bicycle</sub><br>[m] | l <sub>corridor</sub><br>[m] | d <sub>corridor</sub><br>[m] | For information only (not influencing test parameters) |                       |
|------|---------------------------------|--------------|-----------------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------|------------------------------|------------------------------|--------------------------------------------------------|-----------------------|
| Case | [KIII/II]                       |              | []                          |                    |                    |                    |                    | []                          | []                           |                              | Impact Position [m]                                    | Turn<br>Radius<br>[m] |
| 1    | 20                              | 10           | 1.25                        | 44.4               | 15.8               | <mark>15</mark>    | 26.1               | 65                          | 80                           | vehicle<br>width<br>+ 1 m    | 6                                                      | 5                     |
| 2    | 20                              | 10           |                             |                    | 22                 | <mark>15</mark>    | 32.3               |                             |                              |                              | 0                                                      | 10                    |
| 3    | 20                              | 20           |                             |                    | 38.3               | <mark>38.3</mark>  | 65                 |                             |                              |                              | 6                                                      | 25                    |
| 4    | 10                              | 20           | 4.25                        | 22.2               | 43.5               | <mark>15</mark>    | 43.2               |                             |                              |                              | 0                                                      | 25                    |
| 5    | 10                              | 10           |                             |                    | 19.8               | <b>19.8</b>        | 65                 |                             |                              |                              | 0                                                      | 5                     |
| 6    | 20                              | 10           | 4.23                        | 44.4               | 14.7               | 15                 | 26.1               |                             |                              |                              | 6                                                      | 10                    |
| 7    | 20                              |              |                             |                    | 17.7               |                    | 29.1               |                             |                              |                              | 3                                                      | 10                    |

Add. Assumption: Signal activated before outside swerve (since that's not tested, as requested by Industry)



### Original pass-fail criteria, including turning





|   | New<br>Test<br>Case | $r_{ m turn}$ | v <sub>vehicle</sub> [km/h] | v <sub>Bicycle</sub> [km/h] | $d_{ m lateral} \left[ { m m}  ight]$ | <i>d</i> <sub>c</sub> [m] | $d_{ m bicycle} \ [ m m]$ | $l_{ m corridor} \ [ m m]$ | $d_{ m corridor}$ [m] | $d_{ m corridor,outer}$ [m] | Include cone to account for initial swerving? |
|---|---------------------|---------------|-----------------------------|-----------------------------|---------------------------------------|---------------------------|---------------------------|----------------------------|-----------------------|-----------------------------|-----------------------------------------------|
|   | 1                   | 5             | 10                          | 20                          |                                       | 4.3                       |                           |                            |                       | 5                           | Yes                                           |
|   | 2                   | 10            | 10                          | 20                          | 1.5                                   | <mark>4.4</mark>          |                           |                            |                       | 2                           | Yes                                           |
|   | 3                   | 25            | 20                          | 20                          |                                       | <b>10.7</b>               |                           | > 70                       | vehicle width<br>+ 1m | 1                           | No                                            |
|   | 4                   | 25            | 20                          | 10                          | 4.5                                   | <b>10</b>                 |                           |                            |                       | 1                           | No                                            |
|   | 5                   | 5             | 10                          | 10                          |                                       | <b>2.4</b>                |                           |                            |                       | 6                           | Yes                                           |
|   | 6                   | 10            | 10                          | 20                          |                                       | <b>3.4</b> < 55           | . 55                      |                            |                       | 3                           | Yes                                           |
|   | 7                   | 10            | 10                          | 20                          |                                       |                           | < 33                      |                            |                       | 2                           | Yes                                           |
| Ī | 8                   | 5             | 10                          | 20                          | 1.5                                   | <b>4.3</b>                |                           |                            |                       |                             | No                                            |
|   | 9                   | 10            | 10                          | 20                          | 1.5                                   | <mark>4.4</mark>          |                           |                            |                       |                             | No                                            |
|   | 10                  | 5             | 10                          | 10                          |                                       | <b>2.4</b>                |                           |                            |                       | 1                           | No                                            |
| ļ | 11                  | 10            | 10                          | 20                          | 4.5                                   | 3.4                       |                           |                            |                       |                             | No                                            |
|   | 12                  | 10            | 10                          | 20                          |                                       |                           |                           |                            |                       |                             | No                                            |



### Idea: What If We Could Verify The System With Robot Testing?

The BSIS shall inform the driver about nearby bicycles that might be endangered during a potential turn, by means of an optical signal, so that the vehicle can be stopped before crossing the bicycle





8

### Vehicle Speed and Information Signal Timing







### **Verification Approach**

- Current R151 & almost all other regulations define specs (e.g. inform at this distance)
- Specifications will be verified in a test
- This limits manufacturer flexibility and requires assumptions for the system design

### **Validation Approach**

- Define Requirements (e.g. inform in time to stop, given the driver reaction time, possibly given the vehicle deceleration)
- Validate requirements a posteriori (after impact)
- This gives maximum flexibility but also responsibility to manufacturer



### Proposal for alternative test method

- 1. When using driving and dummy robots, all vehicle movements are pre-programmed
- 2. Every vehicle location is known at all times
- 3. It is possible to verify the signal activation without impact to the dummy
- 4. It is possible to verify the signal activation in more realistic scenarios (including swerving to the outside)
- ⇒ 5. It is safe to return to the "old" pass-fail-criteria!
- ⇒ 6. NO changes to actual specification section in R151 required.



### How does it look like?





### Possible BSIS and AEB timings in example trajectories





Bicycle positions relative to truck at LPI & AEB



### Conclusions

- When sufficiently-advanced technology is available, it will be possible to test requirements instead of specifications
- This will give the manufacturer much more flexiblity and responsibility
- This approach should be possible with introducing an alternative testing annex into R151 (no change in specs in core text!)
- Auto-brake could possibly be included as an alternative to the warning strategy (more requirements for AEB to be discussed intensively)