26.05.2015 Benchmark ECE-TRANS-WP29-2014-27 and Corr 1 UN-ECE Server: WLTP-11-04e-GTR Version 26.05.2015

[SMD1] General information to the GTR

- The basis of the GTR are the UN-ECE documents ECE/TRANS/WP.29/2014/027e und ECE/TRANS/WP.29/2014/27/Corr.1.
- The *Concise Oxford English Dictionary* is the current authority for spelling in the United Nations. A United Nations spelling list supplements and indicates exceptions to the *Oxford English Dictionary*.
- The thousandths place in a number is indicated with a comma, e.g. four thousand five hundred and sixty seven milligrams is written as 4,567 milligrams.
- Numbers followed by a unit are written as a number and not as a word, i.e. 5 metres and not five meters.
- Searching for "OPEN POINT" will identify tracking change balloons for items which have not yet been commented upon by experts.
- Searching for "EXPERT PROPOSAL" will identify tracking change balloons where experts have contributed to an open point.

Editorial changes since March 4, 2014 GTR

- All changes can be found using the tracking option in Word.
- Numerous editorial changes (spelling, double text, italics instead of normal typeface, NOVC and OVC added to abbreviations, correct use of criterion instead of criteria, REESS's to REESS', class 1,2,3 vehicles to Class 1,2,3 vehicles, etc.).
- Specific humidity replaces absolute humidity.
- All equations in the GTR have been numbered.
- Figure A5/9 has been reinserted (was wrongly the same as A5/3).
- Reference to Figures A5/4, A5/14 and A6/2, and to Table A5/4 were added.
- The symbol × is used to indicate the multiplication function in all equations.

Editorial changes since June GRPE, 2014

- Temperatures in K added where there were only temperatures in °C. Search for "12.06.2014" or GTR CORRECTION.
- Consistency in writing 999 °C (i.e. 999[space]°C) and not 999°C or 999° C. This is in alignment with other GTRs, UN Regulations and EPA. Not all are identified with "GTR CORRECTION".
- Temperatures with tolerances written as (e.g.): 303 K ± 10 K (30 °C ± 10 °C). Search for "GTR CORRECTION: 23.06.2014".
- Deletion of paragraph 4.1.1.1. in Annex 8 (EVs).
- v_i replaces v_i in paragraph 4.3.1.4.2. in Annex 4 (road load).

- Numbering of the first paragraphs of Annex 4, Appendix 1 and Annex 4, Appendix 2 corrected (changed by Word)
- V₀ defined correctly in Annex 7, paragraph 2.2.1.
- Equation (4) in Annex 2 modified.
- Proposed changes to paragraph 3.2.3.2.2.2. of Annex 7 (Calculations) relating to the rolling resistance of an individual vehicle proposed. Search under "OPEN POINT: 15.07.2014".
- EXPERT PROPOSAL. Annex 7 (Calculations), paragraph 3.1.3.: new paragraph to calculate the density of total hydrocarbons for each reference fuel.
- EXPERT PROPOSAL. Paragraph 3.2.8. of Annex 4 (air pressure distribution in wind tunnel).
- GTR CORRECTION: Commas and points after some equations deleted.
- GTR CORRECTION: All equations in paragraph 3.2.1.1.1. (Calculation of DFs), Annex 7 renumbered.
- GTR CORRECTION: All equations in paragraph 6, Calculation of fuel consumption for various fuels); Annex 7 renumbered due to introduction of a general equation for the calculation of total hydrocarbon density.
- EXPERT PROPOSAL: Text from task force AP (Astorga-Llorens/Adam/Giechaskiel/Kolesa/Redmann/Martini) incorporated. Search for "04.08.2014".
- EXPERT PROPOSAL/OPEN POINT: Proposed changes to 3.2.3.2.2.1. in Annex 7 Calculations (mass of an individual vehicle) from T. Adam + experts, and Drafting Co.
- EXPERT PROPOSAL: Appropriate "should" converted to "shall". Search under "04.08.2014".
- EXPERT PROPOSAL: Comments from M. Bergmann/H. Steven incorporated. Search under "31.08.2014".
- Upon request of the Leading Team: Numerous paragraphs in the GTR requested expert approval by the deadline 31.08.2014. These paragraphs have now been converted to CONFIRMATION. Search for "CONFIRMATION: 12.09.2014".
- Upon request of the Leading Team, all GTR CORRECTIONS, EXPERT PROPOSALS and OPEN POINTS introduced into the GTR since WLTP-07-04 have been supplemented with the comment: "Deadline for expert comments: 31.10.2014".
- GTR CORRECTION: Annex 7, Calculations, paragraph 3.1.2.: densities amended by T. Adam. 20.10.2014.
- EXPERT PROPOSAL: Annex 6, Test procedure, paragraph 1.2.7. soaking: amended by M. Bergmann. 20.10.2014.
- EXPERT PROPOSAL: Annex 4, Road Load, paragraph 4.3.1.4.2.: statistical accuracy valid for each reference speed (subscript j added). 23.10.2014.
- EXPERT PROPOSAL and OPEN POINT from the EV experts incorporated on 30.10.2014. see 3.2.9.4.1. (deletion of a sentence), 4.2.1.3.3. (addition of a sentence); reformatting of paragraphs 3.1.2. and 2.2.5.1. in Annex 8, App. 4 (agreed by ACEA and Japan); disagreement between ACEA and Japan 3.1.1. and 3.2.1. Annex 8, Appendix 2 on plural or singular;
- EXPERT PROPOSAL: 30.10.2014: titles in paragraphs 3.2.4. and 3.2.10 in Annex 4 Road Load modified.
- EXPERT PROPOSAL: 30.10.2014: equation in 3.2.8. Annex 4, Road Load modified to calculate air pressure based on absolute value.

- EXPERT PROPOSAL: 01.11.2014: Annex 4 Road Load 3.1.(j); accuracy of drag coefficient times frontal area.
- EXPERT PROPOSAL: 01.11.2014: paragraph 5, General requirements; modification of transmission type in CO₂ family. Search for "01.11.2014".
- EXPERT PROPOSAL: 03.11.2014: Definition of utility factors (Definitions, 3.3.26.; wheels (Annex 4); rewritten paragraph titles (Annex 4); question from DC in Annex 6; Japan on family criteria; deletion of paragraph 3.1. in Annex 8, Appendix 2; wind tunnel certification in Annex 7, 3.2.3.2.2.3.); numerous proposals from Japan in Annex 8, including calculating utility factors (Annex 8, Appendix 5). Search for "03.11.2014".
- EXPERT PROPOSAL: 05.11.2014: Proposals received from PM/PN. Search for "05.11.2014".
- All text adopted in Pune can be found by searching for either "Pune" or for CONFIRMATION.
- All track changes in the GTR can be found by searching for the month, e.g. for changes in June, look for ".06.", for July, look for ".07.", etc.
- 07.01.2015: Annex 4 (Road Load): Numerous GTR CORRECTIONS and OPEN POINTS sent to R. Cuelenaere for response.
- Text from the WLTP IWG #9 meeting in Geneva can be found by searching for 20.01.2015.
- 17.02.2015: Diagram and table titles harmonised for style, esp. capitalisation.
- EXPERT PROPOSAL: 18.02.2015: New section 6. Road load measurement using a combination of a wind tunnel and a chassis dynamometer or of a wind tunnel and a flat belt
- CONFIRMATION: 23.02.2015: Annex 7 Calculations under 6. Calculation of fuel consumption: Values in paragraphs 6.3, 6.5, 6.8, 6.9, 6.10 and 6.11 modified according to OIL#43 adopted in Pune.
- CONFIRMATION: 23.02.2015: Annex 7 Calculations. General equation for the calculation of fuel consumption incorporated in 6.12.

Editorial changes as of the March 2015 Drafting Subgroup meeting

- All confirmed changes added to GTR and labelled "CONFIRMATION"
- Comments from Franz Wurst regarding ECE-R 83 reviewed.
- According to UN ECE, "must" may not be used, only "shall". "Shall" is for obligations and "may" for options.
- Use of the word "will" has been checked and changed accordingly.
- Text on Fourier transform infrared analyser added to Annex 5, Additional sampling.
- Use of the terms sampling/sample/sampled/samples checked.
- Use of weighing and weighting checked.
- Entire GTR:
 - Formatting, spelling, spacing, paragraph numbers, equation numbers were checked
- Some new OPEN POINTS identified.
- Search for "March 2015 drafting meeting", "April 2015 drafting meeting", and dates in May such as ".05.2015".

Economic and Social Council

Distr.: General 20 December 2013

Original: English

Economic Commission for Europe

Inland Transport Committee

World Forum for Harmonization of Vehicle Regulations

 162^{nd} session

Geneva, 11-14 March 2014 Item 14.1 of the provisional agenda

Item 14.1 of the provisional agenda

Consideration and vote by AC.3 of draft UN Global Technical Regulations and/or draft amendments to established UN Global Technical Regulations Proposal for a global technical regulation on the Worldwide harmonized Light vehicles Test Procedure

Proposal for a new global technical regulation on the Worldwide harmonized Light vehicles Test Procedure (WLTP)

Submitted by the Working Party on Pollution and Energy*

The text reproduced below was adopted by the Working Party on Pollution and Energy (GRPE) at its sixty-seventh session (ECE/TRANS/WP.29/GRPE/67, para. 6.). Based on ECE/TRANS/WP.29/GRPE/2013/13, as amended by GRPE-67-04-Rev.1, it is submitted to the World Forum for Harmonization of Vehicle Regulations (WP.29) and to the Administrative Committee AC.3 for consideration.

In accordance with the programme of work of the Inland Transport Committee for 2012–2016 (ECE/TRANS/224, para. 94 and ECE/TRANS/2012/12, programme activity 02.4), the World Forum will develop, harmonize and update Regulations in order to enhance the performance of vehicles. The present document is submitted in conformity with that mandate.

Draft global technical regulation on Worldwide harmonized Light vehicle Test Procedures (WLTP)

I. Statement of technical rationale and justification

A. Introduction

- 1. The compliance with emission standards is a central issue of vehicle certification worldwide. Emissions comprise criteria pollutants having a direct (mainly local) negative impact on health and environment, as well as pollutants having a negative environmental impact on a global scale. Regulatory emission standards typically are complex documents, describing measurement procedures under a variety of well-defined conditions, setting limit values for emissions, but also defining other elements such as the durability and on-board monitoring of emission control devices.
- 2. Most manufacturers produce vehicles for a global clientele or at least for several regions. Albeit vehicles are not identical worldwide since vehicle types and models tend to cater to local tastes and living conditions, the compliance with different emission standards in each region creates high burdens from an administrative and vehicle design point of view. Vehicle manufacturers, therefore, have a strong interest in harmonizing vehicle emission test procedures and performance requirements as much as possible on a global scale. Regulators also have an interest in global harmonization since it offers more efficient development and adaptation to technical progress, potential collaboration at market surveillance and facilitates the exchange of information between authorities.
- 3. As a consequence stakeholders launched the work for this global technical regulation (gtr) on Worldwide harmonized Light vehicle Test Procedures (WLTP) that aims at harmonizing emission-emission-related test procedures for light duty vehicles to the extent this is possible. Vehicle test procedures need to represent real driving conditions as much as possible to make the performance of vehicles at certification and in real life comparable. Unfortunately, this aspect puts some limitations on the level of harmonization to be achieved, since for instance, ambient temperatures vary widely on a global scale. In addition, due to the different levels of development, different population densities and the costs associated with emission control technology, the regulatory stringency of legislation is expected to be different from region to region for the foreseeable future. The setting of emission limit values, therefore, is not part of this gtr for the time being.
- 4. The purpose of a gtr is its implementation into regional legislation by as many Contracting Parties as possible. However, the scope of regional legislations in terms of vehicle categories concerned depends on regional conditions and cannot be predicted for the time being. On the other hand, according to the rules of the 1998 UNECE agreement, Contracting Parties implementing a gtr must-shall include all equipment falling into the formal gtr scope. Care must-shall be taken, so that an unduly large formal scope of the gtr does not prevent its regional implementation. Therefore the formal scope of this gtr is kept to the core of light duty vehicles. However, this limitation of the formal gtr scope does not indicate that it could not be applied to a larger group of vehicle categories by regional legislation. In fact, Contracting Parties are encouraged to extend the scope of regional implementations of this gtr if this is technically, economically and administratively appropriate.
- 5. This first version of the WLTP gtr, in particular, does not contain any specific test requirements for dual fuel vehicles and hybrid vehicles not based on a combination of an

internal combustion engine and an electric machine. For example, specific requirements for hybrids using fuel cells or compressed gases as energy storage are not covered. [SMD2] Thus these vehicles are not included in the scope of the WLTP gtr. Contracting Parties may however apply the WLTP gtr provisions to such vehicles to the extent possible and complement them by additional provisions, e.g. emission testing with different fuel grades and types, in regional legislation.

B. Procedural background and future development of the WLTP

- 6. In its November 2007 session, WP.29 decided to set up an informal WLTP group under GRPE to prepare a road map for the development of the WLTP. After various meetings and intense discussions, WLTP presented in June 2009 a first road map consisting of 3 phases, which was subsequently revised a number of times and contains the following main tasks:
 - (a) Phase 1 (2009 2014): development of the worldwide harmonized light duty driving cycle and associated test procedure for the common measurement of criteria compounds, CO₂ fuel and energy consumption.
 - (b) Phase 2 (2014 2018): low temperature/high altitude test procedure, durability, in-service conformity, technical requirements for on-board diagnostics (OBD), mobile air-conditioning (MAC) system energy efficiency, off-cycle/real driving emissions.
 - (c) Phase 3 (2018 ...): emission limit values and OBD threshold limits, definition of reference fuels, comparison with regional requirements.
- 7. It should be noted that since the beginning of the WLTP process, the European Union had a strong political objective set by its own legislation (Regulations (EC) 443/2009 and 510/2011) to implement a new and more realistic test cycle by 2014, which was a major political driving factor for setting the time frame of phase 1.
- 8. For the work of phase 1 the following working groups and subgroups were established:
 - (a) Development of Harmonised Cycle (DHC): construction of a new Worldwide Light-duty Test Cycle (WLTC), i.e. the driving curve of the WLTP, based on the statistical analysis of real driving data.
 - The DHC group started working in September 2009, launched the collection of driving data in 2010 and proposed a first version of the driving cycle by mid-2011, which was revised a number of times to take into consideration technical issues such as driveability and better representativeness of driving conditions after a first validation.
 - (b) Development of Test Procedures (DTP): development of test procedures with the following specific expert groups,
 - (i) PM-PN: Particle mass [SMD3](PM) and particle number (PN) measurements.
 - (ii) AP: Additional Pollutant measurements, i.e. measurement procedures for exhaust substances which are not yet regulated yet as compounds but may be regulated in the near future, such as NO₂, ethanol, aldehydes and ammonia.

- (iii) LabProcICE: test conditions and measurement procedures of existing regulated compounds for vehicles equipped with internal combustion engines (other than PM and PN).
- (iv) EV-HEV: specific test conditions and measurement procedures for electric and hybrid-electric vehicles.
- (v) Reference fuels: definition of reference fuels.

The DTP group started working in April 2010.

- 9. This first version of the gtr will only contain results of phase 1. During the work of the DTP group it became clear that a number of issues, in particular but not only in relation to electric and hybrid-electric vehicles, could not be resolved in time for an adoption of the first version of the WLTP gtr by WP.29 in March 2014. Therefore it was agreed that these elements would be further developed by the existing expert groups and should be adopted as a "phase 1b" amendment to the WLTP gtr within an appropriate time frame. Without claiming completeness "phase 1b" should address the following work items:
 - (a) LabProcICE:
 - (i) Normalization methods, speed trace index;
 - (ii) Energy economy rating and absolute speed change rating for speed trace violations;
 - (iii) Wind tunnel as alternative method for road load determination;
 - (iv) Supplemental test with representative regional temperature and soak period.
 - (b) EV-HEV:
 - (i) Calculation method of each phase range for Pure Electric Vehicles (PEVs);
 - (ii) Shortened test procedure for PEV range test;
 - (iii) Combined CO₂ (fuel consumption) of each phase for Off-Vehicle Charging Hybrid Electric Vehicles (OVC-HEVs);
 - (iv) Hybrid Electric Vehicle (HEV)/PEV power and maximum speed;
 - (v) Combined test approach for OVC-HEVs and PEVs;
 - (vi) Fuel cell vehicles;
 - (vii) Utility factors;
 - (viii) Preconditioning; [SMD4]
 - (ix) Predominant mode.
 - (c) APM:

measurement method for ammonia, ethanol and aldehydes.

- (d) DHC:
 - (i) Speed violation criteria;
 - (ii) Further downscaling in Wide Open Throttle (WOT) operation;
 - (iii) Sailing and gear shifting.

C. Background on driving cycles and test procedures

- 10. The development of the worldwide harmonized light duty vehicle driving cycle was based on experience gained from work on the World-wide Heavy-Duty Certification procedure (WHDC), World-wide Motorcycle Test Cycle (WMTC) and other national cycles.
- 11. The WLTC is a transient cycle by design. For constructing the WLTC, driving data from all participating Contracting Parties were collected and weighted according to the relative contribution of regions to the globally driven mileage and data collected for WLTP purpose.
- 12. The resulting driving data were subsequently cut into idling periods and "short trips" (i.e. driving events between two idling periods). By randomised combinations of these segments, a large number of "draft cycles" were generated. From the latter "draft cycle" family, the cycle best fitting certain dynamic properties of the original WLTP database was selected as a first "raw WLTC". In the subsequent work the "raw WLTC" was further processed, in particular with respect to its driveability and better representativeness, to obtain the final WLTC.
- 13. The driveability of the WLTC was assessed extensively during the development process and is supported by three distinct validation phases. Specific cycle versions for certain vehicles with limited driving capabilities due to a low power/mass ratio or limited maximum vehicle speed have been introduced. In addition, the speed trace to be followed by a test vehicle will be downscaled according to a mathematically prescribed method if the vehicle would have to encounter an unduly high proportion of "full throttle" driving in order to follow the original speed trace. Gear shift points are determined according to a mathematical procedure that is based on the characteristics of individual vehicles, which also enhances the driveability of the WLTC.
- 14. For the development of the test procedures, the DTP subgroup took into account existing emissions and energy consumption legislation, in particular those of the 1958 and 1998 Agreements, those of Japan and the United States Environmental Protection Agency (US EPA) Standard Part 1066. These test procedures were critically reviewed, compared to each other, updated to technical progress and complemented by new elements where necessary.

D. Technical feasibility, anticipated costs and benefits

- 15. In designing and validating the WLTP, strong emphasis has been put on its practicability, which is ensured by a number of measures explained above.
- 16. While in general the WLTP has been defined on the basis of the best technology available at the moment of its drafting, the practical facilitation of the WLTP procedures on a global scale has been kept in mind as well. The latter had some impact e.g. on the definition of set values and tolerances for several test parameters, such as the test temperature or deviations from the speed trace. Also, facilities without the most recent technical equipment should be able to perform WLTP certifications, leading to higher tolerances than those which would have been required just by best performing facilities.
- 17. The replacement of a regional test cycle by the WLTP initially will bear some costs for vehicle manufacturers, technical services and authorities, at least considered on a local scale, since some test equipment and procedures have to be upgraded. However, these costs should be limited since such upgrades are done regularly as adaptations to the technical

progress. Related costs would have to be quantified on a regional level since they largely depend on the local conditions.

- 18. As pointed out in the technical rationale and justification, the principle of a globally harmonized light duty vehicle test procedure offers potential cost reductions for vehicle manufacturers. The design of vehicles can be better unified on a global scale and administrative procedures may be simplified. The monetary quantification of these benefits depends largely on the extent and timing of implementations of the WLTP in regional legislation.
- 19. The WLTP provides a higher representation of real driving conditions when compared to the previous regional driving cycles. Therefore, benefits are expected from the resulting consumer information about fuel and energy consumption. In addition, a the more representative WLTP will set proper incentives for implementing those CO₂ saving vehicle technologies that are also the most effective in real driving. The effectiveness of technology costs relative to the real driving CO₂ savings will, therefore, be improved with respect to existing less representative driving cycles.

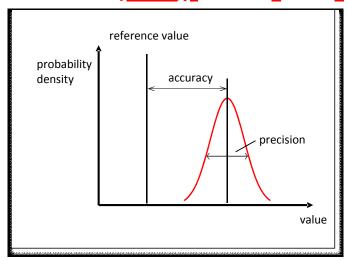
II. Text of the global technical regulation

1. Purpose

This global technical regulation (gtr) aims at providing a worldwide harmonized method to determine the levels of gaseous, particulate matter, particle number, CO₂ emissions, fuel consumption, electric energy consumption and electric range from light-duty vehicles in a repeatable and reproducible manner designed to be representative of real world vehicle operation. The results will provide the basis for the regulation of these vehicles within regional type approval and certification procedures.

2. Scope and application

This gtr applies to vehicles of categories 1-2 and 2, both having a technically permissible maximum laden mass not exceeding 3,500 kg, and to all vehicles of category 1-1.


3. Definitions

- 3.1. Test equipment
- 3.1.1. "Accuracy" means the difference between a measured value and a reference value, traceable to a national standard and describes the correctness of a result. See Figure 1.
- 3.1.2. "*Calibration*" means the process of setting a measurement system's response so that its output agrees with a range of reference signals. Contrast with "verification".
- 3.1.3. "Calibration gas" means a gas mixture used to calibrate gas analysers.
- 3.1.4. "Double dilution method" means the process of separating a part of the diluted exhaust flow and mixing it with an appropriate amount of dilution air prior to the particulate sampling filter.
- 3.1.5. "Full flow Full flow exhaust exhaust dilution system" means the continuous dilution of the total vehicle exhaust with ambient air in a controlled manner using a constant vVolume ssampler (CVS).
- 3.1.6. "*Linearization*" means the application of a range of concentrations or materials to establish a mathematical relationship between concentration and system response.
- 3.1.7. "Major maintenance" means the adjustment, repair or replacement of a component or module that could affect the accuracy of a measurement, after which calibration/validation shallshould[SMD5][SMD6] be performed on the parameters that could be affected.
- 3.1.8. "Non-methane hydrocarbons" (NMHC) are the <u>t</u>-Total <u>hydrocarbons</u> HydroCarbons (THC) minus the methane (CH₄) contribution.
- 3.1.9. "*Precision*" means the degree to which repeated measurements under unchanged conditions show the same results (Figure 1). In this gtr, precision requirements always refer to one standard deviation.

- 3.1.10. "*Reference value*" means a value traceable to a national standard. See Figure 1.
- 3.1.11. "Set point" means the target value a control system aims to reach.
- 3.1.12. "Span" means to adjust an instrument so that it gives a proper response to a calibration standard that represents between 75-per-cent and 100-per-cent of the maximum value in the instrument range or expected range of use.
- 3.1.13. "*Total HydroCarbonshydrocarbons*" (THC) means all volatile compounds measurable by a flame ionization detector (FID).
- 3.1.14. "Verification" means to evaluate whether or not a measurement system's outputs agrees with applied reference signals within one or more predetermined thresholds for acceptance.
- 3.1.15. "Zero gas" means a gas containing no analyte, which is used to set a zero response on an analyser.

Figure 1

Definition of accuracy Accuracy, pPrecision and rReference Value

- 3.2. Road and dynamometer load
- 3.2.1. "Aerodynamic drag" means the force that opposes a vehicle's forward motion through air.
- 3.2.2. "*Aerodynamic stagnation point*" means the point on the surface of a vehicle where wind velocity is equal to zero.
- 3.2.3. "Anemometer Anemometry blockage [SMD7]" means the effect on the anemometer measurement due to the presence of the vehicle where the apparent air speed is different than the vehicle speed combined with wind speed relative to the ground. By using an appropriate anemometer calibration procedure, this effect can be minimized.
- 3.2.4. "Constrained analysis" means the vehicle's frontal area and aerodynamic drag coefficient have been independently determined and those values shall be used in the equation of motion.
- 3.2.5. [SMD8] "Mass in running order" means the mass of the vehicle, with its fuel tank(s) filled to at least 90-per-cent of its or their capacity/capacities, including the

- mass of the driver, <u>fuel [SMD9]</u> and liquids, fitted with the standard equipment in accordance with the manufacturer's specifications and, when they are fitted, the mass of the bodywork, the cabin, the coupling and the spare wheel(s) as well as the tools, <u>when they are fitted</u>. [SMD10][SMD11][SMD12]
- 3.2.6. "Mass of the driver" means a mass rated at 75 kg located at the driver's seating reference point. [SMD13]
- 3.2.7. [SMD14] "Maximum vehicle load" means in this gtr the difference between the technically permissible maximum laden mass minus the mass in running order, 25 kg and the mass of the optional equipment as defined in paragraph 3.2.8. [SMD15] and the sum of the mass in running order, 25 kg and the mass of the optional equipment of vehicle H.
- 3.2.8. "Mass of optional equipment Optional equipment" means the mass of the equipment which may be fitted to the vehicle in addition to the standard equipment, in accordance with the manufacturer's specifications all the features not included in the standard equipment which are fitted to a vehicle under the responsibility of the manufacturer, and that can be ordered by the eustomer.
- 3.2.xx. "Optional equipment" means all the features not included in the standard equipment which are fitted to a vehicle under the responsibility of the manufacturer, and that can be ordered by the customer. [SMD17]
- 3.2.9. "Reference atmospheric conditions (regarding road load measurements)" means the atmospheric conditions to which these measurement results are corrected:
 - (a) Atmospheric pressure: p₀= 100 kPa, unless otherwise specified by regulations;
 - (b) Atmospheric temperature: T₀= 293 K, unless otherwise specified by regulations;
 - (c) Dry air density: $\rho_0 = \frac{1.189}{1,189} \text{ kg/m}^3$, unless otherwise specified by regulations;
 - (d) Wind speed: 0 m/s.
- 3.2.10. "Reference speed" means the vehicle speed at which road load is determined or chassis dynamometer load is verified. Reference speeds may be continuous speed points covering the complete test cycle speed range. [SMD18] SMD19]
- 3.2.11. "Road load" means the opposition to the movement of a vehicle. It is the total resistance if using the coastdown method or the running resistance if using the torque meter method.
- 3.2.12. "*Rolling resistance*" means the forces of the tyres opposing the motion of a vehicle.
- 3.2.13. "Running resistance" means the torque resisting the forward motion of a vehicle, measured by torque meters installed at the driven wheels of a vehicle.
- 3.2.14. "Simulated road load" means the road load calculated from measured coastdown data.
- 3.2.15. "Speed range" means the range of speed considered for road load determination which is between the maximum speed of the Worldwide Light-duty Test Cycle (WLTC) for the class of test vehicle and minimum speed

	selected by the manufacturer which shall not be greater than 20 km/h. [SMD20]
3.2.16.	"Stationary anemometry" means measurement of wind speed and direction with an anemometer at a location and height above road level alongside the test road where the most representative wind conditions will be experienced.
3.2.17.	"Standard equipment" means the basic configuration of a vehicle which is equipped with all the features that are required under the regulatory acts of the Contracting Party including all features that are fitted without giving rise to any further specifications on configuration or equipment level [SMD21]_ SMD22 SMD23
3.2.18.	"Target road load" means the road load to be reproduced on the chassis dynamometer.
3.2.19.	"Total resistance" means the total force resisting movement of a vehicle, including the frictional forces in the drivetrain.
3.2.20.	"Vehicle coastdown mode" means a mode of operation enabling an accurate and repeatable determination of total resistance and an accurate dynamometer setting.
3.2.21.	"Vehicle H" means the vehicle within the CO2 vehicle family with the
	combination of road load relevant characteristics (e.g. mass, aerodynamic drag and tyre rolling resistance) producing the highest cycle energy demand.[SMD24]
3.2.22.	"Vehicle L" means the vehicle within the CO2 vehicle family with the
	combination of road load relevant characteristics (e.g. mass, aerodynamic drag and tyre rolling resistance) producing the lowest cycle energy demand.[SMD25]
3.2.23.	"Wind correction" means correction of the effect of wind on road load based on input of the stationary or on-board anemometry.
3.2.b.	"Technically permissible maximum laden mass" means the maximum mass
	allocated to a vehicle on the basis of its construction features and its design performances: SMD26 SMD27 SMD28
3.2.c.	"Actual mass of the vehicle" means the mass in running order plus the mass of the fitted optional equipment to an individual vehicle; [SMD29] [SMD30] [SMD31]
3.2.d.	"Test mass of the vehicle" means the sum of the actual mass of the vehicle, 25 kg and mass representative of the vehicle load; [SMD32]
3.2.d.	[SMD33] "Test mass of the vehicle" means the sum of the mass of the vehicle in running order and its actually fitted optional equipment plus 25 kg and the mass representative of the vehicle load: [SMD34] SMD35]
3.2.e.	"Mass representative of the vehicle load" means 15 per cent for category 1 vehicles and 28 per cent for category 2 vehicles from the maximum vehicle load; SMD36 SMD37
3.3.	Pure electric vehicles and hybrid electric vehicles
3.3.1. SMI	"All-electric range" (AER) means in the case of an off-vehicle charging hybrid electric vehicle (OVC-HEV) means the total distance travelled from the beginning of the charge-depleting test over a number of

complete WLTCs to the point in time during the test when the combustion engine starts to consume fuel. [SMD39]

- 3.3.2. [SMD40] "All-electric range" (AER) means in the case of a pure electric vehicle (PEV) means—the total distance travelled from the beginning of the charge-depleting test over a number of WLTCs—until the break-off criterion criteria—is reached. [SMD41]
- 3.3.3. "Charge-depleting actual range" (R_{CDA}) means the distance travelled in a series of WLTCs —in charge-depleting operation condition until the rechargeable electric energy storage system (REESS) is depleted.
- 3.3.4. "Charge-depleting cycle range" (R_{CDC}) means the distance from the beginning of the charge-depleting test to the end of the last cycle prior to the cycle or cycles satisfying the break-off criterioneriteria, including the transition cycle where the vehicle may have operated in both depleting and sustaining modes.
- 3.3.5. SMD42 "Charge-depleting operation condition" means an operating condition in which the energy stored in the REESS may fluctuate but decreases—on average, decreases—while the vehicle is driven until transition to charge-sustaining operation. SMD43 SMD44
- 3.3.6. "Charge depleting break off criteria" is determined based on absolute net energy change. | [SMD45][SMD46][SMD47] | [SMD48][SMD49]
- 3.3.7. "Charge-sustaining operation condition" means an operating condition in which the energy stored in the REESS may fluctuate but, on average, is maintained at a neutral charging balance level while the vehicle is driven.
- 3.3.8. "*Electric machine*" (EM) means an energy converter transforming electric energy into mechanical energy or vice versa.
- 3.3.9. "Electrified vehicle [SMD50][SMD51]" (EV) means a vehicle using at least one electric machine for the purpose of vehicle propulsion. [SMD52][SMD53]
- 3.3.10. "Energy converter" means the part of the powertrain where the form of energy input is different from the form of energy output eonverting one form of energy into a different one. [SMD54]
- 3.3.11. "Energy storage system" means the part of the powertrain on board a vehicle that can store chemical, electrical or mechanical energy and release it in the same form as it was input. which can be refilled or recharged externally and/or internally: [SMD55]
- 3.3.12. "Equivalent all-electric range" (EAER) means that portion of the total charge-depleting actual range (R_{CDA}) attributable to the use of electricity from the REESS over the charge-depleting range test.
- 3.3.13. "Highest fuel consuming mode" means the mode with the highest fuel consumption of all driver selectable modes. | [SMD56|| [SMD57][SMD58][SMD59]
- 3.3.14. "Hybrid electric vehicle" (HEV) means a hybrid vehicle where one of the energy converters is an electric machine using at least one fuel consuming machine and one electric machine for the purpose of vehicle propulsion [SMD60]
- 3.3.15. "Hybrid vehicle" (HV) means a vehicle with a powertrain containing at least two different types of energy converters and two different types of energy storage systems.

- 3.3.16. "*Net energy change*" means the ratio of the REESS energy change divided by the cycle energy demand of the test vehicle.
- 3.3.17. "Not off vehicle charging" (NOVC) means that the REESS cannot be charged externally. This is also known as not externally chargeable. [SMD62]
- 3.3.18. "Not off-vehicle chargeable hybrid electric vehicle" (NOVC-HEV)_means a hybrid electric vehicle that cannot be charged externally.
- 3.3.19. "Off vehicle charging" (OVC)" means that the REESS can be charged externally. This is a REESS also known as externally chargeable. [SMD63 SMD64]
- 3.3.20. "Off-vehicle charging hybrid electric vehicle" (OVC-HEV) identifies means a hybrid electric vehicle that can be charged externally.
- 3.3.21. "Pure electric mode SMD65 SMD66]" means operation by an electric machine only using electric energy from a REESS without fuel being consumed under any condition. SMD67 SMD68
- 3.3.22. "Pure electric vehicle" (PEV) means a vehicle where all energy converters used for propulsion are electric machines and no other energy converter contributes to the generation of energy to be used for vehicle propulsion.
- 3.3.23. "Recharged energy"(E_{AC}) means the AC electric energy which is recharged from the grid at the mains socket. [SMD69][SMD70]
- 3.3.24. "REESS charge balance" (RCB) means the charge balance of the REESS measured in Ah. [SMD71][SMD72]
- 3.3.25. "REESS correction criteria" means the RCB value (Ah) which determines if and when correction of the CO₂ emissions and/or fuel consumption value in charge sustaining (CS) operation condition is necessary. [SMD73][SMD74]

"" [SMD75][SMD76]

- 3.4. Powertrain
- 3.4.1. "*Manual transmission*" means a transmission where gears are shifted by hand in conjunction with a manual disengagement of a clutch.
- 3.5. General
- 3.5.1. "Auxiliaries" means additional equipment and/or devices not required for vehicle operation.
- 3.5.2. "*Category 1 vehicle*" means a power driven vehicle with four or more wheels designed and constructed primarily for the carriage of one or more persons.
- 3.5.3. "*Category 1-1 vehicle*" means a category 1 vehicle comprising not more than eight seating positions in addition to the driver's seating position. A category 1-1 vehicle may have standing passengers.
- 3.5.4. "Category 1-2 vehicle" means a category 1 vehicle designed for the carriage of more than eight passengers, whether seated or standing, in addition to the driver.
- 3.5.5. "Category 2 vehicle" means a power driven vehicle with four or more wheels designed and constructed primarily for the carriage of goods. This category shall also include:
 - (a) Tractive units;

- (b) Chassis designed specifically to be equipped with special equipment.
- 3.5.6. "*Cycle energy demand*" means the calculated positive energy required by the vehicle to drive the prescribed cycle.
- 3.5.7. "Defeat device" means any element of design which senses temperature, vehicle speed, engine rotational speed, drive gear, manifold vacuum or any other parameter for the purpose of activating, modulating, delaying or deactivating the operation of any part of the emission control system that reduces the effectiveness of the emission control system under conditions which may reasonably be expected to be encountered in normal vehicle operation and use. Such an element of design may not be considered a defeat device if:
 - (a) The need for the device is justified in terms of protecting the engine against damage or accident and for safe operation of the vehicle; or
 - (b) The device does not function beyond the requirements of engine starting; or
 - (c) Conditions are substantially included in the Type 1 test procedures.
- 3.5.8. "*Mode*" means a distinct driver-selectable condition which could affect emissions, and fuel and energy consumption.
- 3.5.9. "*Multi-mode*" means that more than one operating mode can be selected by the driver or automatically set.
- 3.5.10. "Predominant mode" for the purposes of this gtr means a single mode that is always selected when the vehicle is switched on regardless of the operating mode selected when the vehicle was previously shut down. The predominant mode mustshall not be able to be redefined. The switch of the predominant mode to another available mode after the vehicle being switched on shall only be possible by an intentional action of the driver.
- 3.5.11. "Reference conditions (with regards to calculating mass emissions)" means the conditions upon which gas densities are based, namely 101.325 kPa and 273.15 K_(0 °C). | SMD77|
- 3.5.12. "*Exhaust emissions*" means the emission of gaseous compounds, particulate matter and particle number at the tailpipe of a vehicle.
- 3.5.13. SMD78 "Type I test" means a test used to measure a vehicle's cold start gaseous, particulate matter, particle number, CO₂ emissions, fuel consumption, electric energy consumption and electric range at ambient conditions. [SMD79]
- 3.6. PM/PN
- 3.6.1. "Particle number" (PN) means the total number of solid particles emitted from the vehicle exhaust and as specified in this gtr.
- 3.6.1. "Particle number" (PN) means the total number of solid particles emitted from the vehicle exhaust quantified according to the sampling and measurement approaches as specified in this gtr; [SMD80]
- 3.6.2. "Particulate massmatter [SMD81]" (PM) means the mass of [SMD82] any material collected on the filter media from diluted vehicle exhaust as specified in this gtr.

- 3.6.2. "Particulate matter" (PM) means any material collected on a specified filter medium after diluting the exhaust with clean filtered diluent to a temperature less than 325 K (52 °C); typically this is primarily carbon, condensed hydrocarbons, and sulphates with associated water;
- "Particulate matter" (PM) means any material collected on the filter media <u>3.6</u>.2 from diluted vehicle exhaust as specified in this gtr; [SMD83]
- "Particulate (matter) mass" (PM) means the mass of any material collected on 3.6.2 the filter media from diluted vehicle exhaust quantified according to the sampling and measurement approaches as specified in this gtr.
- 3.7. WLTC
- "Rated engine power" (Prated) means maximum engine power in kW as per 3.7.1. the certification procedure based on current regional regulation. In the absence of a definition, the rated engine power shall be declared by the manufacturer according to Regulation No ... 85.
- 3.7.2. "Maximum speed" (vmax) means the maximum speed of a vehicle as defined by the Contracting Party. In the absence of a definition, the maximum speed shall be declared by the manufacturer according to Regulation No-_68.
- "Rated engine speed" means the range of rotational speed at which an engine develops maximum power. [SMD85]
- 3.7.4. [SMD86] "WLTC city cycle" means a low phase followed by a medium phase.[SMD87]
- 3.8. Procedure
- 3.8.1. "Periodically regenerating system" means an exhaust emissions control device (e.g. catalytic converter, particulate trap) that requires a periodical regeneration process in less than 4,000 km of normal vehicle operation. During cycles where regeneration occurs, emission standards can be exceeded. If a regeneration of an anti-pollution device occurs at least once during vehicle preparation cycle, it will be considered as a continuously regenerating system which does not require a special test procedure [SMD88]. [SMD89]
- "Fuel cell vehicle" means.....[SMD90]

4. **Abbreviations**

4.1. General abbreviations

CFV	Critical flow venturi
CFO	Critical flow orifice
CLD	Chemiluminescent detector
CLA	Chemiluminescent analyser
CVS	Constant volume sampler
deNO *	NO _x -after-treatment system
ECD	Electron capture detector
ET	Evaporation tube

Extra High₂ WLTC extra high speed phase for elass 2 Class 2

vehicles

Extra High₃ WLTC extra high speed phase for elass 3 Class 3

vehicles

FID Flame ionization detector

FTIR Fourier transform infrared analyser

GC Gas chromatograph

HEPA High efficiency particulate air (filter)
HFID Heated flame ionization detector

High₂ WLTC high speed phase for elass 2Class 2

vehicles

High₃₋₁ WLTC high speed phase for elass 3 Class 3

vehicles with $v_{max} < 120 \text{ km/h}$

High₃₋₂ WLTC high speed phase for elass 3 Class 3

vehicles with $v_{max} \ge 120 \text{ km/h}$

LoD Limit of detection

LoQ Limit of quantification

Low₁ WLTC low speed phase for Class 1 vehicles

Low₂ WLTC low speed phase for <u>class 2 Class 2</u> vehicles Low₃ WLTC low speed phase for <u>class 3 Class 3</u> vehicles

Medium₁ WLTC medium speed phase for Class 1 vehicles

Medium₂ WLTC medium speed phase for class 2 Class 2

vehicles

Medium₃₋₁ WLTC medium speed phase for elass 3 Class 3

vehicles with $v_{max} < 120 \text{ km/h}$

Medium₃₋₂ WLTC medium speed phase for elass 3 Class 3

vehicles with $v_{max} \ge 120 \text{ km/h}$

LPG Liquefied petroleum gas

NDIR Non-dispersive infrared (analyser)

NG/biomethane Natural gas/biomethane [SMD91]

NMC Non-methane cutter

NOVC Not off-vehicle charging [SMD92]

NOVC-HEV Not off-vehicle chargeable hybrid electric vehicle

OVC Off-vehicle charging [SMD93]

PAO Poly-alpha-olefin
PCF Particle pre-classifier

PCRF Particle concentration reduction factor

PDP Positive displacement pump

Per cent FS Per cent of full scale
PM Particulate matter
PN Particle number

PNC Particle number counter

PND₁ First particle number dilution device PND₂ Second particle number dilution device

PTS Particle transfer system
PTT Particle transfer tube

QCL-IR Infrared quantum cascade laser R_{CDA} Charge-depleting actual range

RCB REESS charge balance

REESS Rechargeable electric energy storage system

SSV Subsonic venturi
USFM Ultrasonic flow meter

VPR Volatile particle remover

WLTC Worldwide light-duty test cycle

4.2. Chemical symbols and abbreviations

Carbon 1 equivalent hydrocarbon

 $\begin{array}{lll} CH_4 & & Methane \\ C_2H_6 & & Ethane \\ C_2H_5OH & Ethanol \\ C_3H_8 & Propane \end{array}$

 ${
m CO}$ Carbon monoxide ${
m CO}_2$ Carbon dioxide ${
m DOP}$ Di-octylphthalate

THC Total hydrocarbons (all compounds measurable by

an FID)

H₂O Water

NMHC Non-methane hydrocarbons

NO_x Oxides of nitrogen

 $\begin{array}{ccc} NO & Nitric oxide \\ NO_2 & Nitrogen dioxide \\ N_2O & Nitrous oxide \\ \end{array}$

5. General requirements

- 5.1. The vehicle and its components liable to affect the emissions of gaseous compounds, particulate matter and particle number shall be so designed, constructed and assembled as to enable the vehicle in normal use and under normal conditions of use such as humidity, rain, snow, heat, cold, sand, dirt, vibrations, wear, etc. to comply with the provisions of this gtr during its useful life.
- 5.1.1. This shall include the security of all hoses, joints and connections used within the emission control systems.
- 5.2. The test vehicle shall be representative in terms of its emissions-related components and functionality of the intended production series to be covered by the approval. The manufacturer and the responsible authority shall agree which vehicle test model is representative.
- 5.3. Vehicle testing condition
- 5.3.1. The types and amounts of lubricants and coolant for emissions testing shall be as specified for normal vehicle operation by the manufacturer.
- 5.3.2. The type of fuel for emissions testing shall be as specified <u>in of Annex 3</u> to this gtr.
- 5.3.3. All emissions controlling systems shall be in working order.
- 5.3.4. The use of any defeat device is prohibited.
- 5.3.5. The engine shall be designed to avoid crankcase emissions.
- 5.3.6. The tyres used for emissions testing shall be as defined in paragraph 1.2.4.5. of Annex 6 to this gtr.
- 5.4. Petrol tank inlet orifices
- 5.4.1. Subject to paragraph 5.4.2. below, the inlet orifice of the petrol or ethanol tank shall be so designed as to prevent the tank from being filled from a fuel pump delivery nozzle which has an external diameter of- 23.6 mm or greater.
- 5.4.2. Paragraph 5.4.1. shall not apply to a vehicle in respect of which both of the following conditions are satisfied:
 - (a) The vehicle is so designed and constructed that no device designed to control the emission of gaseous and particulate compounds shall be adversely affected by leaded petrol; and
 - (b) The vehicle is conspicuously, legibly and indelibly marked with the symbol for unleaded petrol, specified in <u>ISO-ISO</u> 2575:2010 "Road vehicles -- Symbols for controls, indicators and tell-tales", in a position immediately visible to a person filling the petrol tank. Additional markings are permitted.
- 5.5. Provisions for electronic system security
- 5.5.1. Any vehicle with an emission control computer shall include features to deter modification, except as authorised by the manufacturer. The manufacturer shall authorise modifications if these modifications are necessary for the diagnosis, servicing, inspection, retrofitting or repair of the vehicle. Any reprogrammable computer codes or operating parameters shall be resistant to tampering and afford a level of protection at least as good as the provisions in

ISO 15031-7 (March 15, 2001). Any removable calibration memory chips shall be potted, encased in a sealed container or protected by electronic algorithms and shall not be changeable without the use of specialized tools and procedures.

- 5.5.2. Computer-coded engine operating parameters shall not be changeable without the use of specialized tools and procedures (e.g. soldered or potted computer components or sealed (or soldered) enclosures).
- 5.5.3. Manufacturers may seek approval from the responsible authority for an exemption to one of these requirements for those vehicles which are unlikely to require protection. The criteria that the responsible authority will evaluate in considering an exemption will shall include, but are not limited to, the current availability of performance chips, the high-performance capability of the vehicle and the projected sales volume of the vehicle.
- 5.5.4. Manufacturers using programmable computer code systems shall deter unauthorised reprogramming. Manufacturers shall include enhanced tamper protection strategies and write-protect features requiring electronic access to an off-site computer maintained by the manufacturer. Methods giving an adequate level of tamper protection will be approved by the responsible authority.
- 5.6. <u>Interpolation CO₂ vehicle [SMD94]</u> family
- 5.6.1. Unless vehicles are identical with respect to the following vehicle/powertrain/transmission characteristics, they shall not be considered to be part of the same CO₂ vehicle family:Only vehicles which are identical with respect to the following vehicle/ powertrain/transmission characteristics are permitted to be part of the same interpolation family.
 - (a) Type of internal combustion engine: fuel type, combustion type, engine displacement, full-load characteristics, engine technology, and charging system—shall be identical, and but also other engine subsystems or characteristics that have a non-negligible influence on CO₂ under WLTP conditions; SMD97
 - (b) Operation strategy of all CO₂-influencing components within the powertrain;
 - (c) Transmission type (e.g. manual, automatic, CVT) and transmission model (e.g. torque rating, number of gears, number of clutches, etc.); | [SMD98 SMD99]
 - (d) n/v ratios (engine rotational speed divided by vehicle speed). This requirement shall be considered fulfilled if, for all transmission ratios concerned, the difference with respect to the transmission ratios of the most commonly installed transmission type is within 8 per cent;
 - (e) Number of powered axles;
 - (f) [RESERVED: family criteria for EVs].

5.7. Road load family

<u>Unless vehicles are identical with respect to the following characteristics, they shall not be considered to be part of the same road load family:</u>

(a) Transmission type (e.g. manual, automatic, CVT) and transmission model (e.g. torque rating, number of gears, number of clutches, etc.). At the request

of the manufacturer and with agreement of the responsible authority, a transmission that is better in terms of road load SMD100 may be included in the family

(b) n/v ratios (engine rotational speed divided by vehicle speed). This requirement shall be considered fulfilled if, for all transmission ratios concerned, the difference with respect to the transmission ratios of the most commonly installed transmission type is within 25 per cent;

(c) Number of powered axles;

(d)[SMD101] If at least one "electric machine" is coupled in the gearbox position "neutral" and the vehicle is not equipped with a coast down mode (paragraph 4.2.1.5.5. of Annex 4) such that the electric machine has no influence on the road load, the criteria from 5.6. (f) shall apply. [SMD102]

If there is a difference, which has a non-negligible influence on road load except mass, rolling resistance and aerodynamics, that vehicle shall not be considered to be part of the family unless approved by the responsible authority. [SMD103] [SMD104]

6. Performance requirements

6.1. Limit values

When implementing the test procedure contained in this gtr as part of their national legislation, Contracting Parties to the 1998 Agreement are encouraged to use limit values which represent at least the same level of severity as their existing regulations; pending the development of harmonized limit values, by the Executive Committee (AC.3) of the <u>1998 Agreement</u>, for inclusion in the gtr at a later date.

6.2. Testing

Testing shall be performed according to:

- (a) The WLTCs as described in Annex 1;
- (b) The gear selection and shift point determination as described in Annex 2;
- (c) The appropriate fuel as described in Annex 3;
- (d) The road <u>load</u> and dynamometer <u>settingsloa</u>d as described in Annex 4;
- (e) The test equipment as described in Annex 5;
- (f) The test procedures as described in Annexes 6 and 8;
- (g) The methods of calculation as described in Annexes 7 and 8.

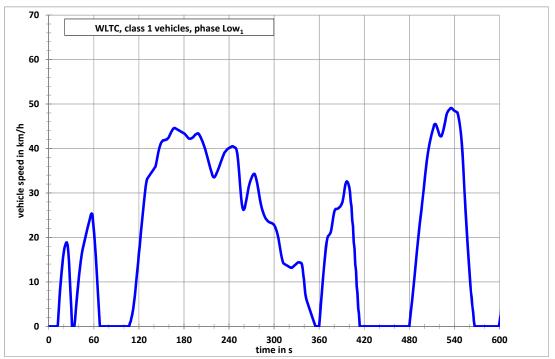
Annex 1

Worldwide light-duty test cycles (WLTC)

1.	General requirements
1.1.	The cycle to be driven shall be dependent on the test vehicle's rated power to unladen mass ratio, W/kg, and its maximum velocity, v_{max} .
1.2.	v _{max} is the maximum speed of a vehicle as defined in <u>paragraph 3.7.2.</u> [SMD105] of 3. Definitions <u>paragraph 3</u> and not that which may be artificially restricted.
2.	Vehicle classifications
2.1.	Class 1 vehicles have a power to unladen mass ratio (P _{mr}) \(22 \) W/kg.
2.2.	Class 2 vehicles have a power to unladen mass ratio_ $>$ 22 but \le 34_W/kg.
2.3.	Class 3 vehicles have a power to unladen mass ratio > 34 _W/kg.
2.3.1.	All vehicles tested according to Annex 8 shall be considered to be Class 3 vehicles.
3.	Test cycles
3.1.	Class 1 vehicles
3.1.1.	A complete cycle for elass 1 vehicles shall consist of a low phase (Low_1) , a medium phase $(Medium_1)$ and an additional low phase (Low_1) .
3.1.2.	The Low ₁ phase is described in Figure A1/1 and TableA1/1.
3.1.3.	The Medium ₁ phase is described in Figure A1/2 and TableA1/2.
3.2.	Class 2 vehicles
3.2.1.	A complete cycle for elass 2 vehicles shall consist of a low phase (Low ₂), a medium phase (Medium ₂), a high phase (High ₂) and an extra high phase (Extra High ₂).
3.2.2.	The Low ₂ phase is described in FigureA1/3 and TableA1/3.
3.2.3.	The Medium ₂ phase is described in FigureA1/4 and Table_Table_A1/4.
3.2.4.	The High ₂ phase is described in Figure_A1/5 and Table_Table_A1/5.
3.2.5.	The Extra High ₂ phase is described in FigureA1/6 and TableA1/6.
3.2.6.	At the option of the Contracting Party, the Extra High_2 phase may be excluded.
3.3.	Class 3 vehicles
	Class 3 vehicles are divided into 2 subclasses according to their maximum speed, $v_{\mbox{\scriptsize max}}.$
3.3.1.	Class 3a vehicles with $v_{max} < 120 \text{ km/h}$
3.3.1.1.	A complete cycle shall consist of a low phase (Low ₃)–, a medium phase (Medium ₃₋₁), a high phase (High ₃₋₁) and an extra high phase (Extra High ₃).
3.3.1.2.	The Low ₃ phase is described in FigureA1/7 and Table A1/7.

3.3.1.3. The Medium₃₋₁ phase is described in Figure_-A1/8 and Table A1/8. The High₃₋₁ phase is described in Figure_-A1/10 and Table A1/10. 3.3.1.4. 3.3.1.5. The Extra High₃ phase is described in Figure_-A1/12 and Table A1/12. At the option of the Contracting Party, the Extra High3 phase may be 3.3.1.6. excluded. Class 3b vehicles with $v_{max} \ge -120$ _-km/h 3.3.2. A complete cycle shall consist of a low phase (Low3) phase, a medium phase 3.3.2.1. (Medium₃₋₂), a high phase (High₃₋₂) and an extra high phase (Extra High₃). 3.3.2.2. The Low₃ phase is described in Figure_-A1/7 and Table A1/7. 3.3.2.3. The Medium₃₋₂ phase is described in Figure_-A1/9 and Table A1/9. 3.3.2.4. The High₃₋₂ phase is described in Figure_-A1/11 and Table A1/11. 3.3.2.5. The Extra High₃ phase is described in Figure_-A1/12 and Table A1/12. 3.3.2.6. At the option of the Contracting Party, the Extra High₃ phase may be excluded. 3.4. Duration of all phases 3.4.1. All low speed phases last 589_seconds_(s). 3.4.2. All medium speed phases last 433_seconds_(s). 3.4.3. All high speed phases last 455-seconds_(s). 3.4.4. All extra high speed phases last 323_seconds_(s).

OVC-HEVs and PEVs shall be tested using the WLTC and WLTC city cycles (see Annex 8) for Class 3a and Class 3b vehicles.


The WLTC city cycle consists of the low and medium speed phases only.

3.5

WLTC city cycles

4. WLTC Class 1 vehicles

 $\label{eq:figure_A1/1} Figure_-A1/1 \\ \textbf{WLTC, Class 1} \underbrace{\textbf{vehicles}}_{\textbf{Vehicles}}, \underbrace{\textbf{phase}}_{\textbf{Phase}} \underline{\textbf{Low}_1}$

Figure_-A1/2
WLTC, Class 1 vehicles Vehicles, phase Phase Medium₁

Table A1/1
WLTC, Class 1 vehicles Vehicles, phase Phase Low1

Time in s	Speed in km/h						
0	0.0	47	18.8	94	0.0	141	35.7
1	0.0	48	19.5	95	0.0	142	35.9
2	0.0	49	20.2	96	0.0	143	36.6
3	0.0	50	20.9	97	0.0	144	37.5
4	0.0	51	21.7	98	0.0	145	38.4
5	0.0	52	22.4	99	0.0	146	39.3
6	0.0	53	23.1	100	0.0	147	40.0
7	0.0	54	23.7	101	0.0	148	40.6
8	0.0	55	24.4	102	0.0	149	41.1
9	0.0	56	25.1	103	0.0	150	41.4
10	0.0	57	25.4	104	0.0	151	41.6
11	0.0	58	25.2	105	0.0	152	41.8
12	0.2	59	23.4	106	0.0	153	41.8
13	3.1	60	21.8	107	0.0	154	41.9
14	5.7	61	19.7	108	0.7	155	41.9
15	8.0	62	17.3	109	1.1	156	42.0
16	10.1	63	14.7	110	1.9	157	42.0
17	12.0	64	12.0	111	2.5	158	42.2
18	13.8	65	9.4	112	3.5	159	42.3
19	15.4	66	5.6	113	4.7	160	42.6
20	16.7	67	3.1	114	6.1	161	43.0
21	17.7	68	0.0	115	7.5	162	43.3
22	18.3	69	0.0	116	9.4	163	43.7
23	18.8	70	0.0	117	11.0	164	44.0
24	18.9	71	0.0	118	12.9	165	44.3
25	18.4	72	0.0	119	14.5	166	44.5
26	16.9	73	0.0	120	16.4	167	44.6
27	14.3	74	0.0	121	18.0	168	44.6
28	10.8	75	0.0	122	20.0	169	44.5
29	7.1	76	0.0	123	21.5	170	44.4
30	4.0	77	0.0	124	23.5	171	44.3
31	0.0	78	0.0	125	25.0	172	44.2
32	0.0	79	0.0	126	26.8	173	44.1
33	0.0	80	0.0	127	28.2	174	44.0
34	0.0	81	0.0	128	30.0	175	43.9
35	1.5	82	0.0	129	31.4	176	43.8
36	3.8	83	0.0	130	32.5	177	43.7
37	5.6	84	0.0	131	33.2	178	43.6
38	7.5	85	0.0	132	33.4	179	43.5
39	9.2	86	0.0	133	33.7	180	43.4
40	10.8	87	0.0	134	33.9	181	43.3
41	12.4	88	0.0	135	34.2	182	43.1
42	13.8	89	0.0	136	34.4	183	42.9
43	15.2	90	0.0	137	34.7	184	42.7
44	16.3	91	0.0	138	34.9	185	42.5
45	17.3	92	0.0	139	35.2	186	42.3
46	18.0	93	0.0	140	35.4	187	42.2

-	Time in s	Speed in km/h						
_	188	42.2	237	39.7	286	25.3	335	14.3
	189	42.2	238	39.9	287	24.9	336	14.3
	190	42.3	239	40.0	288	24.5	337	14.0
	191	42.4	240	40.1	289	24.2	338	13.0
	192	42.5	241	40.2	290	24.0	339	11.4
	193	42.7	242	40.3	291	23.8	340	10.2
	194	42.9	243	40.4	292	23.6	341	8.0
	195	43.1	244	40.5	293	23.5	342	7.0
	196	43.2	245	40.5	294	23.4	343	6.0
	197	43.3	246	40.4	295	23.3	344	5.5
	198	43.4	247	40.3	296	23.3	345	5.0
	199	43.4	248	40.2	297	23.2	346	4.5
	200	43.2	249	40.1	298	23.1	347	4.0
	201	42.9	250	39.7	299	23.0	348	3.5
	202	42.6	251	38.8	300	22.8	349	3.0
	203	42.2	252	37.4	301	22.5	350	2.5
	204	41.9	253	35.6	302	22.1	351	2.0
	205	41.5	254	33.4	303	21.7	352	1.5
	206	41.0	255	31.2	304	21.1	353	1.0
	207	40.5	256	29.1	305	20.4	354	0.5
	208	39.9	257	27.6	306	19.5	355	0.0
	208	39.3	258	26.6	307	18.5	356	0.0
			259	26.2	308	17.6	357	0.0
	210	38.7	260	26.2	309	16.6	358	0.0
	211	38.1	261	26.7	310	15.7	359	0.0
	212	37.5	262	27.5		14.9	360	0.0
	213	36.9			311			
	214	36.3	263	28.4	312	14.3	361	2.2
	215	35.7	264	29.4	313	14.1	362	4.5
	216	35.1	265	30.4	314	14.0	363	6.6
	217	34.5	266	31.2	315	13.9	364	8.6
	218	33.9	267	31.9	316	13.8	365	10.6
	219	33.6	268	32.5	317	13.7	366	12.5
	220	33.5	269	33.0	318	13.6	367	14.4
	221	33.6	270	33.4	319	13.5	368	16.3
	222	33.9	271	33.8	320	13.4	369	17.9
	223	34.3	272	34.1	321	13.3	370	19.1
	224	34.7	273	34.3	322	13.2	371	19.9
	225	35.1	274	34.3	323	13.2	372	20.3
	226	35.5	275	33.9	324	13.2	373	20.5
	227	35.9	276	33.3	325	13.4	374	20.7
	228	36.4	277	32.6	326	13.5	375	21.0
	229	36.9	278	31.8	327	13.7	376	21.6
	230	37.4	279	30.7	328	13.8	377	22.6
	231	37.9	280	29.6	329	14.0	378	23.7
	232	38.3	281	28.6	330	14.1	379	24.8
	233	38.7	282	27.8	331	14.3	380	25.7
	234	39.1	283	27.0	332	14.4	381	26.2
	235	39.3	284	26.4	333	14.4	382	26.4
_	236	39.5	285	25.8	334	14.4	383	26.4

Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
384	26.4	433	0.0	482	3.1	531	48.2
385	26.5	434	0.0	483	4.6	532	48.5
386	26.6	435	0.0	484	6.1	533	48.7
387	26.8	436	0.0	485	7.8	534	48.9
388	26.9	437	0.0	486	9.5	535	49.1
389	27.2	438	0.0	487	11.3	536	49.1
390	27.5	439	0.0	488	13.2	537	49.0
391	28.0	440	0.0	489	15.0	538	48.8
392	28.8	441	0.0	490	16.8	539	48.6
393	29.9	442	0.0	491	18.4	540	48.5
394	31.0	443	0.0	492	20.1	541	48.4
395	31.9	444	0.0	493	21.6	542	48.3
396	32.5	445	0.0	494	23.1	543	48.2
397	32.6	446	0.0	495	24.6	544	48.1
398	32.4	447	0.0	496	26.0	545	47.5
398	32.4	447	0.0	497	27.5	546	46.7
			0.0	498	27.3	547	45.7
400	31.3	449	0.0	498 499	30.6	548	44.6
401	30.3	450	0.0				
402	28.0	451	0.0	500	32.1	549	42.9
403	27.0	452		501	33.7	550	40.8
404	24.0	453	0.0	502	35.3	551	38.2
405	22.5	454	0.0	503	36.8	552	35.3
406	19.0	455	0.0	504	38.1	553	31.8
407	17.5	456	0.0	505	39.3	554	28.7
408	14.0	457	0.0	506	40.4	555	25.8
409	12.5	458	0.0	507	41.2	556	22.9
410	9.0	459	0.0	508	41.9	557	20.2
411	7.5	460	0.0	509	42.6	558	17.3
412	4.0	461	0.0	510	43.3	559	15.0
413	2.9	462	0.0	511	44.0	560	12.3
414	0.0	463	0.0	512	44.6	561	10.3
415	0.0	464	0.0	513	45.3	562	7.8
416	0.0	465	0.0	514	45.5	563	6.5
417	0.0	466	0.0	515	45.5	564	4.4
418	0.0	467	0.0	516	45.2	565	3.2
419	0.0	468	0.0	517	44.7	566	1.2
420	0.0	469	0.0	518	44.2	567	0.0
421	0.0	470	0.0	519	43.6	568	0.0
422	0.0	471	0.0	520	43.1	569	0.0
423	0.0	472	0.0	521	42.8	570	0.0
423	0.0	473	0.0	522	42.7	571	0.0
424	0.0	473	0.0	523	42.7	572	0.0
423	0.0	474	0.0	523 524	43.3	573	0.0
	0.0		0.0	524 525	43.3	573 574	0.0
427	0.0	476	0.0				0.0
428		477		526 527	44.6	575 576	
429	0.0	478	0.0	527	45.4	576	0.0
430	0.0	479	0.0	528	46.3	577	0.0
431	0.0	480	0.0	529	47.2	578	0.0
432	0.0	481	1.6	530	47.8	579	0.0

ECE/TRANS/WP.29/2014/27

Time in s	Speed in km/h						
580	0.0						
581	0.0						
582	0.0						
583	0.0						
584	0.0						
585	0.0						
586	0.0						
587	0.0						
588	0.0						
589	0.0						

WLTC, Class 1 $\frac{\text{Vehicles}}{\text{Vehicles}}$, $\frac{\text{Phase}}{\text{Phase}}$ Medium₁

S90	Time in s	Speed in km/h						
591 0.0 638 19.0 685 56.7 732 58.8 593 0.0 640 21.5 687 57.9 734 60.3 594 0.0 641 23.1 688 58.4 735 60.9 595 0.0 642 24.9 689 58.8 736 61.3 596 0.0 643 26.4 690 58.9 737 61.7 597 0.0 644 27.9 691 58.4 738 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 693 57.6 740 61.6 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7		•						•
592 0.0 639 20.1 686 57.3 733 59.6 593 0.0 641 23.1 688 58.4 735 60.9 595 0.0 642 24.9 689 58.8 736 61.3 596 0.0 643 26.4 690 58.9 737 61.7 597 0.0 644 27.9 691 58.4 738 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3								
593 0.0 640 21.5 687 57.9 734 60.3 594 0.0 641 23.1 688 58.8 735 60.9 595 0.0 642 24.9 689 58.8 736 61.3 596 0.0 643 26.4 690 58.9 737 61.7 597 0.0 644 27.9 692 58.1 739 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 693 55.6 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3								
594 0.0 641 23.1 688 58.4 735 60.9 595 0.0 643 26.4 690 58.9 736 61.7 597 0.0 644 27.9 691 58.4 738 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7								
595 0.0 642 24.9 689 58.8 736 61.3 596 0.0 643 26.4 690 58.9 737 61.7 597 0.0 644 27.9 691 58.4 738 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.8 602 2.7 649 34.0 698 55.0 745 59.4 603 5.2 650 35.1 697 55.3 744 59.9 605 9.6 652 37.4 699 54.7								
596 0.0 643 26.4 690 58.9 737 61.7 597 0.0 644 27.9 691 58.4 738 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 605 9.6 652 37.4 699 54.7 746 58.9 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5								
597 0.0 644 27.9 691 58.4 738 61.8 598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 58.9 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 653 38.6 700 54.5								
598 0.0 645 29.2 692 58.1 739 61.8 599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.8 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3								
599 0.0 646 30.4 693 57.6 740 61.6 600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.9 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2								
600 0.6 647 31.6 694 56.9 741 61.2 601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 619 28.4 666 46.5 711 51.7 758 57.1 619 28.4 666 46.5 713 51.8 760 58.2 622 29.2 669 48.0 714 52.0 761 59.0 668 47.5 715 52.3 762 59.8 662 29.2 669 48.0 716 52.2 57.2 57.2 619 28.4 666 46.5 713 51.8 760 58.2 622 29.2 669 48.0 716 52.2 57.3 762 57.0 619 28.4 666 46.5 713 51.8 760 58.2 622 29.2 669 48.0 716 52.0 761 51.9 757 56.7 619 28.4 666 46.5 713 51.8 760 58.2 622 29.2 669 48.0 716 52.0 761 59.0 622 29.2 669 48.0 716 52.0 761 59.0 622 29.2 669 48.0 716 52.0 761 59.0 622 29.2 669 48.0 716 52.0 761 59.0 622 29.2 669 48.0 716 52.0 761 59.9 622 29.2 669 48.0 716 52.0 761 60.4 62.4 62.4 62.4 670 48.6 717 52.9 764 61.4 624 29.4 670 48.6 717 52.9 764 61.4 624 29.4 670 48.6 717 52.9 764 61.4 624 29.4 670 48.6 717 52.9 764 61.4 624 29.4 670 48.6 717 52.9 764 61.4 624 29.4 670 48.6 717 52.9 764 61.4 624 29.4 670 48.6 717 52.9 764 61.4 629 27.6 670 51.8 723 53.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 62.9 27.6 676 51.8 723 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 767 63.5 62.2 626 28.9 673 50.2 720 53.3 769 64.4 62.4 63.0 26.9 677 52.3 724 53.5 770 64.								
601 1.9 648 32.8 695 56.3 742 60.8 602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8								
602 2.7 649 34.0 696 55.7 743 60.4 603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5								
603 5.2 650 35.1 697 55.3 744 59.9 604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 612 23.2 659 43.6 706 53.5								
604 7.0 651 36.3 698 55.0 745 59.4 605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
605 9.6 652 37.4 699 54.7 746 58.9 606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
606 11.4 653 38.6 700 54.5 747 58.6 607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.3 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
607 14.1 654 39.6 701 54.4 748 58.2 608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
608 15.8 655 40.6 702 54.3 749 57.9 609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 759 57.6 618 28.1 665 46.0 712 51.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
609 18.2 656 41.6 703 54.2 750 57.7 610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
610 19.7 657 42.4 704 54.1 751 57.5 611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
611 21.8 658 43.0 705 53.8 752 57.2 612 23.2 659 43.6 706 53.5 753 57.0 613 24,7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
612 23.2 659 43.6 706 53.5 753 57.0 613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
613 24.7 660 44.0 707 53.0 754 56.8 614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 </td <td>611</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	611							
614 25.8 661 44.4 708 52.6 755 56.6 615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
615 26.7 662 44.8 709 52.2 756 56.6 616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
616 27.2 663 45.2 710 51.9 757 56.7 617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 </td <td>614</td> <td>25.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	614	25.8						
617 27.7 664 45.6 711 51.7 758 57.1 618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 </td <td>615</td> <td>26.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	615	26.7						
618 28.1 665 46.0 712 51.7 759 57.6 619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 </td <td>616</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	616							
619 28.4 666 46.5 713 51.8 760 58.2 620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.2 625 29.3 672 49.7 719 53.2 766 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 </td <td>617</td> <td>27.7</td> <td>664</td> <td>45.6</td> <td></td> <td></td> <td></td> <td></td>	617	27.7	664	45.6				
620 28.7 667 47.0 714 52.0 761 59.0 621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 </td <td>618</td> <td>28.1</td> <td>665</td> <td>46.0</td> <td></td> <td></td> <td></td> <td></td>	618	28.1	665	46.0				
621 29.0 668 47.5 715 52.3 762 59.8 622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726	619	28.4	666	46.5	713	51.8	760	58.2
622 29.2 669 48.0 716 52.6 763 60.6 623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727	620	28.7	667	47.0	714	52.0	761	59.0
623 29.4 670 48.6 717 52.9 764 61.4 624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728	621	29.0	668	47.5	715	52.3	762	59.8
624 29.4 671 49.1 718 53.1 765 62.2 625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 </td <td>622</td> <td>29.2</td> <td>669</td> <td>48.0</td> <td>716</td> <td>52.6</td> <td>763</td> <td>60.6</td>	622	29.2	669	48.0	716	52.6	763	60.6
625 29.3 672 49.7 719 53.2 766 62.9 626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730	623	29.4	670	48.6	717	52.9	764	61.4
626 28.9 673 50.2 720 53.3 767 63.5 627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 </td <td>624</td> <td>29.4</td> <td>671</td> <td>49.1</td> <td>718</td> <td>53.1</td> <td>765</td> <td>62.2</td>	624	29.4	671	49.1	718	53.1	765	62.2
627 28.5 674 50.8 721 53.3 768 64.2 628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4	625	29.3	672	49.7	719	53.2	766	62.9
628 28.1 675 51.3 722 53.4 769 64.4 629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4	626	28.9	673	50.2	720	53.3	767	63.5
629 27.6 676 51.8 723 53.5 770 64.4 630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4	627	28.5	674	50.8	721	53.3	768	64.2
630 26.9 677 52.3 724 53.7 771 64.0 631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4	628	28.1	675	51.3	722	53.4	769	64.4
631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4	629	27.6	676	51.8	723	53.5	770	64.4
631 26.0 678 52.9 725 54.0 772 63.5 632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4			677		724	53.7	771	64.0
632 24.6 679 53.4 726 54.4 773 62.9 633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4			678	52.9	725	54.0	772	63.5
633 22.8 680 54.0 727 54.9 774 62.4 634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4			679	53.4	726	54.4	773	62.9
634 21.0 681 54.5 728 55.6 775 62.0 635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4								
635 19.5 682 55.1 729 56.3 776 61.6 636 18.6 683 55.6 730 57.1 777 61.4								
636 18.6 683 55.6 730 57.1 777 61.4								

Time in s	Speed in km/h						
779	61.0	828	50.6	877	53.1	926	44.5
780	60.7	829	51.6	878	53.0	927	44.6
781	60.2	830	52.5	879	53.0	928	44.7
782	59.6	831	53.3	880	53.0	929	44.6
783	58.9	832	54.1	881	53.0	930	44.5
784	58.1	833	54.7	882	53.0	931	44.4
785	57.2	834	55.3	883	53.0	932	44.2
786	56.3	835	55.7	884	52.8	933	44.1
787	55.3	836	56.1	885	52.5	934	43.7
788	54.4	837	56.4	886	51.9	935	43.3
789	53.4	838	56.7	887	51.1	936	42.8
790	52.4	839	57.1	888	50.2	937	42.3
791	51.4	840	57.5	889	49.2	938	41.6
792	50.4	841	58.0	890	48.2	939	40.7
793	49.4	842	58.7	891	47.3	940	39.8
794	48.5	843	59.3	892	46.4	941	38.8
795	47.5	844	60.0	893	45.6	942	37.8
796	46.5	845	60.6	894	45.0	943	36.9
797	45.4	846	61.3	895	44.3	944	36.1
798	44.3	847	61.5	896	43.8	945	35.5
799	43.1	848	61.5	897	43.3	946	35.0
800	42.0	849	61.4	898	42.8	947	34.7
801	40.8	850	61.2	899	42.4	948	34.4
802	39.7	851	60.5	900	42.0	949	34.1
803	38.8	852	60.0	901	41.6	950	33.9
804	38.1	853	59.5	902	41.1	951	33.6
805	37.4	854	58.9	903	40.3	952	33.3
806	37.1	855	58.4	904	39.5	953	33.0
807	36.9	856	57.9	905	38.6	954	32.7
808	37.0	857	57.5	906	37.7	955	32.3
809	37.5	858	57.1	907	36.7	956	31.9
810	37.8	859	56.7	908	36.2	957	31.5
811	38.2	860	56.4	909	36.0	958	31.0
812	38.6	861	56.1	910	36.2	959	30.6
813	39.1	862	55.8	911	37.0	960	30.2
814	39.6	863	55.5	912	38.0	961	29.7
815	40.1	864	55.3	913	39.0	962	29.1
816	40.7	865	55.0	914	39.7	963	28.4
817	41.3	866	54.7	915	40.2	964	27.6
818	41.9	867	54.4	916	40.7	965	26.8
819	42.7	868	54.2	917	41.2	966	26.0
820	43.4	869	54.0	917	41.7	967	25.1
820 821	44.2	870	53.9	919	42.2	968	24.2
821	44.2	870 871	53.7	919	42.7	969	23.3
822 823	45.0 45.9	871	53.6	920	43.2	909	22.4
823 824	45.9	872 873	53.5	921	43.2	970 971	21.5
824 825	40.8 47.7	873 874	53.4	922	44.0	971	20.6
823 826	47.7	874 875	53.4	923 924	44.0	972	19.7
974	18.8	013	33.3	724	44.2	713	17./

Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
975	17.7						
976	16.4						
977	14.9						
978	13.2						
979	11.3						
980	9.4						
981	7.5						
982	5.6						
983	3.7						
984	1.9						
985	1.0						
986	0.0	0.0					
987	0.0	0.0					
988	0.0	0.0					
989	0.0	0.0					
990	0.0	0.0					
991	0.0	0.0					
992	0.0	0.0					
993	0.0	0.0					
994	0.0	0.0					
995	0.0	0.0					
996	0.0	0.0					
997	0.0	0.0					
998	0.0	0.0					
999	0.0	0.0					
1000	0.0	0.0					
1001	0.0	0.0					
1002	0.0	0.0					
1003	0.0	0.0					
1004	0.0	0.0					
1005	0.0	0.0					
1006	0.0	0.0					
1007	0.0	0.0					
1008	0.0	0.0					
1009	0.0	0.0					
1010		0.0					
1011	0.0	0.0					
1012	0.0	0.0					
1013	0.0	0.0					
1014	0.0	0.0					
1015	0.0	0.0					
1016	0.0	0.0					
1017	0.0	0.0					
1017	0.0	0.0					
1019	0.0	0.0					
1020	0.0	0.0					
1020	0.0	0.0					
1021	0.0						

5. WLTC for Class 2 vehicles

Figure A1/3
WLTC, Class 2 vehicles Phase Low₂

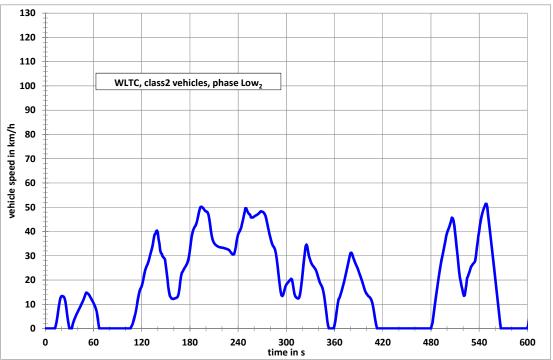


Figure A1/4
WLTC, Class 2 vehicles Vehicles, phase Phase Medium₂



Figure A1/5
WLTC, Class 2 vehicles Vehicles, phase Phase High₂

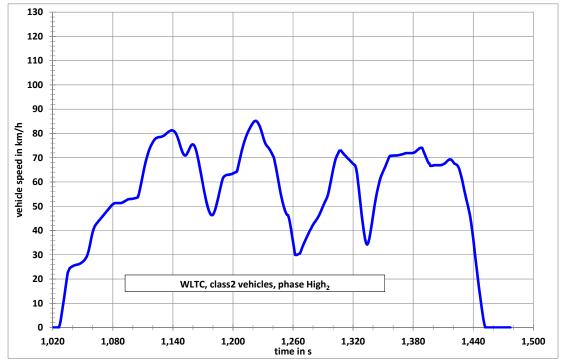


Figure A1/6
WLTC, Class 2 vehicles Vehicles, phase Phase Extra High₂

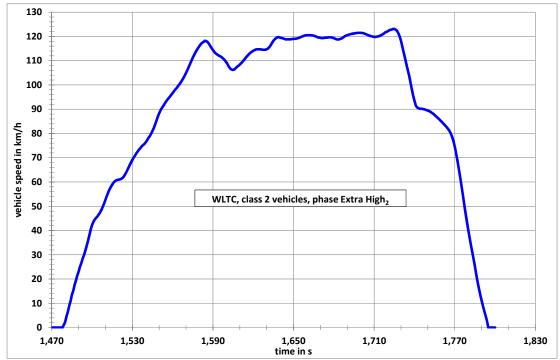


Table A1/3
WLTC, Class 2 vehicles Vehicles, phase Phase Low2

Tir	me in s	Speed in km/h						
			Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
	0	0.0	47	11.6	94	0.0	141	36.8
	1	0.0	48	12.4	95	0.0	142	35.1
	2	0.0	49	13.2	96	0.0	143	32.2
	3	0.0	50	14.2	97	0.0	144	31.1
	4	0.0	51	14.8	98	0.0	145	30.8
	5	0.0	52	14.7	99	0.0	146	29.7
	6	0.0	53	14.4	100	0.0	147	29.4
	7	0.0	54	14.1	101	0.0	148	29.0
	8	0.0	55	13.6	102	0.0	149	28.5
	9	0.0	56	13.0	103	0.0	150	26.0
	10	0.0	57	12.4	104	0.0	151	23.4
	11	0.0	58	11.8	105	0.0	152	20.7
	12	0.0	59	11.2	106	0.0	153	17.4
	13	1.2	60	10.6	107	0.8	154	15.2
	14	2.6	61	9.9	108	1.4	155	13.5
	15	4.9	62	9.0	109	2.3	156	13.0
	16	7.3	63	8.2	110	3.5	157	12.4
	17	9.4	64	7.0	111	4.7	158	12.3
	18	11.4	65	4.8	112	5.9	159	12.2
	19	12.7	66	2.3	113	7.4	160	12.3
	20	13.3	67	0.0	114	9.2	161	12.4
	21	13.4	68	0.0	115	11.7	162	12.5
	22	13.3	69	0.0	116	13.5	163	12.7
	23	13.1	70	0.0	117	15.0	164	12.8
	24	12.5	71	0.0	118	16.2	165	13.2
	25	11.1	72	0.0	119	16.8	166	14.3
	26	8.9	73	0.0	120	17.5	167	16.5
	27	6.2	74	0.0	121	18.8	168	19.4
	28	3.8	75	0.0	122	20.3	169	21.7
	29	1.8	76	0.0	123	22.0	170	23.1
	30	0.0	77	0.0	124	23.6	171	23.5
	31	0.0	78	0.0	125	24.8	172	24.2
	32	0.0	79	0.0	126	25.6	173	24.8
	33	0.0	80	0.0	127	26.3	174	25.4
	34	1.5	81	0.0	128	27.2	175	25.8
	35	2.8	82	0.0	129	28.3	176	26.5
	36	3.6	83	0.0	130	29.6	177	27.2
	37	4.5	84	0.0	131	30.9	178	28.3
	38	5.3	85	0.0	132	32.2	179	29.9
	39	6.0	86	0.0	133	33.4	180	32.4
	40	6.6	87	0.0	134	35.1	181	35.1
	41	7.3	88	0.0	135	37.2	182	37.5
	42	7.9	89	0.0	136	38.7	183	39.2
	43	8.6	90	0.0	137	39.0	184	40.5
	44	9.3	91	0.0	138	40.1	185	41.4
	45	10	92	0.0	139	40.4	186	42.0
	46	10.8	93	0.0	140	39.7	187	42.5

Time in s	Speed in km/h						
188	43.2	237	33.5	286	32.5	335	25.0
189	44.4	238	35.8	287	30.9	336	24.6
190	45.9	239	37.6	288	28.6	337	23.9
191	47.6	240	38.8	289	25.9	338	23.0
192	49.0	241	39.6	290	23.1	339	21.8
193	50.0	242	40.1	291	20.1	340	20.7
194	50.2	243	40.9	292	17.3	341	19.6
195	50.1	244	41.8	293	15.1	342	18.7
196	49.8	245	43.3	294	13.7	343	18.1
197	49.4	246	44.7	295	13.4	344	17.5
198	48.9	247	46.4	296	13.9	345	16.7
199	48.5	248	47.9	297	15.0	346	15.4
200	48.3	249	49.6	298	16.3	347	13.6
201	48.2	250	49.6	299	17.4	348	11.2
202	47.9	251	48.8	300	18.2	349	8.6
203	47.1	252	48.0	301	18.6	350	6.0
204	45.5	253	47.5	302	19.0	351	3.1
205	43.2	254	47.1	303	19.4	352	1.2
206	40.6	255	46.9	304	19.8	353	0.0
207	38.5	256	45.8	305	20.1	354	0.0
208	36.9	257	45.8	306	20.5	355	0.0
209	35.9	258	45.8	307	20.2	356	0.0
210	35.3	259	45.9	308	18.6	357	0.0
210	34.8	260	46.2	309	16.5	358	0.0
212	34.5	261	46.4	310	14.4	359	0.0
212	34.3	262	46.4	310	13.4	360	1.4
213	34.2	263	46.8	311	12.9	361	3.2
214	33.8	263	47.0	312	12.9	362	5.6
			47.0	313	12.7	363	8.1
216	33.6	265					
217	33.5	266	47.5	315	12.4	364	10.3
218	33.5	267	47.9	316	12.8	365	12.1
219	33.4	268	48.3	317	14.1	366	12.6
220	33.3	269	48.3	318	16.2	367	13.6
221	33.3	270	48.2	319	18.8	368	14.5
222	33.2	271	48.0	320	21.9	369	15.6
223	33.1	272	47.7	321	25.0	370	16.8
224	33.0	273	47.2	322	28.4	371	18.2
225	32.9	274	46.5	323	31.3	372	19.6
226	32.8	275	45.2	324	34.0	373	20.9
227	32.7	276	43.7	325	34.6	374	22.3
228	32.5	277	42.0	326	33.9	375	23.8
229	32.3	278	40.4	327	31.9	376	25.4
230	31.8	279	39.0	328	30.0	377	27.0
231	31.4	280	37.7	329	29.0	378	28.6
232	30.9	281	36.4	330	27.9	379	30.2
233	30.6	282	35.2	331	27.1	380	31.2
234	30.6	283	34.3	332	26.4	381	31.2
235	30.7	284	33.8	333	25.9	382	30.7
236	32.0	285	33.3	334	25.5	383	29.5

1	Time in s	Speed in km/h						
	384	28.6	433	0.0	482	2.5	531	26.0
	385	27.7	434	0.0	483	5.2	532	26.5
	386	26.9	435	0.0	484	7.9	533	26.9
	387	26.1	436	0.0	485	10.3	534	27.3
	388	25.4	437	0.0	486	12.7	535	27.9
	389	24.6	438	0.0	487	15.0	536	30.3
	390	23.6	439	0.0	488	17.4	537	33.2
	391	22.6	440	0.0	489	19.7	538	35.4
	392	21.7	441	0.0	490	21.9	539	38.0
	393	20.7	442	0.0	491	24.1	540	40.1
	394	19.8	443	0.0	492	26.2	541	42.7
	395	18.8	444	0.0	493	28.1	542	44.5
	396	17.7	445	0.0	494	29.7	543	46.3
	397	16.6	446	0.0	495	31.3	544	47.6
	398	15.6	447	0.0	496	33.0	545	48.8
	399	14.8	448	0.0	497	34.7	546	49.7
	400	14.3	449	0.0	498	36.3	547	50.6
	401	13.8	450	0.0	499	38.1	548	51.4
	402	13.4	451	0.0	500	39.4	549	51.4
	403	13.1	452	0.0	501	40.4	550	50.2
	404	12.8	453	0.0	502	41.2	551	47.1
	405	12.3	454	0.0	503	42.1	552	44.5
	406	11.6	455	0.0	504	43.2	553	41.5
	407	10.5	456	0.0	505	44.3	554	38.5
	408	9.0	457	0.0	506	45.7	555	35.5
	409	7.2	458	0.0	507	45.4	556	32.5
	410	5.2	459	0.0	508	44.5	557	29.5
	411	2.9	460	0.0	509	42.5	558	26.5
	412	1.2	461	0.0	510	39.5	559	23.5
	413	0.0	462	0.0	511	36.5	560	20.4
	414	0.0	463	0.0	512	33.5	561	17.5
	415	0.0	464	0.0	513	30.4	562	14.5
	416	0.0	465	0.0	514	27.0	563	11.5
	417	0.0	466	0.0	515	23.6	564	8.5
	418	0.0	467	0.0	516	21.0	565	5.6
	419	0.0	468	0.0	517	19.5	566	2.6
	420	0.0	469	0.0	518	17.6	567	0.0
	420	0.0	470	0.0	519	16.1	568	0.0
	422	0.0	470	0.0	520	14.5	569	0.0
	422	0.0	471	0.0	521	13.5	570	0.0
	423	0.0	472	0.0	522	13.7	570 571	0.0
	424	0.0	473 474	0.0	523	16.0	572	0.0
	423 426	0.0	474	0.0	523 524	18.1	573	0.0
	426 427	0.0	475 476	0.0	524 525	20.8	573 574	0.0
	427	0.0	476 477	0.0				0.0
	428 429	0.0	477 478	0.0	526 527	21.5	575 576	0.0
		0.0		0.0	527 528	22.5	576	0.0
	430	0.0	479		528	23.4	577 579	0.0
	431		480	0.0	529 520	24.5	578 570	
_	432	0.0	481	1.4	530	25.6	579	0.0

Time in s	Speed in km/h						
580	0.0						
581	0.0						
582	0.0						
583	0.0						
584	0.0						
585	0.0						
586	0.0						
587	0.0						
588	0.0						
589	0.0						

Table A1/4
WLTC, Class 2 vehicles Vehicles, phase Phase Medium₂

590 0.0 637 38.6 684 59.3 731 55.3 591 0.0 638 39.8 685 60.2 732 55.1 592 0.0 639 40.6 686 61.3 733 54.8 593 0.0 640 41.1 687 62.4 734 54.6 594 0.0 641 41.9 688 63.4 735 54.5 595 0.0 642 42.8 689 64.4 736 54.3 596 0.0 643 44.3 690 65.4 737 53.9 597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 69.5	Time in s	Smood in law/h	Time in s	Speed in low/b		Speed in km/h	Time in s	Speed in km/h
591 0.0 638 39.8 685 60.2 732 55.1 592 0.0 639 40.6 686 61.3 733 54.6 593 0.0 640 41.1 687 62.4 734 54.6 594 0.0 641 41.9 688 63.4 735 54.5 595 0.0 642 42.8 689 64.4 736 54.3 596 0.0 643 44.3 690 65.4 737 53.9 597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 600 0.0 646 48.9 693 68.0 740 51.5 600 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1								-
592 0.0 639 40.6 686 61.3 733 54.8 594 0.0 641 41.9 688 63.4 734 54.5 595 0.0 642 42.8 689 64.4 736 54.3 596 0.0 643 44.3 690 65.4 737 53.9 597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 600 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 600 1.6 648 82.0 695 69.5 742 48.7 601 1.6 6649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6								
593 0.0 640 41.1 687 62.4 734 54.6 594 0.0 641 41.9 688 63.4 735 54.5 595 0.0 642 42.8 689 64.4 736 54.3 596 0.0 643 44.3 690 65.4 737 53.9 597 0.0 644 45.7 691 66.3 738 53.9 598 0.0 645 47.4 692 67.2 739 52.6 600 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6								
594 0.0 641 41.9 688 63.4 735 54.5 595 0.0 642 42.8 689 65.4 737 737 53.9 597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 599 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 \$2.0 695 69.5 742 48.7 602 3.6 649 \$3.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 743 47.0 605 11.8 652 58.0 699								
595 0.0 642 42.8 689 64.4 736 54.3 596 0.0 643 44.3 690 65.4 737 53.9 597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 599 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.1 60.0 603 6.3 650 55.0 697 70.6 744 45.1 603 6.3 650 55.0 699 71.6 746 40.6 604 9.0 651 58.0								
596 0.0 643 44.3 690 65.4 737 53.9 597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 599 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 695 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2								
597 0.0 644 45.7 691 66.3 738 53.4 598 0.0 645 47.4 692 67.2 739 52.6 600 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 744 45.1 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8								
598 0.0 645 47.4 692 67.2 739 52.6 599 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5								
599 0.0 646 48.9 693 68.0 740 51.5 600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 662.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1								
600 0.0 647 50.6 694 68.8 741 50.2 601 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3								
601 1.6 648 52.0 695 69.5 742 48.7 602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3								
602 3.6 649 53.7 696 70.1 743 47.0 603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7								
603 6.3 650 55.0 697 70.6 744 45.1 604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 275 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9								
604 9.0 651 56.8 698 71.0 745 43.0 605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 38.6 708 70.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
605 11.8 652 58.0 699 71.6 746 40.6 606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
606 14.2 653 59.8 700 72.2 747 38.1 607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
607 16.6 654 61.1 701 72.8 748 35.4 608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
608 18.5 655 62.4 702 73.5 749 32.7 609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
609 20.8 656 63.0 703 74.1 750 30.0 610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
610 23.4 657 63.5 704 74.3 751 27.5 611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
611 26.9 658 63.0 705 74.3 752 25.3 612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
612 30.3 659 62.0 706 73.7 753 23.4 613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
613 32.8 660 60.4 707 71.9 754 22.0 614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
614 34.1 661 58.6 708 70.5 755 20.8 615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
615 34.2 662 56.7 709 68.9 756 19.8 616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
616 33.6 663 55.0 710 67.4 757 18.9 617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721								
617 32.1 664 53.7 711 66.0 758 18.0 618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722								
618 30.0 665 52.7 712 64.7 759 17.0 619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723	616	33.6	663	55.0	710	67.4	757	18.9
619 27.5 666 51.9 713 63.7 760 16.1 620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724		32.1	664	53.7	711	66.0	758	18.0
620 25.1 667 51.4 714 62.9 761 15.5 621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 </td <td>618</td> <td>30.0</td> <td>665</td> <td>52.7</td> <td>712</td> <td>64.7</td> <td>759</td> <td>17.0</td>	618	30.0	665	52.7	712	64.7	759	17.0
621 22.8 668 51.0 715 62.2 762 14.4 622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726	619	27.5	666	51.9	713	63.7	760	16.1
622 20.5 669 50.7 716 61.7 763 14.9 623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727	620	25.1	667	51.4	714	62.9	761	15.5
623 17.9 670 50.6 717 61.2 764 15.9 624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 </td <td>621</td> <td>22.8</td> <td>668</td> <td>51.0</td> <td>715</td> <td>62.2</td> <td>762</td> <td>14.4</td>	621	22.8	668	51.0	715	62.2	762	14.4
624 15.1 671 50.8 718 60.7 765 17.1 625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729	622	20.5	669	50.7	716	61.7	763	14.9
625 13.4 672 51.2 719 60.3 766 18.3 626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	623	17.9	670	50.6	717	61.2	764	15.9
626 12.8 673 51.7 720 59.9 767 19.4 627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	624	15.1	671	50.8	718	60.7	765	17.1
627 13.7 674 52.3 721 59.6 768 20.4 628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	625	13.4	672	51.2	719	60.3	766	18.3
628 16.0 675 53.1 722 59.3 769 21.2 629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	626	12.8	673	51.7	720	59.9	767	19.4
629 18.1 676 53.8 723 59.0 770 21.9 630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	627	13.7	674	52.3	721	59.6	768	20.4
630 20.8 677 54.5 724 58.6 771 22.7 631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	628	16.0	675	53.1	722	59.3	769	21.2
631 23.7 678 55.1 725 58.0 772 23.4 632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	629	18.1	676	53.8	723	59.0	770	21.9
632 26.5 679 55.9 726 57.5 773 24.2 633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	630	20.8	677	54.5	724	58.6	771	22.7
633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	631	23.7	678	55.1	725	58.0	772	23.4
633 29.3 680 56.5 727 56.9 774 24.3 634 32.0 681 57.1 728 56.3 775 24.2 635 34.5 682 57.8 729 55.9 776 24.1	632	26.5	679		726	57.5	773	24.2
635 34.5 682 57.8 729 55.9 776 24.1	633	29.3	680	56.5	727	56.9	774	24.3
	634	32.0	681	57.1	728	56.3	775	24.2
636 368 683 585 730 556 777 238	635	34.5	682	57.8	729	55.9	776	24.1
050 50.0 005 50.5 150 55.0 111 25.0	636	36.8	683	58.5	730	55.6	777	23.8

Speed in km/	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s
49.	925	46.9	876	59.9	827	23.0	778
48.	926	47.1	877	60.7	828	22.6	779
48.	927	47.5	878	61.4	829	21.7	780
47.	928	47.8	879	62.0	830	21.3	781
47.	929	48.3	880	62.5	831	20.3	782
46.	930	48.8	881	62.9	832	19.1	783
46.	931	49.5	882	63.2	833	18.1	784
46.	932	50.2	883	63.4	834	16.9	785
46.	933	50.8	884	63.7	835	16.0	786
46.	934	51.4	885	64.0	836	14.8	787
46.	935	51.8	886	64.4	837	14.5	788
46.	936	51.9	887	64.9	838	13.7	789
46.	937	51.7	888	65.5	839	13.5	790
46.	938	51.2	889	66.2	840	12.9	791
46.	939	50.4	890	67.0	841	12.7	792
46.	940	49.2	891	67.8	842	12.5	793
46.	941	47.7	892	68.6	843	12.5	794
46.	942	46.3	893	69.4	844	12.6	795
45.	943	45.1	894	70.1	845	13.0	796
45.	944	44.2	895	70.9	846	13.6	797
44.	945	43.7	896	70.9	847	14.6	798
44.	945	43.4	897	72.5	848	15.7	798 799
		43.4	897 898	73.2	849		
43.	947					17.1	800
43.	948	42.5	899	73.8	850	18.7	801
43.	949	41.8	900	74.4	851	20.2	802
43.	950	41.1	901	74.7	852	21.9	803
43.	951	40.3	902	74.7	853	23.6	804
43.	952	39.7	903	74.6	854	25.4	805
43.	953	39.3	904	74.2	855	27.1	806
43.	954	39.2	905	73.5	856	28.9	807
43.	955	39.3	906	72.6	857	30.4	808
42.	956	39.6	907	71.8	858	32.0	809
42.	957	40.0	908	71.0	859	33.4	810
42.	958	40.7	909	70.1	860	35.0	811
42.	959	41.4	910	69.4	861	36.4	812
42.	960	42.2	911	68.9	862	38.1	813
42.	961	43.1	912	68.4	863	39.7	814
42.	962	44.1	913	67.9	864	41.6	815
41.	963	44.9	914	67.1	865	43.3	816
41.	964	45.6	915	65.8	866	45.1	817
41.	965	46.4	916	63.9	867	46.9	818
41.	966	47.0	917	61.4	868	48.7	819
41.	967	47.8	918	58.4	869	50.5	820
40.	968	48.3	919	55.4	870	52.4	821
40.	969	48.9	920	52.4	871	54.1	822
39.	970	49.4	921	50.0	872	55.7	823
38.	971	49.8	922	48.3	873	56.8	824
37.	972	49.6	923	47.3	874	57.9	825
35.	973	49.3	924	46.8	875	59.0	826

	Time in s	Speed in km/h						
-	974	33.0						
	975	30.6						
	976	27.9						
	977	25.1						
	978	22.0						
	979	18.8						
	980	15.5						
	981	12.3						
	982	8.8						
	983	6.0						
	984	3.6						
	985	1.6						
	986	0.0						
	987	0.0						
	988	0.0						
	989	0.0						
	990	0.0						
	991	0.0						
	992	0.0						
	993	0.0						
	994	0.0						
	995	0.0						
	996	0.0						
	997	0.0						
	998	0.0						
	999	0.0						
	1000	0.0						
	1001	0.0						
	1002	0.0						
	1003	0.0						
	1004	0.0						
	1005	0.0						
	1006	0.0						
	1007	0.0						
	1008	0.0						
	1009	0.0						
	1010	0.0						
	1011	0.0						
	1012	0.0						
	1013	0.0						
	1014	0.0						
	1015	0.0						
	1016	0.0						
	1017	0.0						
	1018	0.0						
	1019	0.0						
	1020	0.0						
	1021	0.0						
	1022	0.0						

Table A1/5
WLTC, Class 2 vehicles Vehicles, pPhase High₂

	WLIC, Class 2 ¥	emeies v emei	es, pPnase Hign ₂				
Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
1023	0.0	1070	46.0	1117	73.9	1164	71.7
1024	0.0	1071	46.4	1118	74.9	1165	69.9
1025	0.0	1072	47.0	1119	75.7	1166	67.9
1026	0.0	1073	47.4	1120	76.4	1167	65.7
1027	1.1	1074	48.0	1121	77.1	1168	63.5
1028	3.0	1075	48.4	1122	77.6	1169	61.2
1029	5.7	1076	49.0	1123	78.0	1170	59.0
1030	8.4	1077	49.4	1124	78.2	1171	56.8
1031	11.1	1078	50.0	1125	78.4	1172	54.7
1032	14.0	1079	50.4	1126	78.5	1173	52.7
1033	17.0	1080	50.8	1127	78.5	1174	50.9
1034	20.1	1081	51.1	1128	78.6	1175	49.4
1035	22.7	1082	51.3	1129	78.7	1176	48.1
1036	23.6	1083	51.3	1130	78.9	1177	47.1
1037	24.5	1084	51.3	1131	79.1	1178	46.5
1038	24.8	1085	51.3	1132	79.4	1179	46.3
1039	25.1	1086	51.3	1133	79.8	1180	46.5
1040	25.3	1087	51.3	1134	80.1	1181	47.2
1041	25.5	1088	51.3	1135	80.5	1182	48.3
1042	25.7	1089	51.4	1136	80.8	1183	49.7
1043	25.8	1090	51.6	1137	81.0	1184	51.3
1044	25.9	1091	51.8	1138	81.2	1185	53.0
1045	26.0	1092	52.1	1139	81.3	1186	54.9
1046	26.1	1093	52.3	1140	81.2	1187	56.7
1047	26.3	1094	52.6	1141	81.0	1188	58.6
1048	26.5	1095	52.8	1142	80.6	1189	60.2
1049	26.8	1096	52.9	1143	80.0	1190	61.6
1050	27.1	1097	53.0	1144	79.1	1191	62.2
1051	27.5	1098	53.0	1145	78.0	1192	62.5
1052	28.0	1099	53.0	1146	76.8	1193	62.8
1053	28.6	1100	53.1	1147	75.5	1194	62.9
1054	29.3	1101	53.2	1148	74.1	1195	63.0
1055	30.4	1102	53.3	1149	72.9	1196	63.0
1056	31.8	1103	53.4	1150	71.9	1197	63.1
1057	33.7	1104	53.5	1151	71.2	1198	63.2
1058	35.8	1105	53.7	1152	70.9	1199	63.3
1059	37.8	1106	55.0	1153	71.0	1200	63.5
1060	39.5	1107	56.8	1154	71.5	1201	63.7
1061	40.8	1108	58.8	1155	72.3	1202	63.9
1062	41.8	1109	60.9	1156	73.2	1203	64.1
1063	42.4	1110	63.0	1157	74.1	1204	64.3
1064	43.0	1111	65.0	1158	74.9	1205	66.1
1065	43.4	1112	66.9	1159	75.4	1206	67.9
1066	44.0	1113	68.6	1160	75.5	1207	69.7
1067	44.4	1113	70.1	1161	75.2	1207	71.4
1068	45.0	1115	71.5	1162	74.5	1209	73.1
1069	45.4	1116	72.8	1163	73.3	1210	74.7
1009	43.4	1110	12.0	1103	13.3	1210	/4./

Time in s	Speed in km/h						
1211	76.2	1260	35.4	1309	72.3	1358	70.8
1212	77.5	1261	32.7	1310	71.9	1359	70.8
1213	78.6	1262	30.0	1311	71.3	1360	70.9
1214	79.7	1263	29.9	1312	70.9	1361	70.9
1215	80.6	1264	30.0	1313	70.5	1362	70.9
1216	81.5	1265	30.2	1314	70.0	1363	70.9
1217	82.2	1266	30.4	1315	69.6	1364	71.0
1218	83.0	1267	30.6	1316	69.2	1365	71.0
1219	83.7	1268	31.6	1317	68.8	1366	71.1
1220	84.4	1269	33.0	1318	68.4	1367	71.2
1221	84.9	1270	33.9	1319	67.9	1368	71.3
1222	85.1	1271	34.8	1320	67.5	1369	71.4
1223	85.2	1272	35.7	1321	67.2	1370	71.5
1224	84.9	1273	36.6	1322	66.8	1371	71.7
1225	84.4	1274	37.5	1323	65.6	1372	71.8
1226	83.6	1275	38.4	1324	63.3	1373	71.9
1227	82.7	1276	39.3	1325	60.2	1374	71.9
1228	81.5	1277	40.2	1326	56.2	1375	71.9
1229	80.1	1278	40.8	1327	52.2	1376	71.9
1230	78.7	1279	41.7	1328	48.4	1377	71.9
1231	77.4	1280	42.4	1329	45.0	1378	71.9
1232	76.2	1281	43.1	1330	41.6	1379	71.9
1233	75.4	1282	43.6	1331	38.6	1380	72.0
1234	74.8	1283	44.2	1332	36.4	1381	72.1
1235	74.3	1284	44.8	1333	34.8	1382	72.4
1236	73.8	1285	45.5	1334	34.2	1383	72.7
1237	73.2	1286	46.3	1335	34.7	1384	73.1
1238	72.4	1287	47.2	1336	36.3	1385	73.4
1239	71.6	1288	48.1	1337	38.5	1386	73.4
1240	70.8	1289	49.1	1338	41.0	1387	74.0
1241	69.9	1290	50.0	1339	43.7	1388	74.0
1241	67.9	1291	51.0	1340	46.5	1389	74.1
1242	65.7	1292	51.9	1341	49.1	1390	73.0
1243	63.5	1292	52.7	1341	51.6	1390	73.0
1244	61.2	1293	53.7	1342	53.9	1391	72.0
1245	59.0	1294	55.0	1343	56.0	1392	70.0
1240	56.8	1293	56.8	1344	57.9	1393	69.0
1247	54.7	1290	58.8	1345	59.7	1394	68.0
1248	52.7	1297	50.0 60.9	1346	61.2	1393	67.7
1249	50.9	1298	63.0				
				1348	62.5	1397	66.7
1251	49.4	1300	65.0	1349	63.5	1398	66.6
1252	48.1	1301	66.9	1350	64.3	1399	66.7
1253	47.1	1302	68.6	1351	65.3	1400	66.8
1254	46.5	1303	70.1	1352	66.3	1401	66.9
1255	46.3	1304	71.0	1353	67.3	1402	66.9
1256	45.1	1305	71.8	1354	68.3	1403	66.9
1257	43.0	1306	72.8	1355	69.3	1404	66.9
1258	40.6	1307	72.9	1356	70.3	1405	66.9
 1259	38.1	1308	73.0	1357	70.8	1406	66.9

Time in s	Speed in km/h						
1407	66.9	1456	0.0				
1408	67.0	1457	0.0				
1409	67.1	1458	0.0				
1410	67.3	1459	0.0				
1411	67.5	1460	0.0				
1412	67.8	1461	0.0				
1413	68.2	1462	0.0				
1414	68.6	1463	0.0				
1415	69.0	1464	0.0				
1416	69.3	1465	0.0				
1417	69.3	1466	0.0				
1418	69.2	1467	0.0				
1419	68.8	1468	0.0				
1420	68.2	1469	0.0				
1421	67.6	1470	0.0				
1422	67.4	1471	0.0				
1423	67.2	1472	0.0				
1424	66.9	1473	0.0				
1425	66.3	1474	0.0				
1426	65.4	1475	0.0				
1427	64.0	1476	0.0				
1428	62.4	1477	0.0				
1429	60.6	14//	0.0				
1430	58.6						
1431	56.7						
1431	54.8						
1432	53.0						
1433	51.3						
1434	49.6						
1436	47.8						
1437	45.5						
1438	42.8						
1439	39.8						
1440	36.5						
1441	33.0						
1442	29.5						
1443	25.8						
1444	22.1						
1445	18.6						
1446	15.3						
1447	12.4						
1448	9.6						
1449	6.6						
1450	3.8						
1451	1.6						
1452	0.0						
1453	0.0						
1454	0.0						
1455	0.0						

Table A1/6 WLTC, Class 2 vehicles Vehicles, pPhase Extra High₂

ļ			cs, prinase Extra				
Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
1478	0.0	1525	63.4	1572	107.4	1619	113.7
1479	1.1	1526	64.5	1573	108.7	1620	114.1
1480	2.3	1527	65.7	1574	109.9	1621	114.4
1481	4.6	1528	66.9	1575	111.2	1622	114.6
1482	6.5	1529	68.1	1576	112.3	1623	114.7
1483	8.9	1530	69.1	1577	113.4	1624	114.7
1484	10.9	1531	70.0	1578	114.4	1625	114.7
1485	13.5	1532	70.9	1579	115.3	1626	114.6
1486	15.2	1533	71.8	1580	116.1	1627	114.5
1487	17.6	1534	72.6	1581	116.8	1628	114.5
1488	19.3	1535	73.4	1582	117.4	1629	114.5
1489	21.4	1536	74.0	1583	117.7	1630	114.7
1490	23.0	1537	74.7	1584	118.2	1631	115.0
1491	25.0	1538	75.2	1585	118.1	1632	115.6
1492	26.5	1539	75.7	1586	117.7	1633	116.4
1493	28.4	1540	76.4	1587	117.0	1634	117.3
1494	29.8	1541	77.2	1588	116.1	1635	118.2
1495	31.7	1542	78.2	1589	115.2	1636	118.8
1496	33.7	1543	78.9	1590	114.4	1637	119.3
1497	35.8	1544	79.9	1591	113.6	1638	119.6
1498	38.1	1545	81.1	1592	113.0	1639	119.7
1499	40.5	1546	82.4	1593	112.6	1640	119.5
1500	42.2	1547	83.7	1594	112.2	1641	119.3
1501	43.5	1548	85.4	1595	111.9	1642	119.2
1502	44.5	1549	87.0	1596	111.6	1643	119.0
1503	45.2	1550	88.3	1597	111.2	1644	118.8
1504	45.8	1551	89.5	1598	110.7	1645	118.8
1505	46.6	1552	90.5	1599	110.1	1646	118.8
1506	47.4	1553	91.3	1600	109.3	1647	118.8
1507	48.5	1554	92.2	1601	108.4	1648	118.8
1508	49.7	1555	93.0	1602	107.4	1649	118.9
1509	51.3	1556	93.8	1603	106.7	1650	119.0
1510	52.9	1557	94.6	1604	106.3	1651	119.0
1511	54.3	1558	95.3	1605	106.2	1652	119.1
1512	55.6	1559	95.9	1606	106.4	1653	119.2
1513	56.8	1560	96.6	1607	107.0	1654	119.4
1514	57.9	1561	97.4	1608	107.5	1655	119.6
1515	58.9	1562	98.1	1609	107.9	1656	119.9
1516	59.7	1563	98.7	1610	108.4	1657	120.1
1517	60.3	1564	99.5	1611	108.9	1658	120.3
1518	60.7	1565	100.3	1612	109.5	1659	120.4
1519	60.9	1566	101.1	1613	110.2	1660	120.5
1520	61.0	1567	101.9	1614	110.9	1661	120.5
1521	61.1	1568	102.8	1615	111.6	1662	120.5
1522	61.4	1569	103.8	1616	112.2	1663	120.5
1523	61.8	1570	105.0	1617	112.8	1664	120.4
1524	62.5	1571	106.1	1618	113.3	1665	120.3
132-7	02.3	1.7/1	100.1	1010	113.3	1005	120.5

Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/l
1666	120.1	1715	120.4	1764	82.6		
1667	119.9	1716	120.8	1765	81.9		
1668	119.6	1717	121.1	1766	81.1		
1669	119.5	1718	121.6	1767	80.0		
1670	119.4	1719	121.8	1768	78.7		
1671	119.3	1720	122.1	1769	76.9		
1672	119.3	1721	122.4	1770	74.6		
1673	119.4	1722	122.7	1771	72.0		
1674	119.5	1723	122.8	1772	69.0		
1675	119.5	1724	123.1	1773	65.6		
1676	119.6	1725	123.1	1774	62.1		
1677	119.6	1726	122.8	1775	58.5		
1678	119.6	1727	122.3	1776	54.7		
1679	119.4	1728	121.3	1777	50.9		
1680	119.3	1729	119.9	1778	47.3		
1681	119.0	1730	118.1	1779	43.8		
1682	118.8	1731	115.9	1780	40.4		
1683	118.7	1732	113.5	1781	37.4		
1684	118.8	1733	111.1	1781	34.3		
1685	119.0	1734	108.6	1783	31.3		
1686	119.0	1735	106.2	1783	28.3		
1687	119.2	1736	100.2	1784	25.2		
1688	120.0				22.0		
		1737	101.1	1786			
1689	120.3	1738	98.3	1787	18.9		
1690	120.5	1739	95.7	1788	16.1		
1691	120.7	1740	93.5	1789	13.4		
1692	120.9	1741	91.5	1790	11.1		
1693	121.0	1742	90.7	1791	8.9		
1694	121.1	1743	90.4	1792	6.9		
1695	121.2	1744	90.2	1793	4.9		
1696	121.3	1745	90.2	1794	2.8		
1697	121.4	1746	90.1	1795	0.0		
1698	121.5	1747	90.0	1796	0.0		
1699	121.5	1748	89.8	1797	0.0		
1700	121.5	1749	89.6	1798	0.0		
1701	121.4	1750	89.4	1799	0.0		
1702	121.3	1751	89.2	1800	0.0		
1703	121.1	1752	88.9				
1704	120.9	1753	88.5				
1705	120.6	1754	88.1				
1706	120.4	1755	87.6				
1707	120.2	1756	87.1				
1708	120.1	1757	86.6				
1709	119.9	1758	86.1				
1710	119.8	1759	85.5				
1711	119.8	1760	85.0				
1712	119.9	1761	84.4				
1713	120.0	1762	83.8				
1714	120.2	1763	83.2				

6. WLTC for Class 3 vehicles

Figure A1/7
WLTC, Class 3 vehicles Vehicles, phase Phase Low3

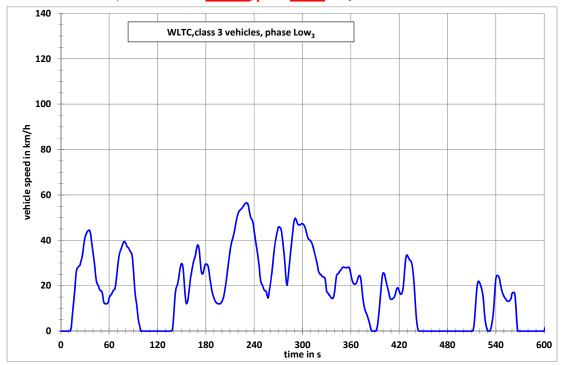


Figure A1/8
WLTC, Class 3 vehicles Vehicles, phase Phase Medium₃₋₁

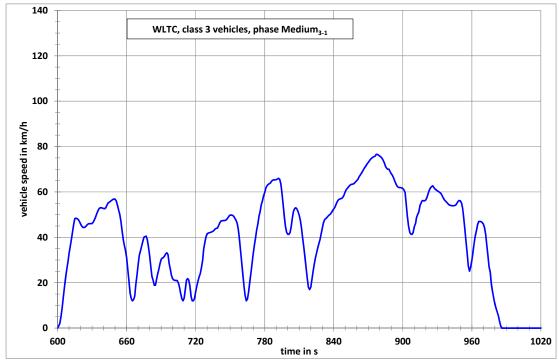


Figure A1/9
WLTC, Class 3 vehicles Vehicles, phase Phase Medium₃₋₂

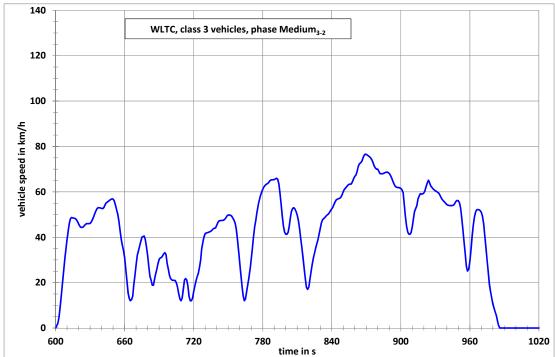


Figure A1/10 WLTC, Class 3 vehicles Vehicles, phase Phase High₃₋₁



Figure A1/11
WLTC, Class 3 vehicles Vehicles, phase Phase High₃₋₂

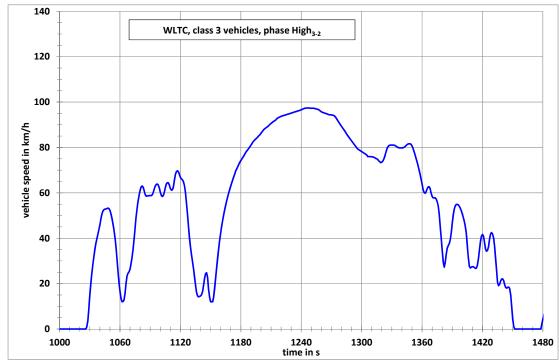


Figure A1/12 WLTC, Class 3 vehicles Vehicles, phase Phase Extra High₃

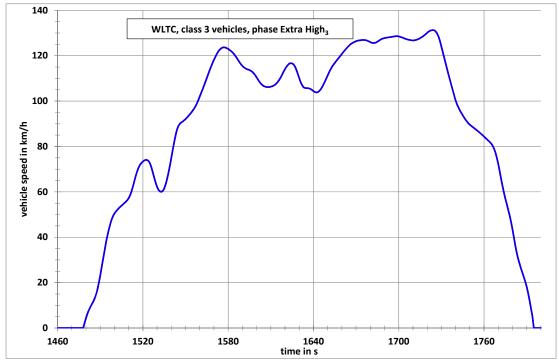


Table A1/7
WLTC, Class 3 vehicles Vehicles, phase Phase Low₃

Trii			es, pnase Pnase L		Constitution //s	Tri i	Speed in km/h
Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	•
0	0.0	47	19.5	94	12.0	141	11.7
1	0.0	48	18.4	95	9.1	142	16.4
2	0.0	49	17.8	96	5.8	143	18.9
3	0.0	50	17.8	97	3.6	144	19.9
4	0.0	51	17.4	98	2.2	145	20.8
5	0.0	52	15.7	99	0.0	146	22.8
6	0.0	53	13.1	100	0.0	147	25.4
7	0.0	54	12.1	101	0.0	148	27.7
8	0.0	55	12.0	102	0.0	149	29.2
9	0.0	56	12.0	103	0.0	150	29.8
10	0.0	57	12.0	104	0.0	151	29.4
11	0.0	58	12.3	105	0.0	152	27.2
12	0.2	59	12.6	106	0.0	153	22.6
13	1.7	60	14.7	107	0.0	154	17.3
14	5.4	61	15.3	108	0.0	155	13.3
15	9.9	62	15.9	109	0.0	156	12.0
16	13.1	63	16.2	110	0.0	157	12.6
17	16.9	64	17.1	111	0.0	158	14.1
18	21.7	65	17.8	112	0.0	159	17.2
19	26.0	66	18.1	113	0.0	160	20.1
20	27.5	67	18.4	114	0.0	161	23.4
21	28.1	68	20.3	115	0.0	162	25.5
22	28.3	69	23.2	116	0.0	163	27.6
23	28.8	70	26.5	117	0.0	164	29.5
24	29.1	71	29.8	118	0.0	165	31.1
25	30.8	72	32.6	119	0.0	166	32.1
26	31.9	73	34.4	120	0.0	167	33.2
27	34.1	74	35.5	121	0.0	168	35.2
28	36.6	75	36.4	122	0.0	169	37.2
29	39.1	76	37.4	123	0.0	170	38.0
30	41.3	77	38.5	124	0.0	171	37.4
31	42.5	78	39.3	125	0.0	172	35.1
32	43.3	79	39.5	126	0.0	173	31.0
33	43.9	80	39.0	127	0.0	174	27.1
34	44.4	81	38.5	128	0.0	175	25.3
35	44.5	82	37.3	129	0.0	176	25.1
36	44.2	83	37.0	130	0.0	177	25.9
37	42.7	84	36.7	131	0.0	178	27.8
38	39.9	85	35.9	132	0.0	179	29.2
39	37.0	86	35.3	133	0.0	180	29.6
40	34.6	87	34.6	134	0.0	181	29.5
41	32.3	88	34.2	135	0.0	182	29.2
42	29.0	89	31.9	136	0.0	183	28.3
43	25.1	90	27.3	137	0.0	184	26.1
44	22.2	91	22.0	138	0.2	185	23.6
45	20.9	92	17.0	139	1.9	186	21.0
46	20.4	93	14.2	140	6.1	187	18.9

	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
	188	17.1	237	49.2	286	37.4	335	15.0
	189	15.7	238	48.4	287	40.7	336	14.5
	190	14.5	239	46.9	288	44.0	337	14.3
	191	13.7	240	44.3	289	47.3	338	14.5
	192	12.9	241	41.5	290	49.2	339	15.4
	193	12.5	242	39.5	291	49.8	340	17.8
	194	12.2	243	37.0	292	49.2	341	21.1
	195	12.0	244	34.6	293	48.1	342	24.1
	196	12.0	245	32.3	294	47.3	343	25.0
	197	12.0	246	29.0	295	46.8	344	25.3
	198	12.0	247	25.1	296	46.7	345	25.5
	199	12.5	248	22.2	297	46.8	346	26.4
	200	13.0	249	20.9	298	47.1	347	26.6
	201	14.0	250	20.4	299	47.3	348	27.1
	202	15.0	251	19.5	300	47.3	349	27.7
	203	16.5	252	18.4	301	47.1	350	28.1
	204	19.0	253	17.8	302	46.6	351	28.2
	205	21.2	254	17.8	303	45.8	352	28.1
	206	23.8	255	17.4	304	44.8	353	28.0
	207	26.9	256	15.7	305	43.3	354	27.9
	208	29.6	257	14.5	306	41.8	355	27.9
	209	32.0	258	15.4	307	40.8	356	28.1
	210	35.2	259	17.9	308	40.3	357	28.2
	211	37.5	260	20.6	309	40.1	358	28.0
	212	39.2	261	23.2	310	39.7	359	26.9
	213	40.5	262	25.7	311	39.2	360	25.0
	214	41.6	263	28.7	312	38.5	361	23.2
	215	43.1	264	32.5	313	37.4	362	21.9
	216	45.0	265	36.1	314	36.0	363	21.1
	217	47.1	266	39.0	315	34.4	364	20.7
	218	49.0	267	40.8	316	33.0	365	20.7
	219	50.6	268	42.9	317	31.7	366	20.8
	220	51.8	269	44.4	318	30.0	367	21.2
	221	52.7	270	45.9	319	28.0	368	22.1
	222	53.1	271	46.0	320	26.1	369	23.5
	223	53.5	272	45.6	321	25.6	370	24.3
	224	53.8	273	45.3	322	24.9	371	24.5
	225	54.2	274	43.7	323	24.9	372	23.8
	226	54.8	275	40.8	324	24.3	373	21.3
	227	55.3	276	38.0	325	23.9	374	17.7
	228	55.8	277	34.4	326	23.9	375	14.4
	229	56.2	277	30.9	327	23.9	373 376	11.9
	230	56.5	278 279	25.5	328	23.3	370	10.2
	230	56.5	280	23.3	328 329	23.3	377	8.9
	231	56.2	280	20.2	330	20.3 17.5	378 379	8.9
	232	54.9	282	20.2	331	17.3	380	7.2
	233	52.9	283	26.6	332	16.7	381	6.1
	234	51.0	283 284	30.2	332	15.7	381	4.9
	235	51.0 49.8	284 285		333 334		382	
_	236	49.8	285	34.1	334	15.6	383	3.7

Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
384	2.3	433	31.3	482	0.0	531	0.0
385	0.9	434	31.1	483	0.0	532	0.0
386	0.0	435	30.6	484	0.0	533	0.2
387	0.0	436	29.2	485	0.0	534	1.2
388	0.0	437	26.7	486	0.0	535	3.2
389	0.0	438	23.0	487	0.0	536	5.2
390	0.0	439	18.2	488	0.0	537	8.2
391	0.0	440	12.9	489	0.0	538	13
392	0.5	441	7.7	490	0.0	539	18.8
393	2.1	442	3.8	491	0.0	540	23.1
394	4.8	443	1.3	492	0.0	541	24.5
395	8.3	444	0.2	493	0.0	542	24.5
396	12.3	445	0.0	494	0.0	543	24.3
397	16.6	446	0.0	495	0.0	544	23.6
398	20.9	447	0.0	496	0.0	545	22.3
399	24.2	448	0.0	497	0.0	546	20.1
400	25.6	448 449	0.0	497	0.0	547	
			0.0		0.0		18.5
401	25.6	450		499		548	17.2
402	24.9	451	0.0	500	0.0	549	16.3
403	23.3	452	0.0	501	0.0	550	15.4
404	21.6	453	0.0	502	0.0	551	14.7
405	20.2	454	0.0	503	0.0	552	14.3
406	18.7	455	0.0	504	0.0	553	13.7
407	17.0	456	0.0	505	0.0	554	13.3
408	15.3	457	0.0	506	0.0	555	13.1
409	14.2	458	0.0	507	0.0	556	13.1
410	13.9	459	0.0	508	0.0	557	13.3
411	14.0	460	0.0	509	0.0	558	13.8
412	14.2	461	0.0	510	0.0	559	14.5
413	14.5	462	0.0	511	0.0	560	16.5
414	14.9	463	0.0	512	0.5	561	17.0
415	15.9	464	0.0	513	2.5	562	17.0
416	17.4	465	0.0	514	6.6	563	17.0
417	18.7	466	0.0	515	11.8	564	15.4
418	19.1	467	0.0	516	16.8	565	10.1
419	18.8	468	0.0	517	20.5	566	4.8
420	17.6	469	0.0	518	21.9	567	0.0
421	16.6	470	0.0	519	21.9	568	0.0
422	16.2	471	0.0	520	21.3	569	0.0
423	16.4	472	0.0	521	20.3	570	0.0
424	17.2	473	0.0	522	19.2	571	0.0
424	17.2	473 474	0.0	523	17.8	572	0.0
			0.0				0.0
426	22.6	475		524 525	15.5	573 574	0.0
427	27.4	476	0.0	525	11.9	574	
428	31.6	477	0.0	526	7.6	575	0.0
429	33.4	478	0.0	527	4.0	576	0.0
430	33.5	479	0.0	528	2.0	577	0.0
431	32.8	480	0.0	529	1.0	578	0.0
432	31.9	481	0.0	530	0.0	579	0.0

ECE/TRANS/WP.29/2014/27

l

Time in s	Speed in km/h						
580	0.0						
581	0.0						
582	0.0						
583	0.0						
584	0.0						
585	0.0						
586	0.0						
587	0.0						
588	0.0						
589	0.0						

Table A1/8
WLTC, Class 3 vehicles Vehicles, pPhase Medium₃₋₁

Time in s	Speed in km/h						
590	0.0	637	53.0	684	18.9	731	41.9
591	0.0	638	53.0	685	18.9	732	42.0
592	0.0	639	52.9	686	21.3	733	42.2
593	0.0	640	52.7	687	23.9	734	42.4
594	0.0	641	52.6	688	25.9	735	42.7
595	0.0	642	53.1	689	28.4	736	43.1
596	0.0	643	54.3	690	30.3	737	43.7
597	0.0	644	55.2	691	30.9	738	44.0
598	0.0	645	55.5	692	31.1	739	44.1
599	0.0	646	55.9	693	31.8	740	45.3
600	0.0	647	56.3	694	32.7	741	46.4
601	1.0	648	56.7	695	33.2	742	47.2
602	2.1	649	56.9	696	32.4	743	47.3
603	5.2	650	56.8	697	28.3	744	47.4
604	9.2	651	56.0	698	25.8	745	47.4
605	13.5	652	54.2	699	23.1	746	47.5
606	18.1	653	52.1	700	21.8	747	47.9
607	22.3	654	50.1	701	21.2	748	48.6
608	26.0	655	47.2	702	21.0	749	49.4
609	29.3	656	43.2	703	21.0	750	49.8
610	32.8	657	39.2	704	20.9	751	49.8
611	36.0	658	36.5	705	19.9	752	49.7
612	39.2	659	34.3	706	17.9	753	49.3
613	42.5	660	31.0	707	15.1	754	48.5
614	45.7	661	26.0	707	12.8	755	47.6
615	48.2	662	20.7	709	12.0	756	46.3
616	48.4	663	15.4	710	13.2	757	43.7
617	48.2	664	13.1	711	17.1	758	39.3
618	47.8	665	12.0	711	21.1	759	34.1
619	47.0	666	12.5	713	21.8	760	29.0
620	45.9	667	14.0	713	21.2	761	23.7
621	44.9	668	14.0	715	18.5	761	18.4
622	44.4	669	23.2	716	13.9	763	14.3
623	44.3	670	28.0	717	12.0	763 764	12.0
624	44.5	671	32.0	717	12.0	765	12.8
625	45.1	672	34.0	719	13.0	765 766	16.0
626	45.1	673	36.0	719		760 767	20.4
627	46.0	674	38.0	720 721	16.3 20.5	767 768	24.0
628 629	46.0 46.0	675 676	40.0 40.3	722 723	23.9	769 770	29.0
				723 724	26.0	770 771	32.2
630	46.1	677	40.5	724 725	28.0	771 772	36.8
631	46.7	678 670	39.0	725 726	31.5	772 773	39.4
632 633	47.7 48.9	679 680	35.7 31.8	726 727	33.4	773 774	43.2
		680			36.0		45.8
634	50.3 51.6	681 682	27.1	728 720	37.8	775 776	49.2 51.4
635	51.6	682	22.8	729 720	40.2	776	51.4
636	52.6	683	21.1	730	41.6	777	54.2

Time in s	Speed in km/h						
778	56.0	827	37.1	876	75.8	925	62.3
779	58.3	828	38.9	877	76.6	926	62.7
780	59.8	829	41.4	878	76.5	927	62.0
781	61.7	830	44.0	879	76.2	928	61.3
782	62.7	831	46.3	880	75.8	929	60.9
783	63.3	832	47.7	881	75.4	930	60.5
784	63.6	833	48.2	882	74.8	931	60.2
785	64.0	834	48.7	883	73.9	932	59.8
786	64.7	835	49.3	884	72.7	933	59.4
787	65.2	836	49.8	885	71.3	934	58.6
788	65.3	837	50.2	886	70.4	935	57.5
789	65.3	838	50.9	887	70.0	936	56.6
790	65.4	839	51.8	888	70.0	937	56.0
791	65.7	840	52.5	889	69.0	938	55.5
792	66.0	841	53.3	890	68.0	939	55.0
793	65.6	842	54.5	891	67.3	940	54.4
794	63.5	843	55.7	892	66.2	941	54.1
795	59.7	844	56.5	893	64.8	942	54.0
796	54.6	845	56.8	894	63.6	943	53.9
797	49.3	846	57.0	895	62.6	944	53.9
798	44.9	847	57.2	896	62.1	945	54.0
799	42.3	848	57.7	897	61.9	946	54.2
800	41.4	849	58.7	898	61.9	947	55.0
801	41.3	850	60.1	899	61.8	948	55.8
802	43.0	851	61.1	900	61.5	949	56.2
803	45.0	852	61.7	901	60.9	950	56.1
804	46.5	853	62.3	902	59.7	951	55.1
805	48.3	854	62.9	903	54.6	952	52.7
806	49.5	855	63.3	904	49.3	953	48.4
807	51.2	856	63.4	905	44.9	954	43.1
808	52.2	857	63.5	906	42.3	955	37.8
809	51.6	858	63.9	907	41.4	956	32.5
810	49.7	859	64.4	908	41.3	957	27.2
811	47.4	860	65.0	909	42.1	958	25.1
812	43.7	861	65.6	910	44.7	959	27.0
813	39.7	862	66.6	911	46.0	960	29.8
814	35.5	863	67.4	912	48.8	961	33.8
815	31.1	864	68.2	913	50.1	962	37.0
816	26.3	865	69.1	914	51.3	963	40.7
817	21.9	866	70.0	915	54.1	964	43.0
818	18.0	867	70.8	916	55.2	965	45.6
819	17.0	868	71.5	917	56.2	966	46.9
820	18.0	869	72.4	918	56.1	967	47.0
821	21.4	870	73.0	919	56.1	968	46.9
822	24.8	871	73.7	920	56.5	969	46.5
823	27.9	872	74.4	921	57.5	970	45.8
824	30.8	873	74.9	922	59.2	971	44.3
825	33.0	874	75.3	923	60.7	972	41.3
826	35.1	875	75.6	924	61.8	973	36.5

Time in s	Speed in km/h						
974	31.7						
975	27.0						
976	24.7						
977	19.3						
978	16.0						
979	13.2						
980	10.7						
981	8.8						
982	7.2						
983	5.5						
984	3.2						
985	1.1						
986	0.0						
987	0.0						
988	0.0						
989	0.0						
990	0.0						
991	0.0						
992	0.0						
993	0.0						
994	0.0						
995	0.0						
996	0.0						
997	0.0						
998	0.0						
999	0.0						
1000	0.0						
1001	0.0						
1002	0.0						
1003	0.0						
1004	0.0						
1005	0.0						
1006	0.0						
1007	0.0						
1008	0.0						
1009	0.0						
1010	0.0						
1011	0.0						
1012	0.0						
1013	0.0						
1014	0.0						
1015	0.0						
1016	0.0						
1017	0.0						
1018	0.0						
1019	0.0						
1020	0.0						
1021	0.0						
1022	0.0						

Table A1/9 WLTC, Class 3 vehicles Vehicles, phase Phase Medium₃₋₂

Time in s	Speed in km/h						
590	0.0	637	53.0	684	18.9	731	41.9
591	0.0	638	53.0	685	18.9	731	42.0
592	0.0	639	52.9	686	21.3	732	42.0
593	0.0	640	52.7	687	23.9	733	42.4
594	0.0	641	52.6	688	25.9	734	42.4
595	0.0	642		689			
595 596	0.0	643	53.1		28.4 30.3	736	43.1 43.7
597	0.0	643 644	54.3	690 691	30.3	737 738	44.0
598	0.0	645	55.2 55.5	692	30.9	738 739	44.0 44.1
599	0.0	646	55.9	693	31.1	739 740	45.3
600	0.0	647	56.3	694	31.8		45.3
601	1.0	648	56.7	695	33.2	741 742	47.2
602	2.1	649	56.9		32.4	742	47.2
603	4.8	650		696			
604	4.8 9.1	651	56.8 56.0	697	28.3	744 745	47.4
				698	25.8	745	47.4
605	14.2	652 653	54.2	699	23.1	746	47.5
606	19.8	653	52.1	700	21.8	747	47.9
607	25.5	654	50.1	701	21.2	748 740	48.6
608	30.5	655	47.2	702	21.0	749	49.4
609	34.8	656	43.2	703	21.0	750 751	49.8
610	38.8	657	39.2	704	20.9	751 752	49.8
611	42.9	658	36.5	705	19.9	752 753	49.7
612	46.4	659	34.3	706	17.9	753	49.3
613	48.3	660	31.0	707	15.1	754	48.5
614	48.7	661	26.0	708	12.8	755 756	47.6
615	48.5	662	20.7	709	12.0	756 757	46.3
616	48.4	663	15.4	710	13.2	757	43.7
617	48.2	664	13.1	711	17.1	758 750	39.3
618	47.8	665	12.0	712	21.1	759 760	34.1
619 620	47.0 45.9	666	12.5 14.0	713	21.8	760 761	29.0
621	44.9	667 668		714	21.2 18.5	761 762	23.7
622	44.4	669	19.0 23.2	715	13.9	762 763	18.4
623	44.4	670	28.0	716 717	12.0		14.3 12.0
624	44.5	671	32.0	717	12.0	764 765	12.0
625	44.3 45.1	672	34.0	718	13.0	765 766	16.0
626	45.7	673	36.0	719	16.0	767	19.1
627	46.0	674	38.0	720	18.5	768	22.4
628	46.0	675	40.0	721	20.6	769	25.6
629	46.0	676	40.0	723	22.5	770	30.1
630	46.1	677	40.5	724	24.0	770 771	35.3
631	46.1 46.7	678	39.0	724	24.0	771	39.9
632	46.7 47.7	678 679	39.0 35.7	725 726	29.9	772	39.9 44.5
633	47.7	680	31.8	726	34.8	773 774	44.3 47.5
634		681	27.1	727	34.8 37.8	774	50.9
635	50.3 51.6	682	27.1	728	40.2	775 776	54.1
636		683		730			
030	52.6	083	21.1	/30	41.6	777	56.3

Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
778	58.1	827	37.1	876	72.7	925	64.1
779	59.8	828	38.9	877	71.3	926	62.7
780	61.1	829	41.4	878	70.4	927	62.0
781	62.1	830	44.0	879	70.0	928	61.3
782	62.8	831	46.3	880	70.0	929	60.9
783	63.3	832	47.7	881	69.0	930	60.5
784	63.6	833	48.2	882	68.0	931	60.2
785	64.0	834	48.7	883	68.0	932	59.8
786	64.7	835	49.3	884	68.0	933	59.4
787	65.2	836	49.8	885	68.1	934	58.6
788	65.3	837	50.2	886	68.4	935	57.5
789	65.3	838	50.9	887	68.6	936	56.6
790	65.4	839	51.8	888	68.7	937	56.0
791	65.7	840	52.5	889	68.5	938	55.5
792	66.0	841	53.3	890	68.1	939	55.0
793	65.6	842	54.5	891	67.3	940	54.4
794	63.5	843	55.7	892	66.2	941	54.1
795	59.7	844	56.5	893	64.8	942	54.0
796	54.6	845	56.8	894	63.6	943	53.9
797	49.3	846	57.0	895	62.6	944	53.9
798	44.9	847	57.0 57.2	896	62.1	945	54.0
798 799	42.3	848	57.2 57.7	897	61.9	945	54.0
800	42.3	849	58.7	897 898	61.9	940 947	55.0
				899			
801	41.3	850	60.1		61.8	948	55.8
802	42.1	851	61.1	900	61.5	949	56.2
803	44.7	852	61.7	901	60.9	950	56.1
804	48.4	853	62.3	902	59.7	951	55.1
805	51.4	854	62.9	903	54.6	952	52.7
806	52.7	855	63.3	904	49.3	953	48.4
807	53.0	856	63.4	905	44.9	954	43.1
808	52.5	857	63.5	906	42.3	955	37.8
809	51.3	858	64.5	907	41.4	956	32.5
810	49.7	859	65.8	908	41.3	957	27.2
811	47.4	860	66.8	909	42.1	958	25.1
812	43.7	861	67.4	910	44.7	959	26.0
813	39.7	862	68.8	911	48.4	960	29.3
814	35.5	863	71.1	912	51.4	961	34.6
815	31.1	864	72.3	913	52.7	962	40.4
816	26.3	865	72.8	914	54.0	963	45.3
817	21.9	866	73.4	915	57.0	964	49.0
818	18.0	867	74.6	916	58.1	965	51.1
819	17.0	868	76.0	917	59.2	966	52.1
820	18.0	869	76.6	918	59.0	967	52.2
821	21.4	870	76.5	919	59.1	968	52.1
822	24.8	871	76.2	920	59.5	969	51.7
823	27.9	872	75.8	921	60.5	970	50.9
824	30.8	873	75.4	922	62.3	971	49.2
825	33.0	874	74.8	923	63.9	972	45.9
826	35.1	875	73.9	924	65.1	973	40.6

Time in s	Speed in km/h						
974	35.3						
975	30.0						
976	24.7						
977	19.3						
978	16.0						
979	13.2						
980	10.7						
981	8.8						
982	7.2						
983	5.5						
984	3.2						
985	1.1						
986	0.0						
987	0.0						
988	0.0						
989	0.0						
990	0.0						
991	0.0						
992	0.0						
993	0.0						
994	0.0						
995	0.0						
996	0.0						
997	0.0						
998	0.0						
999	0.0						
1000	0.0						
1001	0.0						
1002	0.0						
1003	0.0						
1004	0.0						
1005	0.0						
1006	0.0						
1007	0.0						
1008	0.0						
1009	0.0						
1010	0.0						
1011	0.0						
1012	0.0						
1013	0.0						
1014	0.0						
1015	0.0						
1016	0.0						
1017	0.0						
1018	0.0						
1019	0.0						
1020	0.0						
1021	0.0						
1022	0.0						

Table A1/10 WLTC, Class 3 <u>vehicles</u> <u>PP</u>hase High₃₋₁

	WLTC, Class 3 ve						
Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
1023	0.0	1070	29.0	1117	66.2	1164	52.6
1024	0.0	1071	32.0	1118	65.8	1165	54.5
1025	0.0	1072	34.8	1119	64.7	1166	56.6
1026	0.0	1073	37.7	1120	63.6	1167	58.3
1027	0.8	1074	40.8	1121	62.9	1168	60.0
1028	3.6	1075	43.2	1122	62.4	1169	61.5
1029	8.6	1076	46.0	1123	61.7	1170	63.1
1030	14.6	1077	48.0	1124	60.1	1171	64.3
1031	20.0	1078	50.7	1125	57.3	1172	65.7
1032	24.4	1079	52.0	1126	55.8	1173	67.1
1033	28.2	1080	54.5	1127	50.5	1174	68.3
1034	31.7	1081	55.9	1128	45.2	1175	69.7
1035	35.0	1082	57.4	1129	40.1	1176	70.6
1036	37.6	1083	58.1	1130	36.2	1177	71.6
1037	39.7	1084	58.4	1131	32.9	1178	72.6
1038	41.5	1085	58.8	1132	29.8	1179	73.5
1039	43.6	1086	58.8	1133	26.6	1180	74.2
1040	46.0	1087	58.6	1134	23.0	1181	74.9
1041	48.4	1088	58.7	1135	19.4	1182	75.6
1042	50.5	1089	58.8	1136	16.3	1183	76.3
1043	51.9	1090	58.8	1137	14.6	1184	77.1
1044	52.6	1091	58.8	1138	14.2	1185	77.9
1045	52.8	1092	59.1	1139	14.3	1186	78.5
1046	52.9	1093	60.1	1140	14.6	1187	79.0
1047	53.1	1094	61.7	1141	15.1	1188	79.7
1048	53.3	1095	63.0	1142	16.4	1189	80.3
1049	53.1	1096	63.7	1143	19.1	1190	81.0
1050	52.3	1097	63.9	1144	22.5	1191	81.6
1051	50.7	1098	63.5	1145	24.4	1192	82.4
1052	48.8	1099	62.3	1146	24.8	1193	82.9
1053	46.5	1100	60.3	1147	22.7	1194	83.4
1054	43.8	1101	58.9	1148	17.4	1195	83.8
1055	40.3	1102	58.4	1149	13.8	1196	84.2
1056	36.0	1103	58.8	1150	12.0	1197	84.7
1057	30.7	1104	60.2	1151	12.0	1198	85.2
1058	25.4	1105	62.3	1152	12.0	1199	85.6
1059	21.0	1106	63.9	1153	13.9	1200	86.3
1060	16.7	1107	64.5	1154	17.7	1201	86.8
1061	13.4	1108	64.4	1155	22.8	1202	87.4
1062	12.0	1109	63.5	1156	27.3	1203	88.0
1063	12.1	1110	62.0	1157	31.2	1204	88.3
1064	12.8	1111	61.2	1158	35.2	1205	88.7
1065	15.6	1112	61.3	1159	39.4	1206	89.0
1066	19.9	1113	61.7	1160	42.5	1207	89.3
1067	23.4	1114	62.0	1161	45.4	1208	89.8
1068	24.6	1115	64.6	1162	48.2	1209	90.2
1069	27.0	1116	66.0	1163	50.3	1210	90.6

Time in s	Speed in km/h						
1211	91.0	1260	95.7	1309	75.9	1358	68.2
1212	91.3	1261	95.5	1310	76.0	1359	66.1
1213	91.6	1262	95.3	1311	76.0	1360	63.8
1214	91.9	1263	95.2	1312	76.1	1361	61.6
1215	92.2	1264	95.0	1313	76.3	1362	60.2
1216	92.8	1265	94.9	1314	76.5	1363	59.8
1217	93.1	1266	94.7	1315	76.6	1364	60.4
1218	93.3	1267	94.5	1316	76.8	1365	61.8
1219	93.5	1268	94.4	1317	77.1	1366	62.6
1220	93.7	1269	94.4	1318	77.1	1367	62.7
1221	93.9	1270	94.3	1319	77.2	1368	61.9
1222	94.0	1271	94.3	1320	77.2	1369	60.0
1223	94.1	1272	94.1	1321	77.6	1370	58.4
1224	94.3	1273	93.9	1322	78.0	1371	57.8
1225	94.4	1274	93.4	1323	78.4	1372	57.8
1226	94.6	1275	92.8	1324	78.8	1373	57.8
1227	94.7	1276	92.0	1325	79.2	1374	57.3
1228	94.8	1277	91.3	1326	80.3	1375	56.2
1229	95.0	1278	90.6	1327	80.8	1376	54.3
1230	95.1	1279	90.0	1328	81.0	1377	50.8
1231	95.3	1280	89.3	1329	81.0	1378	45.5
1232	95.4	1281	88.7	1330	81.0	1379	40.2
1233	95.6	1282	88.1	1331	81.0	1380	34.9
1234	95.7	1283	87.4	1332	81.0	1381	29.6
1235	95.8	1284	86.7	1333	80.9	1382	28.7
1236	96.0	1285	86.0	1334	80.6	1383	29.3
1237	96.1	1286	85.3	1335	80.3	1384	30.5
1238	96.3	1287	84.7	1336	80.0	1385	31.7
1239	96.4	1288	84.1	1337	79.9	1386	32.9
1240	96.6	1289	83.5	1338	79.8	1387	35.0
1241	96.8	1290	82.9	1339	79.8	1388	38.0
1242	97.0	1291	82.3	1340	79.8	1389	40.5
1243	97.2	1292	81.7	1341	79.9	1390	42.7
1244	97.3	1293	81.1	1342	80.0	1391	45.8
1245	97.4	1294	80.5	1343	80.4	1392	47.5
1246	97.4	1295	79.9	1344	80.8	1393	48.9
1247	97.4	1296	79.4	1345	81.2	1394	49.4
1248	97.4	1297	79.1	1346	81.5	1395	49.4
1249	97.3	1298	78.8	1347	81.6	1396	49.2
1250	97.3	1299	78.5	1348	81.6	1397	48.7
1251	97.3	1300	78.2	1349	81.4	1398	47.9
1252	97.3	1301	77.9	1350	80.7	1399	46.9
1253	97.2	1302	77.6	1351	79.6	1400	45.6
1254	97.1	1303	77.3	1352	78.2	1401	44.2
1255	97.0	1304	77.0	1353	76.8	1402	42.7
1256	96.9	1305	76.7	1354	75.3	1403	40.7
1257	96.7	1306	76.0	1355	73.8	1404	37.1
1258	96.4	1307	76.0	1356	72.1	1405	33.9
1259	96.1	1308	76.0	1357	70.2	1406	30.6

Time in s	Speed in km/h						
1407	28.6	1456	0.0				
1408	27.3	1457	0.0				
1409	27.2	1458	0.0				
1410	27.5	1459	0.0				
1411	27.4	1460	0.0				
1412	27.1	1461	0.0				
1413	26.7	1462	0.0				
1414	26.8	1463	0.0				
1415	28.2	1464	0.0				
1416	31.1	1465	0.0				
1417	34.8	1466	0.0				
1418	38.4	1467	0.0				
1419	40.9	1468	0.0				
1420	41.7	1469	0.0				
1421	40.9	1470	0.0				
1422	38.3	1471	0.0				
1423	35.3	1472	0.0				
1424	34.3	1473	0.0				
1425	34.6	1474	0.0				
1426	36.3	1475	0.0				
1427	39.5	1476	0.0				
1428	41.8	1477	0.0				
1429	42.5	11,7	0.0				
1430	41.9						
1431	40.1						
1432	36.6						
1433	31.3						
1434	26.0						
1435	20.6						
1436	19.1						
1437	19.7						
1438	21.1						
1439	22.0						
1440	22.1						
1441	21.4						
1442	19.6						
1442	18.3						
1443	18.0						
1444	18.3						
1445	18.5						
1440	17.9						
1448	15.0 9.9						
1449							
1450	4.6						
1451	1.2						
1452	0.0						
1453	0.0						
1454	0.0 0.0						

Table A1/11 WLTC, Class 3 vehicles Vehicles, pPhase High_{3.2}

WETC, Class 3 venteres venteres, printed inguis.2										
1_	Time in s	Speed in km/h								
_	1023	0.0	1070	26.4	1117	69.7	1164	52.6		
	1024	0.0	1071	28.8	1118	69.3	1165	54.5		
	1025	0.0	1072	31.8	1119	68.1	1166	56.6		
	1026	0.0	1073	35.3	1120	66.9	1167	58.3		
	1027	0.8	1074	39.5	1121	66.2	1168	60.0		
	1028	3.6	1075	44.5	1122	65.7	1169	61.5		
	1029	8.6	1076	49.3	1123	64.9	1170	63.1		
	1030	14.6	1077	53.3	1124	63.2	1171	64.3		
	1031	20.0	1078	56.4	1125	60.3	1172	65.7		
	1032	24.4	1079	58.9	1126	55.8	1173	67.1		
	1033	28.2	1080	61.2	1127	50.5	1174	68.3		
	1034	31.7	1081	62.6	1128	45.2	1175	69.7		
	1035	35.0	1082	63.0	1129	40.1	1176	70.6		
	1036	37.6	1083	62.5	1130	36.2	1177	71.6		
	1037	39.7	1084	60.9	1131	32.9	1178	72.6		
	1038	41.5	1085	59.3	1132	29.8	1179	73.5		
	1039	43.6	1086	58.6	1133	26.6	1180	74.2		
	1040	46.0	1087	58.6	1134	23.0	1181	74.9		
	1041	48.4	1088	58.7	1135	19.4	1182	75.6		
	1042	50.5	1089	58.8	1136	16.3	1183	76.3		
	1043	51.9	1090	58.8	1137	14.6	1184	77.1		
	1044	52.6	1091	58.8	1138	14.2	1185	77.9		
	1045	52.8	1092	59.1	1139	14.3	1186	78.5		
	1046	52.9	1093	60.1	1140	14.6	1187	79.0		
	1047	53.1	1094	61.7	1141	15.1	1188	79.7		
	1048	53.3	1095	63.0	1142	16.4	1189	80.3		
	1049	53.1	1096	63.7	1143	19.1	1190	81.0		
	1050	52.3	1097	63.9	1144	22.5	1191	81.6		
	1051	50.7	1098	63.5	1145	24.4	1192	82.4		
	1052	48.8	1099	62.3	1146	24.8	1193	82.9		
	1053	46.5	1100	60.3	1147	22.7	1194	83.4		
	1054	43.8	1101	58.9	1148	17.4	1195	83.8		
	1055	40.3	1102	58.4	1149	13.8	1196	84.2		
	1056	36.0	1103	58.8	1150	12.0	1197	84.7		
	1057	30.7	1104	60.2	1151	12.0	1198	85.2		
	1058	25.4	1105	62.3	1152	12.0	1199	85.6		
	1059	21.0	1106	63.9	1153	13.9	1200	86.3		
	1060	16.7	1107	64.5	1154	17.7	1201	86.8		
	1061	13.4	1108	64.4	1155	22.8	1202	87.4		
	1062	12.0	1109	63.5	1156	27.3	1203	88.0		
	1063	12.1	1110	62.0	1157	31.2	1204	88.3		
	1064	12.8	1111	61.2	1158	35.2	1205	88.7		
	1065	15.6	1112	61.3	1159	39.4	1206	89.0		
	1066	19.9	1113	62.6	1160	42.5	1207	89.3		
	1067	23.4	1114	65.3	1161	45.4	1208	89.8		
	1068	24.6	1115	68.0	1162	48.2	1209	90.2		
_	1069	25.2	1116	69.4	1163	50.3	1210	90.6		

Time in s	Speed in km/h						
1211	91.0	1260	95.7	1309	75.9	1358	68.2
1212	91.3	1261	95.5	1310	75.9	1359	66.1
1213	91.6	1262	95.3	1311	75.8	1360	63.8
1214	91.9	1263	95.2	1312	75.7	1361	61.6
1215	92.2	1264	95.0	1313	75.5	1362	60.2
1216	92.8	1265	94.9	1314	75.2	1363	59.8
1217	93.1	1266	94.7	1315	75.0	1364	60.4
1218	93.3	1267	94.5	1316	74.7	1365	61.8
1219	93.5	1268	94.4	1317	74.1	1366	62.6
1220	93.7	1269	94.4	1318	73.7	1367	62.7
1221	93.9	1270	94.3	1319	73.3	1368	61.9
1222	94.0	1271	94.3	1320	73.5	1369	60.0
1223	94.1	1272	94.1	1321	74.0	1370	58.4
1224	94.3	1273	93.9	1322	74.9	1371	57.8
1225	94.4	1274	93.4	1323	76.1	1372	57.8
1226	94.6	1275	92.8	1324	77.7	1373	57.8
1227	94.7	1276	92.0	1325	79.2	1374	57.3
1228	94.8	1277	91.3	1326	80.3	1375	56.2
1229	95.0	1278	90.6	1327	80.8	1376	54.3
1230	95.1	1279	90.0	1328	81.0	1377	50.8
1230	95.3	1279	89.3	1329	81.0	1378	45.5
1231	95.4	1280	88.7	1329	81.0	1378	40.2
1232	95.4 95.6	1281	88.1	1330	81.0	1379	34.9
1233	95.0 95.7	1282	87.4	1331	81.0	1380	29.6
1234	95.7 95.8	1283	87.4 86.7	1332	81.0	1381	29.6
1236	96.0	1285	86.0	1334	80.6	1383	29.3
1237	96.1	1286	85.3	1335	80.3	1384	32.9
1238	96.3	1287	84.7	1336	80.0	1385	35.6
1239	96.4	1288	84.1	1337	79.9	1386	36.7
1240	96.6	1289	83.5	1338	79.8	1387	37.6
1241	96.8	1290	82.9	1339	79.8	1388	39.4
1242	97.0	1291	82.3	1340	79.8	1389	42.5
1243	97.2	1292	81.7	1341	79.9	1390	46.5
1244	97.3	1293	81.1	1342	80.0	1391	50.2
1245	97.4	1294	80.5	1343	80.4	1392	52.8
1246	97.4	1295	79.9	1344	80.8	1393	54.3
1247	97.4	1296	79.4	1345	81.2	1394	54.9
1248	97.4	1297	79.1	1346	81.5	1395	54.9
1249	97.3	1298	78.8	1347	81.6	1396	54.7
1250	97.3	1299	78.5	1348	81.6	1397	54.1
1251	97.3	1300	78.2	1349	81.4	1398	53.2
1252	97.3	1301	77.9	1350	80.7	1399	52.1
1253	97.2	1302	77.6	1351	79.6	1400	50.7
1254	97.1	1303	77.3	1352	78.2	1401	49.1
1255	97.0	1304	77.0	1353	76.8	1402	47.4
1256	96.9	1305	76.7	1354	75.3	1403	45.2
1257	96.7	1306	76.0	1355	73.8	1404	41.8
1258	96.4	1307	76.0	1356	72.1	1405	36.5
1259	96.1	1308	76.0	1357	70.2	1406	31.2

Time in s	Speed in km/h						
1407	27.6	1456	0.0				
1408	26.9	1457	0.0				
1409	27.3	1458	0.0				
1410	27.5	1459	0.0				
1411	27.4	1460	0.0				
1412	27.1	1461	0.0				
1413	26.7	1462	0.0				
1414	26.8	1463	0.0				
1415	28.2	1464	0.0				
1416	31.1	1465	0.0				
1417	34.8	1466	0.0				
1418	38.4	1467	0.0				
1419	40.9	1468	0.0				
1420	41.7	1469	0.0				
1421	40.9	1470	0.0				
1422	38.3	1471	0.0				
1423	35.3	1472	0.0				
1424	34.3	1473	0.0				
1425	34.6	1474	0.0				
1426	36.3	1475	0.0				
1427	39.5	1476	0.0				
1428	41.8	1477	0.0				
1429	42.5						
1430	41.9						
1431	40.1						
1432	36.6						
1433	31.3						
1434	26.0						
1435	20.6						
1436	19.1						
1437	19.7						
1438	21.1						
1439	22.0						
1440	22.1						
1441	21.4						
1442	19.6						
1443	18.3						
1444	18.0						
1445	18.3						
1446	18.5						
1447	17.9						
1448	15.0						
1449	9.9						
1450	4.6						
1451	1.2						
1452	0.0						
1453	0.0						
1454	0.0						
1455	0.0						

Table A1/12 WLTC, Class 3 vehicles Vehicles, pPhase Extra High₃

	•		es, p rnase Extra				
Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h	Time in s	Speed in km/h
1478	0.0	1525	72.5	1572	120.7	1619	113.0
1479	2.2	1526	70.8	1573	121.8	1620	114.1
1480	4.4	1527	68.6	1574	122.6	1621	115.1
1481	6.3	1528	66.2	1575	123.2	1622	115.9
1482	7.9	1529	64.0	1576	123.6	1623	116.5
1483	9.2	1530	62.2	1577	123.7	1624	116.7
1484	10.4	1531	60.9	1578	123.6	1625	116.6
1485	11.5	1532	60.2	1579	123.3	1626	116.2
1486	12.9	1533	60.0	1580	123.0	1627	115.2
1487	14.7	1534	60.4	1581	122.5	1628	113.8
1488	17.0	1535	61.4	1582	122.1	1629	112.0
1489	19.8	1536	63.2	1583	121.5	1630	110.1
1490	23.1	1537	65.6	1584	120.8	1631	108.3
1491	26.7	1538	68.4	1585	120.0	1632	107.0
1492	30.5	1539	71.6	1586	119.1	1633	106.1
1493	34.1	1540	74.9	1587	118.1	1634	105.8
1494	37.5	1541	78.4	1588	117.1	1635	105.7
1495	40.6	1542	81.8	1589	116.2	1636	105.7
1496	43.3	1543	84.9	1590	115.5	1637	105.6
1497	45.7	1544	87.4	1591	114.9	1638	105.3
1498	47.7	1545	89.0	1592	114.5	1639	104.9
1499	49.3	1546	90.0	1593	114.1	1640	104.4
1500	50.5	1547	90.6	1594	113.9	1641	104.0
1501	51.3	1548	91.0	1595	113.7	1642	103.8
1502	52.1	1549	91.5	1596	113.3	1643	103.9
1503	52.7	1550	92.0	1597	112.9	1644	104.4
1504	53.4	1551	92.7	1598	112.2	1645	105.1
1505	54.0	1552	93.4	1599	111.4	1646	106.1
1506	54.5	1553	94.2	1600	110.5	1647	107.2
1507	55.0	1554	94.9	1601	109.5	1648	108.5
1508	55.6	1555	95.7	1602	108.5	1649	109.9
1509	56.3	1556	96.6	1603	107.7	1650	111.3
1510	57.2	1557	97.7	1604	107.1	1651	112.7
1511	58.5	1558	98.9	1605	106.6	1652	113.9
1512	60.2	1559	100.4	1606	106.4	1653	115.0
1513	62.3	1560	102.0	1607	106.2	1654	116.0
1514	64.7	1561	103.6	1608	106.2	1655	116.8
1515	67.1	1562	105.2	1609	106.2	1656	117.6
1516	69.2	1563	106.8	1610	106.4	1657	118.4
1517	70.7	1564	108.5	1611	106.5	1658	119.2
1518	71.9	1565	110.2	1612	106.8	1659	120.0
1519	72.7	1566	111.9	1613	107.2	1660	120.8
1520	73.4	1567	113.7	1614	107.8	1661	121.6
1521	73.8	1568	115.3	1615	108.5	1662	122.3
1522	74.1	1569	116.8	1616	109.4	1663	123.1
1523	74.0	1570	118.2	1617	110.5	1664	123.8
1524	73.6	1571	119.5	1618	111.7	1665	124.4

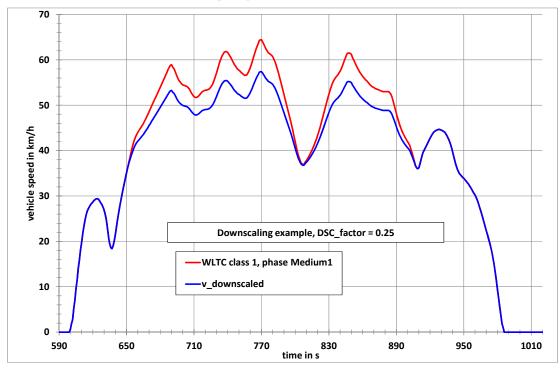
_	Time in s	Speed in km/h						
	1666	125.0	1715	127.7	1764	82.0		
	1667	125.4	1716	128.1	1765	81.3		
	1668	125.8	1717	128.5	1766	80.4		
	1669	126.1	1718	129.0	1767	79.1		
	1670	126.4	1719	129.5	1768	77.4		
	1671	126.6	1720	130.1	1769	75.1		
	1672	126.7	1721	130.6	1770	72.3		
	1673	126.8	1722	131.0	1771	69.1		
	1674	126.9	1723	131.2	1772	65.9		
	1675	126.9	1724	131.3	1773	62.7		
	1676	126.9	1725	131.2	1774	59.7		
	1677	126.8	1726	130.7	1775	57.0		
	1678	126.6	1727	129.8	1776	54.6		
	1679	126.3	1728	128.4	1777	52.2		
	1680	126.0	1729	126.5	1778	49.7		
	1681	125.7	1730	124.1	1779	46.8		
	1682	125.6	1731	121.6	1780	43.5		
	1683	125.6	1732	119.0	1781	39.9		
	1684	125.8	1733	116.5	1782	36.4		
	1685	126.2	1734	114.1	1783	33.2		
	1686	126.6	1735	111.8	1784	30.5		
	1687	127.0	1736	109.5	1785	28.3		
	1688	127.4	1737	107.1	1786	26.3		
	1689	127.6	1738	104.8	1787	24.4		
	1690	127.8	1739	102.5	1788	22.5		
	1691	127.9	1740	100.4	1789	20.5		
	1692	128.0	1741	98.6	1790	18.2		
	1693	128.1	1742	97.2	1791	15.5		
	1694	128.2	1743	95.9	1792	12.3		
	1695	128.3	1744	94.8	1793	8.7		
	1696	128.4	1745	93.8	1794	5.2		
	1697	128.5	1746	92.8	1795	0.0		
	1698	128.6	1747	91.8	1796	0.0		
	1699	128.6	1748	91.0	1797	0.0		
	1700	128.5	1749	90.2	1798	0.0		
	1701	128.3	1750	89.6	1799	0.0		
	1702	128.1	1751	89.1	1800	0.0		
	1703	127.9	1752	88.6	1000			
	1704	127.6	1753	88.1				
	1705	127.4	1754	87.6				
	1706	127.2	1755	87.1				
	1707	127.0	1756	86.6				
	1707	126.9	1757	86.1				
	1709	126.8	1758	85.5				
	1710	126.7	1759	85.0				
	1711	126.8	1760	84.4				
	1711	126.9	1761	83.8				
	1713	127.1	1762	83.2				
	1713	127.1	1763	82.6				

7. Cycle modification

7.1. General remarks

The cycle to be driven shall depend on the test vehicle's rated power to unladen mass ratio, W/kg, and its maximum velocity, v_{max} .

Driveability problems may occur for vehicles with power to mass ratios close to the borderlines between Class 2 and Class 3 vehicles or very low powered vehicles in Class 1.


Since these problems are related mainly to cycle phases with a combination of high vehicle speed and high accelerations rather than to the maximum speed of the cycle, the downscaling procedure shall be applied to improve driveability.

This paragraph shall not apply to vehicles tested according to Annex 8.

- 7.2. This paragraph describes the method to modify the cycle profile using the downscaling procedure.
- 7.2.1. Downscaling procedure for elass 1 Vehicles

Figure A1/13 shows an example for a downscaled medium speed phase of the Class 1 WLTC. | SMD106|

Figure A1/13 **Downscaled medium Medium sSpeed pPhase of the class 1 WLTC**

For the <u>elass 1 Class 1</u> cycle, the downscaling period is the time period between second 651 and second 906. Within this time period, the acceleration for the original cycle shall be calculated using the following equation:

$$a_{\text{orig}_{i}} = \frac{v_{i+1} - v_{i}}{3.6} \tag{1}$$

where:

v_i is the vehicle speed, -km/h;

i is the time between <u>second</u> 651 and <u>second</u> 906-s.

The downscaling shall be first applied first in the time period between second 651 and second 848. –The downscaled speed trace shall then be calculated using the following equation:

$$v_{dsc_{i+1}} = v_{dsc_i} + a_{orig_i} \times (1 - \frac{dsc_factor}{dsc}[SMD107]) \times 3.6$$
 (2)

with i = 651 to 847.

For
$$i = 651$$
, $v_{dsc_i} = v_{orig_i}$. (3)

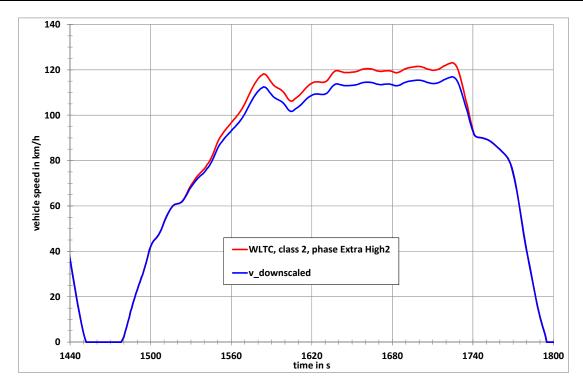
In order to meet the original vehicle speed at second 907, a correction factor for the deceleration shall be calculated using the following equation:

$$f_{\text{corr_dec}} = \frac{v_{\text{dsc_848=36.7}-36.7}}{v_{\text{orig_848=36.7}-36.7}} [\text{SMD108}]$$
 (34)

where 36.7 km/h is the original vehicle speed at second 907.

The downscaled vehicle speed between second 849 and second 906 shall then be calculated using the following equation:

$$v_{dsc_i} = v_{dsc_{i-1}} + a_{orig_{i-1}} \times f_{corr_dec} \times 3.6$$
 (45)


With i = 849 to 906.

7.2.2. Downscaling procedure for elass 2 Class 2 vehicles

Since the driveability problems are exclusively related to the extra high speed phases of the elass 2Class 2 and elass 3Class 3 cycles, the downscaling is related to those paragraphs of the extra high speed phases where the driveability problems occur (see Figure A1/14).

Figure A1/14

Downscaled extra Extra hHigh sSpeed pPhase of the class 2 Class 2 WLTC

For the <u>class 2 Class 2</u> cycle, the downscaling period is the time period between second 1520 and second 1742. Within this time period, the acceleration for the original cycle shall be calculated using the following equation:

$$a_{\text{orig}_i} = \frac{v_{i+1} - v_i}{3.6} \tag{56}$$

where:

v_i is the vehicle speed, km/h;

i is the time between second 1520 and second 1742.

The downscaling shall be applied first in the time period between second 1520 and second 1725. Second 1725 is the time where the maximum speed of the extra high speed phase is reached. The downscaled speed trace shall then be calculated using the following equation:

$$v_{dsc_{i+1}} = v_{dsc_i} + a_{orig_i} \times (1 - \frac{dsc_factor}{dsc}[SMD109]) \times 3.6$$
 (67)

with i = 1520 to $\frac{1724}{1725}$ [SMD110].

For
$$i = 1520$$
, $v_{dsc_i} = v_{orig_i}$. (8)

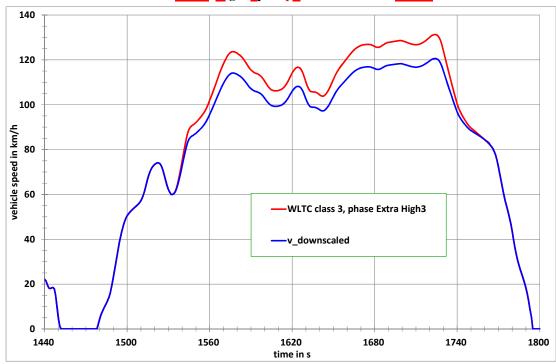
In order to meet the original vehicle speed at second 1743, a correction factor for the deceleration shall be calculated using the following equation:

$$f_{corr_dec} = \frac{v_{dsc_1725_90.4}^{-90.4} - 90.4}{v_{orig_1725_90.4}^{-90.4} v_{orig_1725_90.4}} [SMD111]$$
 (79)

90.4 km/h is the original vehicle speed at second 1743.

The downscaled vehicle speed between <u>second</u> 1726 and <u>second</u> 1742 s shall be calculated using the following equation:

$$v_{dsc_i} = v_{dsc_{i-1}} + a_{orig_{i-1}} \times f_{corr_dec} \times 3.6$$
(810)


with i = 1726 to 1742.

7.2.3. Downscaling procedure for elass 3 Class 3 vehicles

Figure A1/15 shows an example for a downscaled extra high speed phase of the class 3Class 3 WLTC.

Figure A1/15

Downscaled extra-Extra hHigh sSpeed pPhase of the elass 3 WLTC

For the <u>class 3Class 3</u> cycle, this is the period between second 1533 and second 1762. Within this time period, the acceleration for the original cycle shall be calculated using the following equation:

$$a_{\text{orig}_{i}} = \frac{v_{i+1} - v_{i}}{3.6} \tag{911}$$

where:

v_i is the vehicle speed, km/h;

i is the time between <u>second</u> 1533 and <u>second</u> 1762-s.

The downscaling shall be applied first in the time period between second 1533 and <u>second</u> 1724. Second 1724 is the time where the maximum speed of the extra high speed phase is reached. The downscaled speed trace shall then be calculated using the following equation:

$$v_{dsc_{i+1}} = v_{dsc_i} + a_{orig_i} \times (1 - \frac{dsc_factor}{dsc}[SMD112]) \times 3.6$$
 (1012)

with i = 1533 to 1723.

For
$$i = 1533$$
, $v_{dsc_i} = v_{orig_i}$. (13)

In order to meet the original vehicle speed at second 1763, a correction factor for the deceleration is calculated using the following equation:

$$f_{corr_dec} = \frac{v_{dsc_1724} - 82.6}{v_{orig_1724} - 82.6 - 82.6} [SMD113]$$
 (411_14)

82.6 km/h is the original vehicle speed at second 1763.

The downscaled vehicle speed between <u>second</u> 1725 and <u>second</u> 1762 s-shall then be calculated using the following equation:

$$v_{dsc_i} = v_{dsc_{i-1}} + a_{orig_{i-1}} \times f_{corr_dec} \times 3.6$$
 (1215)

with i = 1725 to 1762.

7.3. Determination of the downscaling factor

The downscaling factor, f_{dsca} is a function of the ratio, r_{max} , between the maximum required power of the cycle phases where the downscaling is to be applied and the rated power of the vehicle, (P_{rated}) .

The maximum required power, $P_{req,max,i}$ in kW, is related to a specific time i and the corresponding vehicle speed, $v_{i,j}$ [SMD114][SMD115]in the cycle trace and is calculated from the road load coefficients f_0 , f_1 , f_2 and the test mass TM as follows:

$$P_{req,max,i} = \frac{\left((f_0 \times v_i) + (f_1 \times v_i^2) + (f_2 \times v_i^3) + (\textbf{1.031.1} \times TM \times v_i \times a_i) \right)}{3600} \tag{1316}$$

where:

with f₀ is the constant road load coefficient, in N;

,-f₁ is the first order road load coefficient, in-N/(km/h);

and f₂ is the second order road load coefficient, in N/(km/h)²;

-TM is the test mass, in kg;

 v_i is the speed at time i, km/h.

The cycle time, i, at which maximum power or power values close to maximum power is required, is: second 764 s-for elass 1 1 Class 1, second 1574 s-for elass 2 2 lass 2 and second 1566 s-for elass 3 2 vehicles.

The corresponding vehicle speed values, v_i , and acceleration values, $a_{i,a}$ are as follows:

 $v_i = 61.4 \text{ km/h}, a_i = 0.22 \text{ m/s}^2 \text{ for } \frac{\text{class 1}}{\text{Class 1}},$

 $v_i = 109.9 \text{ km/h}, a_i = 0.36 \text{ m/s}^2 \text{ for elass } 2\text{Class } 2$

 $v_i = 111.9 \text{ km/h}, a_i = 0.50 \text{ m/s}^2 \text{ for elass } \frac{3}{2} \text{ class } \frac{3}{2}$

The driving resistance coefficients f_0 , f_1 and f_2 , shall be determined by coastdown measurements or an equivalent method.

 r_{max} is calculated using the following equation:

$$r_{\text{max}} = \frac{P_{\text{req,max,i}}}{P_{\text{rated}}} \tag{44\underline{17}}$$

The downscaling factor, f_{dsc} is calculated using the following equations:

if
$$r_{\text{max}} < r_0$$
, then $f_{\text{dsc}} = 0$ (18)

if
$$r_{\text{max}} \ge r_0$$
, then $f_{\text{dsc}} = a_1 \times r_{\text{max}} + b_1$ (1519)

The calculation parameter/coefficients r_0 , a_1 and b_1 are as follows: SMD116 SMD117 SMD118

- Class 1 $r_0 = 0.9781.0, a_1 = 0.6800.54, b_1 = -0.66554$
- Class 2 for vehicles with $v_{max} > 105 \text{ km/h}$, $r_0 = 0.8661.0$, $a_1 = 0.606$, $b_1 = -0.5256$. No downscaling shall be applied for vehicles with $v_{max} \le 105 \text{ km/h}$
- Class 3 for vehicles with $v_{max} > 112 \text{ km/h}$, $r_0 = 0.8671.0$, $a_1 = 0.5880.65$, $b_1 = -0.5100.65$; for vehicles with $v_{max} \le 112 \text{ km/h}$, $r_0 = 1.3$, $a_1 = 0.65$, $b_2 = -0.65$.

The resulting f_{dsc} is mathematically rounded to $\frac{3 \text{ places of decimal one digit}}{after the comma}$ and is $\frac{\text{only}}{\text{only}}$ applied $\frac{\text{only}}{\text{if}}$ it exceeds $\frac{0.010}{\text{one per cent.}}$ [SMD119]

7.4. Additional requirements

If a vehicle is tested under different configurations in terms of test mass and driving resistance coefficients, vehicle Lychicle L'SMD1201 as defined in paragraph paragraph 4.2.1. of Annex 4 shall be used for the determination of the downscaling factor and the resulting downscaled cycle shall be used for all measurements.

If the maximum speed of the vehicle is lower than the maximum speed of the downscaled cycle, the vehicle shall be driven with its maximum speed in those cycle periods where the cycle speed is higher than the maximum speed of the vehicle.

If the vehicle cannot follow the speed trace of the downscaled cycle within the tolerance for specific periods, it shall be driven with the accelerator control fully activated during these periods. During such periods of operation, driving trace violations shall be permitted.

Annex 2 [SMD121]

Gear selection and shift point determination for vehicles equipped with manual transmissions

- 1. General approach
- 1.1. The shifting procedures described in this Annex shall apply to vehicles equipped with manual and automatic [SMD122]-shift transmissions.
- 1.2. The prescribed gears and shifting points are based on the balance between the power required to overcome driving resistance and acceleration, and the power provided by the engine in all possible gears at a specific cycle phase.
- 1.3. The calculation to determine the gears to use shall be based on normalised engine speeds (normalised to the span between idling speed and rated engine speed) and normalised full load power curves (normalised to rated power) versus normalised engine engine speed. [SMD123]
- 1.4. For vehicles equipped with a two-range transmission (low and high), only the range designed for normal on-road operation shall be considered for gear use determination SMD1241. This annex shall not apply to vehicles tested according to Annex 8. SMD125 SMD126 SMD127
- 1.5 This annex shall not apply to vehicles tested according to Annex 8.
- 2. Required data [SMD128][SMD129]

The following data is required to calculate the gears to be used when driving the cycle on a chassis dynamometer:

- (a) P_{rated}, the maximum rated engine power as declared by the manufacturer, kW:
- (b) s, the rated engine speed at which an engine develops its maximum power. If the maximum power is developed over an engine speed range, s is determined by the minimummean of this range, min⁻¹;
- (c) n_{idle} , idling speed, min^{-1} ;
- (d) ng_{max}, the number of forward gears;

(e)[SMD130] n_{min_drive}, minimum engine speed for gears i > 2 when the vehicle is in motion. The minimum value is determined by the following equation:

$$\underline{n_{\text{min_drive}}} = n_{\text{idle}} + 0.125 \times (s - n_{\text{idle}}) (1)$$

Higher values may be used if requested by the manufacturer;

n_{min drive}, minimum engine speed when the vehicle is in motion, min⁻¹ | [SMD131][SMD132][SMD133]

$$for n_{gear} = 1, n_{min_drive} = n_{idle}, \tag{1}$$

for $n_{gear} = 2$,

for transitions from 1st to 2nd gear during accelerations from standstill:

 $\underline{\mathbf{n}_{\text{min drive}}} = 1.15 \times \underline{\mathbf{n}_{\text{idle}}}$

for all other driving conditions:

 $n_{\text{min drive}} = 0.9 \text{ x } n_{\text{idles}}$ for $n_{\text{gear}} > 2$, $n_{\text{min drive}}$ is determined by : $\underline{n_{\text{min drive}}} = \underline{n_{\text{idle}}} + 0.125 \times (\underline{\text{s-n}_{\text{idle}}})$ [SMD134] (3) Higher values may be used if requested by the manufacturer. ndv_i, the ratio obtained by dividing n in min⁻¹ by v in km/h for each gear i, (f) $i = 1 \text{ to } ng_{max}, \frac{min-1/km/h}{k};$ TM, test mass of the vehicle selected for testing[SMD135], in kg; (g) f₀, f₁, f₂, road load coefficients selected for testing SMD1361, driving (h) resistance coefficients as defined of Annex 4 in N, N/(km/h), and N/(km/h)² respectively; [SMD137] ng_{vmax}, the gear in which the maximum vehicle speed is reached[SMD138][SMD139], and is determined as follows: If $v_{\text{max}}(ng_{\text{max}}) \ge v_{\text{max}}(ng_{\text{max}}-1)$, then, $\underline{ng_{\text{vmax}}} = \underline{ng_{\text{max}}}$ (5)otherwise, $ng_{vmax} = ng_{max} - 1$ where: v_{max}(ng_{max}) is the vehicle speed at which the required road load equals the available power P_{wot} in gear ng_{max}; v_{max}(ng_{max}-1) is the vehicle speed at which the required road load equals the available power P_{wot} in the next lower power gear The required road load power, kW, at second j, shall be calculated as $P_{\text{required}} = 0.9 \times \frac{f_0 \times v_j + f_1 \times v_j^2 + f_2 \times v_j^3}{f_0 \times v_j + f_1 \times v_j^2 + f_2 \times v_j^3}$ follows: (6)where: v_i is the vehicle speed at second j of the cycle trace, km/h. is the minimum engine speed where 95 per cent of rated power is reached, min⁻¹; $n_{max}(ng_{vmax}) = ndv(ng_{vmax}) \times v_{max cycle}$ where: is the maximum speed of the vehicle speed trace V_{max.cvcle} according to Annex 1, km/h; $\underline{n_{\text{max}}}$ is the maximum of $\underline{n_{\text{max}}}$ 95 and $\underline{n_{\text{max}}}$ ($\underline{n_{\text{gwax}}}$), \underline{min}^{-1} ; (m) p_{wot(n)} is the full load power curve over the engine speed range from idling speed to n_{max};

(i) $\frac{P_{\text{wot}}(n_{\text{norm}})}{P_{\text{rated}}}$ is the full load power curve, normalised to rated power and (rated engine speed - idling speed), where $n_{\text{norm}} = \frac{n - n_{\text{idle}}}{s - n_{\text{idle}}}$.

The power curve must shall consist of a sufficient number of enough so many data sets (n, Pwot), so that the calculation of interim points between consecutive data sets can be performed done by linear interpolation. The first data set must shall be at n_{idle} and the last one at n_{max} or higher. There is no need for the data sets to be equally spaced equidistant data sets.

[SMD140][SMD141]

- 3. Calculations of required power, engine speeds, available power, and possible gear to be used
- 3.1. Calculation of required power

For every each SMD142 second j of the cycle trace, the power required to overcome driving resistance and to accelerate shall be calculated using the following equation:

$$P_{\text{required,j}} = \left(\frac{f_0 \times v_j + f_1 \times v_j^2 + f_2 \times v_j^3}{3600}\right) + \frac{\text{krxa}_j \times v_j \times \text{TM}}{3600}$$
 [SMD143] [SMD144]

where:

f₀ is the constant [SMD145] road load coefficient, N;

f₁ is the <u>first order</u> road load parameter coefficient, dependent on velocity. N/(km/h);

f₂ is the <u>second order</u> road load <u>coefficient, parameter based or</u> the square of velocity, N/(km/h)²;

P_{required,j} is the required power at second j, kW;

v_j is the vehicle speed at second j, km/h;

TM is the vehicle test mass, kg;

kr is a factor taking the inertial resistances of the drivetrain during acceleration into account and is set to 1.03[SMD148]1.1.

3.2. Determination of engine speeds [SMD149]

For any For each $v_j \le 1$ km/h, it shall be assumed that the vehicle is standing still and the engine speed shall be set to n_{idle} and the gear lever shall be placed in neutral with the clutch engaged except 1 second before beginning an acceleration phase from standstill where first gear shall be selected with the clutch disengaged. [SMD150]

For each $v_j \ge 1$ km/h of the cycle trace and each gear i, i = 1 to ng_{max} , the engine speed, $n_{i,j}$ -shall be calculated using the following equation:

$$n_{i,j} = n dv_i \times v_i \tag{310}$$

3.3. Selection of possible gears with respect to engine speed [SMD151][SMD152]

The following gears may be selected for driving the speed trace at v_i:

(a) All gears for which $n_{\min} \le n_{i,j} \le n_{\max}$ $i < n_{g_{\max}}$ where $n_{\min_drive} \le n_{i,j} \le n_{\max}$ 0.5 and

(b) all gears $i \ge ng_{vmax}$ where $n_{min_drive} \le n_{i,j} \le n_{max} (ng_{vmax})$ are possible gears to be used for driving the cycle trace at v_i .

 $\frac{1fi}{2}$

$$n_{\text{max}} = 1.2 \times (s - n_{\text{idle}}) + n_{\text{idle}}$$

 $n_{\min} = n_{\min_drive};$

if i = 2 and $ndv_2 \times v_i \ge 0.9 \times n_{idle}$

$$n_{min} = max(1.15 \times n_{idie}, 0.03 \times (s - n_{idie}) + n_{idie});$$

if $ndv_2 \times v_j < max(1.15 \times n_{idle}, 0.03 \times (s - n_{idle}) + n_{idle})$, the clutch shall be disengaged.

if i = 1

$$n_{\min} = n_{\text{idle}}$$

If $a_i \le 0$ and $n_{i,j}$ drops below n_{idle_s} , $n_{i,j}$ shall be set to n_{idle_s} and the clutch shall be disengaged.

If $\underline{a_i} \ge 0$ and $\underline{n_{i,j}}$ drops below $(1.15 \times \underline{n_{idle}})$, $\underline{n_{i,j}}$ shall be set to $(1.15 \times \underline{n_{idle}})$ and the clutch shall be disengaged.

3.4.3.3. Calculation of available power [SMD153][SMD154]

The available power for each possible gear i and each vehicle speed value of the cycle trace, v_i, shall be calculated using the following equation:

$$P_{\text{available i.i}} = P_{\text{norm wot}}(n_{\text{norm i.i}}) \times P_{\text{rated}} \times SM$$
 (4)

$$P_{\text{available}\underline{i},j} = P_{\text{wot}}(n_{i,j}) \times (1 - (SM + ASM))$$
(11)

where:

$$n_{\overline{\text{norm}_{i,j}}} = \frac{(ndv_i) \times v_j - n_{idle}}{s - n_{idle}}$$

and:

P_{rated} _____is the rated power, kW;

P_{norm_wot} is the power available at n_{i,j} at full load condition from the full load power curvepercentage of rated power available atn_{norm t,j} at full load condition from the normalised full load power curve;

SM is a safety margin accounting for the difference between the stationary full load condition power curve and the power available during transition conditions. SM is set to 10 per cent0.9;

ASM ASM is an additional exponential power safety margin, which may be applied at the request of the manufacturer. ASM is fully effective between n_{idle} and n_{start}, and exponentially

approaching 0 at n_{end} as described by the following requirements:

If $n \le n_{\text{start}}$, then ASM = ASM₀, (12)

If $n > n_{\text{start}}$, then:

 $\underline{ASM} = \underline{ASM_0} \times \exp(\ln(0.005/\underline{ASM_0}) \times (\underline{n_{start}} - \underline{n})/(\underline{n_{start}} - \underline{n_{end}}))$ (13)

ASM₀, n_{start} and n_{end} shall be defined by the manufacturer but shall fulfil the following conditions:

 $\underline{n_{\text{start}}} \ge \underline{n_{\text{idle}}}$

 $n_{end} > n_{start}$.

n_{tate} is the idling speed, min⁻¹;

s is the rated engine speed.

3.5.3.4. Determination of possible gears to be used

The possible gears to be used shall be determined by the following conditions:

- (a) The conditions of paragraph 3.3. are fulfilled, and $n_{min} \le n_{i,j} \le n_{max}$;
- (b) $P_{available_i,j} \ge P_{required,j}$

The initial gear to be used for each second j of the cycle trace is the highest final possible gear, i_max. When starting from standstill, only the first gear shall be used.

4. Additional requirements for corrections and/or modifications of gear use [SMD155][SMD156]

The initial gear selection shall be checked and modified in order to avoid too frequent gearshifts and to ensure driveability and practicality.

An acceleration phase is a time period of more than 3 seconds with a vehicle speed ≥ 1 km/h and with monotonic increase of vehicle speed. A deceleration phase is a time period of more than 3 seconds with a vehicle speed ≥ 1 km/h and with monotonic decrease of vehicle speed.

Corrections and/or modifications shall be made according to the following requirements:

- (a) If a lower gear is required at a higher vehicle speed during an acceleration phase, the higher gears before shall be corrected to the lower gear.
 - Example: $v_j < v_j + 1 < v_j + 2 < v_j + 3 < v_j + 4 < v_j + 5 < v_j + 6$. The originally calculated gear use is 2, 3, 3, 3, 2, 2, 3. In this case the gear use shall be corrected to 2, 2, 2, 2, 2, 2, 3.
- (ab) Gears used during accelerations shall be used for a period of at least 2 seconds (e.g. a gear sequence 1, 2, 3, 3, 3, 3 shall be replaced by 1, 1, 2, 2, 3, 3, 3, 3). Gears shall not be skipped during acceleration phases. First gear shall be selected one second before beginning an

- acceleration phase from standstill with the clutch disengaged. Vehicle speeds below 1 km/h imply that the vehicle is standing still;
- (c) During a deceleration phase, gears with n_{gear} > 2 shall be used as long as the engine speed does not drop below n_{min drive}. If the duration of a gear sequence is only 1 second, it shall be replaced by gear 0 and the clutch shall be disengaged. If the duration of a gear sequence is 2 seconds, it shall be replaced by gear 0 for the 1st second and the next lower gear for the 2nd second with the gear that follows after the 2 second period. The clutch shall be disengaged for the 1st second.

Example: A gear sequence 5, 4, 4, 2 shall be replaced by 5, 0, 2, 2.

- (d) The second gear shall be used during a deceleration phase within a short trip of the cycle as long as the engine speed does not drop below $0.9 \times n_{idle}$. If the engine speed drops below n_{idle} , the clutch should be disengaged.
- (e) If the deceleration phase is the last part of a short trip shortly before a stop phase and the second gear would only be used for up to two seconds, the gear shall be set to 0 and the clutch may be either disengaged or the gear lever placed in neutral and the clutch left engaged. A downshift to first gear is not permitted during those deceleration phases.
- (f) If gear i is used for a time sequence of 1 to 5 seconds and the gear before this sequence is lower and the gear after this sequence is the same as or lower than the gear before this sequence, the gear for the sequence shall be corrected to the gear before the sequence.

Examples:

- (i) gear sequence i 1, i, i 1 shall be replaced by i 1, i 1, i 1;
- (ii) gear sequence i 1, i, i, i 1 shall be replaced by i 1, i 1
- (iii) gear sequence i 1, i, i, i 1 shall be replaced by i 1, i 1
- (iv) gear sequence i 1, i, i, i, i, i 1 shall be replaced by i 1, i 1
- (v) gear sequence i 1, i, i, i, i, i, i 1 shall be replaced by i 1, i

In all cases (i) to (v), $g_{min} \le i$ shall be fulfilled;

- Paragraphs 4.(a) to 4.(f) inclusive shall be applied sequentially and only after each has completely finished scanning the gear profile. Since the above modifications may create new gear use sequences which are in conflict with these requirements, the gear sequences shall be checked for practicality three times and modified if necessary.
- (b) Gears shall not be skipped during acceleration phases. Gears used during accelerations and decelerations must be used for a period of at least three seconds (e.g. a gear sequence 1, 1, 2, 2, 3, 3, 3, 3, 3 shall be replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3);

- (e) Gears may be skipped during deceleration phases. For the last phase of a deceleration to a stop, the clutch may be either disengaged or the gear lever placed in neutral and the clutch left engaged;
- (d) There shall be no gearshift during transition from an acceleration phase to a deceleration phase. E.g., if $v_j < v_{j+1} > v_{j+2}$ and the gear for the time sequence j and j + 1 is i, gear i is also kept for the time j + 2, even if the initial gear for j + 2 would be i + 1;
- (e) If a gear i is used for a time sequence of 1 to 5 s and the gear before this sequence is the same as the gear after this sequence, e.g. i − 1, the gear use for this sequence shall be corrected to i − 1.

Example:

- (i) a gear sequence i 1, i, i 1 is replaced by i 1, i 1, i 1;
- (ii) a gear sequence i-1, i, i-1 is replaced by i-1, i-1, i-1, i-1;
- (iii) a gear sequence i-1, i, i, i, i-1 is replaced by i-1, i-1, i-1, i-1, i-1;
- (iv) a gear sequence i 1, i, i, i, i 1 is rereplaced by i 1, i -
- (v) a gear sequence i = 1, i, i, i, i, i, i = 1 is replaced by i = 1, i = 1.

For all cases (i) to (v), $g_{min} \leq i$ must be fulfilled;

- (f) A gear sequence i,i 1,i, shall be replaced by i,i,i, if the following conditions are fulfilled:
 - (i) Engine speed does not drop below n_{min}; and
 - (ii) The sequence does not occur more often than four times each for the low, medium and high speed cycle phases and not more than three times for the extra high speed phase.

Requirement (ii) is necessary as the available power will drop below the required power when the gear i — 1, is replaced by i;

(g) If, during an acceleration phase, a lower gear is required at a higher vehicle speed for at least 2 [SMD157]seconds, the higher gears before shall be corrected to the lower gear.

Example: $v_j < v_{j+1} < v_{j+2} < v_{j+3} < v_{j+4} < v_{j+5} < v_{j+6}$. The originally calculated gear use is 2, 3, 3, 3, 2, 2, 3. In this case the gear use will be corrected to 2, 2, 2, 2, 2, 2, 3.

Since the above modifications may create new gear use sequences which are in conflict with these requirements, the gear sequences shall be checked twice.

Annex 3

Reference fuels

- 1. As there are regional differences in the market specifications of fuels, regionally different reference fuels need to be recognised. Example reference fuels are however required in this gtr for the calculation of hydrocarbon emissions and fuel consumption. Reference fuels are therefore given as examples for such illustrative purposes.
- 2. It is recommended that Contracting Parties select their reference fuels from this Annex and bring any regionally agreed amendments or alternatives into this gtr by amendment. This does not however limit the right of Contracting Parties to define individual reference fuels to reflect local market fuel specifications.
- 3. Liquid fuels for positive ignition engines

3.1. Gasoline/Petrol (nominal 90 RON, E0)

Table A3/1 **Gasoline/Petrol (nominal 90 RON, E0)**

Fuel Property or Substance Name			ndard	Test method
		Minimum	Maximum	
Research octane number, RON		90	92	JIS K2280
Motor octane number, MON		80	82	JIS K2280
Density	g/cm³	0.720	0.734	JIS K2249
Vapour pressure	kPa	56	60	JIS K2258
Distillation:				
— 10 % distillation temperature	K (°C)	318 (45)	328 (55)	JIS K2254
— 50 % distillation temperature	K (°C)	363 (90)	373 (100)	JIS K2254
— 90 % distillation temperature	K (°C)	413 (140)	443 (170)	JIS K2254
— final boiling point	K (°C)		488 (215)	JIS K2254
<u> </u>	% v/v vol			JIS K2536-1
— olefins	9/0	15	25	JIS K2536-2
				JIS K2536-1
— aromatics	<u>% v/v vol</u>	20	45	JIS K2536-2
	%			JIS K2536-3
	0/ / 1			JIS K2536-2
— benzene	<u>% v/v</u> vol		1.0	JIS K2536-3
	%			JIS K2536-4
				JIS K2536-2
Oxygen content		not to be	e detected	JIS K2536-4
3.5				JIS K2536-6
Existent gum	mg/100ml		5	JIS K2261
				JIS K2541-1
C-1-1	3374		10	JIS K2541-2
Sulphur content	Wt ppm		10	JIS K2541-6
				JIS K2541-7
Lead content		not to be	e detected	JIS K2255
				JIS K2536-2
Ethanol		not to be	e detected	JIS K2536-4
				JIS K2536-6
				JIS K2536-2
Mathanal		not to be	dataatad	JIS K2536-4
Methanol		not to be	e detected	JIS K2536-5
				JIS K2536-6
-				JIS K2536-2
MTBE		not to be	e detected	JIS K2536-4
WIIDE		1101 10 06	detected	JIS K2536-5
				JIS K2536-6
Kerosene		not to be	e detected	JIS K2536-2
Kelusene		1101 10 06	detected	JIS K2536-4

3.2. Gasoline/petrol (nominal 91 RON, E0)

Table A3/2 **Gasoline/petrol (nominal 91 RON, E0)**

Fuel Property or		Unit	Star	ıdard	Test method
Substance Name			Minimum	Maximum	
Research octane number, RON			91	94	KS M 2039
Vapour pressure	kPa	Summer Winter	44	60 96	KS M ISO 3007
Distillation:					
— 10 % distillation temperature		°C	-	70	ASTM D86
— 50 % distillation temperature		°C	-	125	ASTM D86
— 90 % distillation temperature		°C	-	170	ASTM D86
— final boiling point		°C	-	225	ASTM D86
Residue		% v/v	-	2.0	ASTM D86
Water content	<u>%</u>	<u>v/v</u> vol %	-	0.01	KS M 2115
— olefins ⁽¹⁾	<u>%</u>	<u>v/v</u> vol %	-	16(19)	KS M 2085, ASTM D6296,D6293,D6839
— aromatics ⁽¹⁾	<u>%</u>	<u>v/v</u> vol %	-	24 (21)	KS M 2407, ASTM D3606, D5580,D6293,D6839,PIONA
— benzene	<u>%</u>	<u>v/v</u> vol %	-	0.7	KS M 2407, ASTM D3606, D5580,D6293,D6839,PIONA
Oxygen content		wt %	-	2.3	KS M 2408, ASTM D4815, D6839
Unwashed gum	m	g/100ml	-	5	KS M 2041
Sulphur content		wt ppm	-	10	KS M 2027, ASTM D5453
Lead content		mg/L	-	13	KS M 2402, ASTM D3237
Phosphorus content		mg/L	-	1.3	KS M 2403, ASTM D3231
Methanol		wt %	-	0.01	KS M 2408
Oxidation stability		min	480	-	KS M 2043
Copper corrosion		0°C, 3h	-	1	KS M 2018
Colour	,	Yellow	-	-	Sensory test

The standard in brackets may apply for olefins. In this case, the value in brackets for aromatics shall apply.

3.3. Gasoline/petrol (nominal 100 RON, E0)

Table A3/3
Gasoline/petrol (nominal 100 RON, E0)

Fuel Property or Substance Name	Unit	nit Standard		Test method
		Minimum	Maximum	
Research octane number, RON		99	101	JIS K2280
Motor octane number, MON		86	88	JIS K2280
Density	g/cm³	0.740	0.754	JIS K2249
Vapour pressure	kPa	56	60	JIS K2258
Distillation:				
— 10 % distillation temperature	K (°C)	318 (45)	328 (55)	JIS K2254
— 50 % distillation temperature	K (°C)	363 (90)	373 (100)	JIS K2254
— 90 % distillation temperature	K (°C)	413 (140)	443 (170)	JIS K2254
— final boiling point	K (°C)		488 (215)	JIS K2254
	% v/v vol	1.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	JIS K2536-1
— olefins		15	25	JIS K2536-2
	0/ / 1			JIS K2536-1
— aromatics	<u>% v/v </u> vol %	20	45	JIS K2536-2
	%			JIS K2536-3
	0/ / 1			JIS K2536-2
— benzene	<u>% v/v</u> vol		1.0	JIS K2536-3
	0/0			JIS K2536-4
				JIS K2536-2
Oxygen content		not to be	detected	JIS K2536-4
				JIS K2536-6
Existent gum	mg/100ml		5	JIS K2261
				JIS K2541-1
Carladana a satant	XX74		10	JIS K2541-2
Sulphur content	Wt ppm		10	JIS K2541-6
				JIS K2541-7
Lead content		not to be	detected	JIS K2255
				JIS K2536-2
Ethanol		not to be	detected	JIS K2536-4
				JIS K2536-6
				JIS K2536-2
Methanol		not to 1-	detected	JIS K2536-4
IVICUIALIOI		not to be	detected	JIS K2536-5
				JIS K2536-6
				JIS K2536-2
MTBE		not to be	detected	JIS K2536-4
WIIDE		not to be	uelecteu	JIS K2536-5
				JIS K2536-6
Kerosene		not to be	detected	JIS K2536-2
KCIUSCHC		1101 10 06	uciccicu	JIS K2536-4

3.4. Gasoline/petrol (nominal 94 RON, E0)

Table A3/4 **Gasoline/petrol (nominal 94 RON, E0)**

Fuel Property or Substance Name		Unit	Standard		Test method
			Minimum	Maximum	
Research octane number, RON			94	-	KS M 2039
Vapour pressure	kPa	Summer Winter	44 44	60 96	KS M ISO 3007
Distillation:					
— 10 % distillation temperature		°C	-	70	ASTM D86
— 50 % distillation temperature		°C	-	125	ASTM D86
— 90 % distillation temperature		°C	-	170	ASTM D86
— final boiling point		°C	-	225	ASTM D86
Residue	(% v/v		2.0	ASTM D86
Water content	<u>% v</u>	<u>//vvol %</u>		0.01	KS M 2115
— olefins ⁽¹⁾	<u>% v</u>	<u>//v</u> vol %		16 (19)	KS M 2085, ASTM D6296,D6293,D6839
— aromatics ⁽¹⁾	<u>% v</u>	<u>//v</u> vol %		24 (21)	KS M 2407, ASTM D3606, D5580,D6293,D6839,PIONA
— benzene	<u>% \</u>	<u>//v</u> vol %		0.7	KS M 2407, ASTM D3606, D5580,D6293,D6839,PIONA
Oxygen content		wt %		2.3	KS M 2408, ASTM D4815, D6839
Unwashed gum	mg	g/100ml		5	KS M 2041
Sulphur content	W	t ppm		10	KS M 2027, ASTM D5453
Lead content		mg/L		13	KS M 2402, ASTM D3237
Phosphorus content	mg/L			1.3	KS M 2403, ASTM D3231
Methanol		wt %		0.01	KS M 2408
Oxidation stability		min	480	-	KS M 2043
Copper corrosion	1	0°C, 3h		1	KS M 2018
Colour	(Green	-	-	Sensory Test

The standard in brackets may apply for olefins. In this case, the value in brackets for aromatics shall apply.

3.5. Gasoline/petrol (nominal 95 RON, E5)

Table A3/5 **Gasoline/petrol (nominal 95 RON, E5)**

Parameter	Unit	Limits (1)		Test method
		Minimum	Maximum	
Research octane number, RON		95.0		EN 25164 pr EN ISO 5164
Motor octane number, MON		85.0		EN 25163 pr EN ISO 5163
Density at 15 °C	kg/m ³	743	756	EN ISO 3675 EN ISO 12185
Vapour pressure	kPa	56.0	60.0	EN ISO 13016-1 (DVPE)
Water content	% v/v		0.015	ASTM E 1064
Distillation:				
— evaporated at 70 °C	% v/v	24.0	44.0	EN-ISO 3405
— evaporated at 100 °C	% v/v	48.0	60.0	EN-ISO 3405
— evaporated at 150 °C	% v/v	82.0	90.0	EN-ISO 3405
— final boiling point	°C	190	210	EN-ISO 3405
Residue	% v/v		2.0	EN-ISO 3405
Hydrocarbon analysis:				
— olefins	% v/v	3.0	13.0	ASTM D 1319
— aromatics	% v/v	29.0	35.0	ASTM D 1319
— benzene	% v/v		1.0	EN 12177
— saturates	% v/v	To be r	ecorded	ASTM 1319
Carbon/hydrogen ratio		To be r	ecorded	
Carbon/oxygen ratio		To be r	ecorded	
Induction period (2)	minutes	480		EN-ISO 7536
Oxygen content (3)	% m/m	To be r	ecorded	EN 1601
Existent gum	mg/ml		0.04	EN-ISO 6246
Sulphur content (4)	mg/kg		10	EN ISO 20846 EN ISO 20884
Copper corrosion			Class 1	EN-ISO 2160
Lead content	mg/l		5	EN 237
Phosphorus content (5)	mg/l		1.3	ASTM D 3231
Ethanol (3)	% v/v	4.7	5.3	EN 1601 EN 13132

The values quoted in the specifications are 'true values'. In establishing of their limit values the terms of ISO 4259

"Petroleum products — Determination and application of precision data in relation to methods of test" have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility). Notwithstanding this measure, which is necessary for technical reasons, the manufacturer of fuels shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259 shall be applied.

The fuel may contain oxidation inhibitors and metal deactivators normally used to stabilise refinery gasoline streams, but detergent/dispersive additives and solvent oils shall not be added.

Ethanol meeting the specification of EN 15376 is the only oxygenate that shall be intentionally added to the reference fuel.

⁽⁴⁾ The actual sulphur content of the fuel used for the Type 1 test shall be recorded.

There shall be no intentional addition of compounds containing phosphorus, iron, manganese, or lead to this reference fuel.

3.6. Gasoline/petrol (nominal 95 RON, E10)

Table A3/6
Gasoline/petrol (nominal 95 RON, E10)

Parameter	Unit	Limits (1)		Test method ⁽²⁾
		Minimum	Maximum	
Research octane number, RON (3)		95.0	98.0	EN ISO 5164
Motor octane number, MON (3)		85.0	89.0	EN ISO 5163
Density at 15 °C	kg/m ³	743.0	756.0	EN ISO 12185
Vapour pressure	kPa	56.0	60.0	EN 13016-1
Water content	% v/v		max 0.05	EN 12937
		Appearance	e at -7_°C: clear and bright	
Distillation:				
— evaporated at 70 °C	% v/v	34.0	46.0	EN-ISO 3405
— evaporated at 100 °C	% v/v	54.0	62.0	EN-ISO 3405
— evaporated at 150 °C	% v/v	86.0	94.0	EN-ISO 3405
— final boiling point	°C	170	195	EN-ISO 3405
Residue	% v/v		2.0	EN-ISO 3405
Hydrocarbon analysis:				
— olefins	% v/v	6.0	13.0	EN 22854
— aromatics	% v/v	25.0	32.0	EN 22854
— benzene	% v/v		1.00	EN 22854
				EN 238
— saturates	% v/v		To be recorded	EN 22854
Carbon/hydrogen ratio			To be recorded	
Carbon/oxygen ratio			To be recorded	
Induction period (4)	minutes	480		EN-ISO 7536
Oxygen content (5)	% m/m	3.3	3.7	EN 22854
Solvent washed gum	mg/100ml		4	EN-ISO 6246
(Existent gum content)				
Sulphur content (6)	mg/kg		10	EN ISO 20846
				EN ISO 20884
Copper corrosion			Class 1	EN-ISO 2160
Lead content	mg/l		5	EN 237
Phosphorus content (7)	mg/l		1.3	ASTM D 3231
Ethanol (5)	% v/v	9.0	10.0	EN 22854

- The values quoted in the specifications are 'true values'. In establishing of their limit values the terms of ISO 4259 "Petroleum products Determination and application of precision data in relation to methods of test" have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).
 - Notwithstanding this measure, which is necessary for technical reasons, the manufacturer of fuels shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259 shall be applied.
- Equivalent EN/ISO methods will be adopted when issued for properties listed above.
- (3) A correction factor of 0.2 for MON and RON shall be subtracted for the calculation of the final result in accordance with EN 228:2008.
- (4) The fuel may contain oxidation inhibitors and metal deactivators normally used to stabilise refinery gasoline streams, but detergent/dispersive additives and solvent oils shall not be added.
- Ethanol is the only oxygenate that shall be intentionally added to the reference fuel. The Ethanol used shall conform to EN 15376
- The actual sulphur content of the fuel used for the Type 1 test shall be recorded.
- There shall be no intentional addition of compounds containing phosphorus, iron, manganese, or lead to this reference fuel.

3.7. Ethanol (nominal 95 RON, E85)

Table A3/7 **Ethanol (nominal 95 RON, E85)**

Parameter	Unit	Limits (1)		Test method ⁽²⁾
		Minimum	Maximum	
Research octane number, RON		95		EN ISO 5164
Motor octane number, MON		85		EN ISO 5163
Density at 15 °C	kg/m ³	To be re	ecorded	ISO 3675
Vapour pressure	kPa	40	60	EN ISO 13016-1 (DVPE)
Sulphur content (3)(4)	mg/kg		10	EN ISO 20846 EN ISO 20884
Oxidation stability	minutes	360		EN ISO 7536
Existent gum content (solvent washed)	mg/100ml		5	EN-ISO 6246
Appearance: This shall be determined at ambient temperature or 15 °C whichever is higher.		Clear and bright, visibly free of suspended or precipitated contaminants		Visual inspection
Ethanol and higher alcohols (7)	% v/v % (V/V)	83	85	EN 1601 EN 13132 EN 14517
Higher alcohols (C3-C8)	% v/v% (V/V)		2	
Methanol	% v/v <mark>%</mark> (V/V)		0.5	
Petrol (5)	% v/v <mark>%</mark> (V/V)	Bala	ance	EN 228
Phosphorus	mg/l	0.3	(6)	ASTM D 3231
Water content	% v/v % (V/V)		0.3	ASTM E 1064
Inorganic chloride content	mg/l		1	ISO 6227
рНе		6.5	9	ASTM D 6423
Copper strip corrosion (3h at 50 °C)	Rating	Class 1		EN ISO 2160
Acidity, (as acetic acid CH3COOH)	% (m/m) (mg/l)		0.005-40	ASTM D 1613
Carbon/hydrogen ratio		Record		
Carbon/oxygen ratio		Rec	ord	

- The values quoted in the specifications are 'true values'. In establishing of their limit values the terms of ISO 4259

 "Petroleum products Determination and application of precision data in relation to methods of test" have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility). Notwithstanding this measure, which is necessary for technical reasons, the manufacturer of fuels shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259 shall be applied.
- In cases of dispute, the procedures for resolving the dispute and interpretation of the results based on test method precision, described in EN ISO 4259 shall be used.
- (3) In cases of national dispute concerning sulphur content, either EN ISO 20846 or EN ISO 20884 shall be called up (similar to the reference in the national Annex of EN 228).
- (4) The actual sulphur content of the fuel used for the Type 1 test shall be recorded.
- The unleaded petrol content can be determined as 100 minus the sum of the percentage content of water and alcohols.
- There shall be no intentional addition of compounds containing phosphorus, iron, manganese, or lead to this reference fuel.
- Ethanol to meet specification of EN 15376 is the only oxygenate that shall be intentionally added to this reference fuel.

4. Gaseous fuels for positive ignition engines

4.1. LPG (A and B)

Table A3/8 LPG (A and B)

Parameter	Unit	Fuel E1	Fuel E2	Fuel J	Fuel K	Test method
Composition:						ISO 7941
C3-content	% vol	30 ± 2	85 ± 2		Winter: min 15, max 35 Summer: max 10	KS M ISO 7941
Propane and propylene content	% mole			Min 20, max 30		JIS K2240
C4-content	% vol	Balance			Winter: min 60, Summer: min 85	KS M ISO 7941
Butane and butylene content				Min 70, max 80		JIS K2240
Butadiene					max 0.5	KS M ISO 7941
< C3, > C4	% vol	Max 2	Max 2			
Olefins	% vol	Max 12	Max 15			
Evaporation residue	mg/kg	Max 50	Max 50			pr EN 15470
Evaporation residue (100ml)	ml	-			0.05	ASTM D2158
Water at 0_°C		Fr	ee			pr EN 15469
	mg/kg	Max 10	Max 10			ASTM 6667
Total sulphur content					Max 40	KS M 2150, ASTM D4486, ASTM D5504
Hydrogen sulphide		None	None			ISO 8819
Copper strip corrosion	rating	Class 1	Class 1			ISO 6251 (1)
Copper corrosion	40°C, 1h	-			1	KS M ISO 6251
Odour		Charac	teristic			
Motor octane number		Min 89	Min 89			EN 589 Annex B
Vapour pressure(40°C)	MPa	-	1.27			KS M ISO 4256 KS M ISO 8973
Density(15°C)	kg/m³	500			620	KS M 2150, KS M ISO 3993 KS M ISO 8973

This method may not accurately determine the presence of corrosive materials if the sample contains corrosion inhibitors or other chemicals which diminish the corrosivity of the sample to the copper strip. Therefore, the addition of such compounds for the sole purpose of biasing the test method is prohibited.

4.2. NG/biomethane

"G20""High Gas" (nominal 100 % Methane) 4.2.1.

Table A3/9

"G20" "High Gas" (nominal 100 per cent Methane)

Characteristics	Units	Basis	Limits		Test method
			Minimum	Maximum	
Composition:					
Methane	% mole	100	99	100	ISO 6974
Balance (1)	% mole		_	1	ISO 6974
N_2	% mole				ISO 6974
Sulphur content	mg/m ³⁽²⁾		_	10	ISO 6326-5
Wobbe Index (net)	MJ/m ³⁽³⁾	48.2	47.2	49.2	

⁽¹⁾

4.2.2. "K-Gas" (nominal 88 % Methane)

Table A3/10

"K-Gas" (nominal 88 per cent Methane)

Characteristics	Units	Limits		Test method
		Minimum	Maximum	
Methane	<u>%</u> <u>v/vvol%</u>	88.0	-	KS M ISO 6974, ASTM D1946, ASTM D1945-81, JIS K 0114
Ethane	<u>%</u> <u>v/v</u> vol%	-	7.0	KS M ISO 6974, ASTM D1946, ASTM D1945-81, JIS K 0114
C ₃ + hydrocarbon	<u>%</u> <u>v/v</u> vol%	-	5.0	KS M ISO 6974, ASTM D1946, ASTM D1945-81, JIS K 0114
C ₆ + hydrocarbon	<u>%</u> <u>v/v</u> vol%	-	0.2	KS M ISO 6974, ASTM D1946, ASTM D1945-81, JIS K 0114
Sulphur content	ppm	-	40	KS M ISO 6326-1, KS M ISO 19739, ASTM D5504, JIS K 0127
Inert gas(CO ₂ , N ₂₋ ,etc.)	vol%	-	4.5	KS M ISO 6974, ASTM D1946, ASTM D1945-81, JIS K 0114

⁽²⁾

Inerts (different from N_2) + C2 + C2+. Value to be determined at 293.215 K (20°C) and 101.325 kPa. Value to be determined at 273.215 K (0°C) and 101.325 kPa. (3)

"G25""Low Gas" (nominal 86 % Methane) 4.2.3.

Table A3/11

"G25" "Low Gas" (nominal 86 per cent Methane)

Characteristics	Units	Basis	Limits		Test method
			Minimum	Maximum	
Composition:					
Methane	% mole	86	84	88	ISO 6974
Balance (1)	% mole		_	1	ISO 6974
N_2	% mole	14	12	16	ISO 6974
Sulphur content	mg/m ³⁽²⁾		_	10	ISO 6326-5
Wobbe Index (net)	MJ/m ³⁽³⁾	39.4	38.2	40.6	

- (1)
- Inerts (different from N_2) + C2 + C2+. Value to be determined at 293.215 K (20_°C) and 101.325 kPa. Value to be determined at 273.215 K (0_°C) and 101.325 kPa. (2)
- (3)

4.2.4. "J-Gas" (nominal 85 % Methane)

Table A3/12

"J-Gas" (nominal 85 per cent Methane)

Characteristics	Units	Lin	nits
		Minimum	Maximum
Methane	% mole	85	
Ethane	% mole		10
Propane	% mole		6
Butane	% mole		4
HC of C ₃ +C ₄	% mole		8
HC of C ₅ or more	% mole		0.1
Other gases (H ₂ +O ₂ +N ₂ +CO+CO ₂)	% mole		1.0
Sulphur content	mg/Nm ³		10
Wobbe Index	WI	13.260	13.730
Gross Calorific value	kcal/Nm ³	10.410	11.050
Maximum combustion speed	MCP	36.8	37.5

- 5. Liquid fuels for compression ignition engines
- 5.1. J-Diesel (nominal 53 Cetane, B0)

Table A3/13 **J-Diesel (nominal 53 Cetane, B0)**

Fuel Property or Substance Name	Units	Specification		Test method
		Minimum	Maximum	
Cetane number		53	57	JIS K2280
Density	g/cm ³	0.824	0.840	JIS K2249
Distillation:				
— 50 % distillation temperature	K (°C)	528 (255)	568 (295)	JIS K2254
— 90 % distillation temperature	K (°C)	573 (300)	618 (345)	JIS K2254
— final boiling point	K (°C)		643 (370)	JIS K2254
Flash point	K (°C)	331(58)		JIS K2265–3
Kinematic Viscosity at 30 °C	mm ² /s	3.0	4.5	JIS K2283
All aromatic series	vol %		25	JIS Method HPLC
Polycyclic aromatic hydrocarbons	vol %		5.0	JIS Method HPLC
				JIS K2541-1
Sulphur content	Wt ppm		10	JIS K2541-2
Surpriur content				JIS K2541-6
				JIS K2541-7
				Method prescribed in the
FAME	%		0.1	Japanese concentration
FAME	/0			measurement procedure
				announcement
				Method prescribed in the
Triglyceride	%		0.01	Japanese concentration
Trigryceriue				measurement procedure
				announcement

5.2. E-Diesel (nominal 52 Cetane, B5)

Table A3/14 **E-Diesel (nominal 52 Cetane, B5)**

Parameter	Unit	Limits (1)		Test method
		Minimum	Maximum	
Cetane number (2)		52.0	54.0	EN-ISO 5165
Density at 15 °C	kg/m ³	833	837	EN-ISO 3675
Distillation:				
— 50 % point	°C	245	_	EN-ISO 3405
— 95 % point	°C	345	350	EN-ISO 3405
 final boiling point 	°C		370	EN-ISO 3405
Flash point	°C	55		EN 22719
CFPP	°C		-5	EN 116
Viscosity at 40 °C	mm ² /s	2.3	3.3	EN-ISO 3104
Polycyclic aromatic hydrocarbons	% m/m	2.0	6.0	EN 12916
Sulphur content (3)	mg/kg	_	10	EN ISO 20846/
				EN ISO 20884
Copper corrosion			Class 1	EN-ISO 2160
Conradson carbon residue (10 % DR)	% m/m		0.2	EN-ISO10370
Ash content	% m/m		0.01	EN-ISO 6245
Water content	% m/m		0.02	EN-ISO12937
Neutralization (strong acid) number	mg KOH/g		0.02	ASTM D 974
Oxidation stability (4)	mg/ml		0.025	EN-ISO12205
Lubricity (HFRR wear scan diameter	μm	_	400	EN ISO 12156
at 60 °C)				
Oxidation stability at 110 °C (4)(6)	h	20.0		EN 14112
FAME (5)	% v/v	4.5	5.5	EN 14078

- The values quoted in the specifications are 'true values'. In establishing of their limit values the terms of ISO 4259 Petroleum products Determination and application of precision data in relation to methods of test have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility). Notwithstanding this measure, which is necessary for technical reasons, the manufacturer of fuels shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259 shall be applied.
- The range for cetane number is not in accordance with the requirements of a minimum range of 4R. However, in the case of a dispute between fuel supplier and fuel user, the terms of ISO 4259 may be used to resolve such disputes provided replicate measurements, of sufficient number to archive the necessary precision, are made in preference to single determinations.
- The actual sulphur content of the fuel used for the Type 1 test shall be recorded.
- (4) Even though oxidation stability is controlled, it is likely that shelf life will be limited. Advice shall be sought from the supplier as to storage conditions and life.
- (5) FAME content to meet the specification of EN 14214.
- Oxidation stability can be demonstrated by EN-ISO12205 or by EN 14112. This requirement shall be reviewed based on CEN/TC19 evaluations of oxidative stability performance and test limits.

5.3. K-Diesel (nominal 52 Cetane, B5)

Table A3/15 **K-Diesel (nominal 52 Cetane, B5)**

Fuel Property or Substance Name	Units	Specification		Test method
		Minimum	Maximum	
			0.0	
Pour point	°C	-	(winter:	ASTM D6749
			-17.5°C)	
Flash point	°C	40	-	KS M ISO 2719
Kinematic Viscosity at 40 °C	mm ² /s	1.9	5.5	KS M 2014
90% distillation temperature	°C	-	360	ASTM D86
10% carbon residue	wt% -		0.15	KS M 2017, ISO 4262,
10% carbon residue		-	0.13	IP 14, ASTM D524
Water content	vol%	-	0.02	KS M 2115
Sulphur content	mg/kg	-	10	KS M 2027, ASTM D5453
Ash	wt%	-	0.02	KS M ISO 6245
Cetane number		52	-	KS M 2610,
Copper corrosion	100°C, 3h	-	1	KS M 2018
Lubricity(60°C, micron)(HFRR)		-	400	CFC F-06-A, ASTM D6079
Density(15°C)	kg/cm³	815	835	KS M 2002, ASTM D4052
Polycyclic aromatic hydrocarbons	wt%	-	5	KS M 2456
All aromatic series	wt%	-	30	IP 391, ASTM D5186
Fatty acid methyl esters content	vol%	-	5	EN 14078

5.4. E-Diesel (nominal 52 Cetane, B7)

Table A3/16 **E-Diesel (nominal 52 Cetane, B7)**

Parameter	Unit	Limits (1)		Test method
		Minimum	Maximum	
Cetane Index		46.0		EN-ISO 4264
Cetane number (2)		52.0	56.0	EN-ISO 5165
Density at 15 °C	kg/m ³	833.0	837.0	EN-ISO 12185
Distillation:				
— 50 % point	°C	245.0	_	EN-ISO 3405
— 95 % point	°C	345.0	360.0	EN-ISO 3405
— final boiling point	°C	_	370.0	EN-ISO 3405
Flash point	°C	55	_	EN ISO 2719
Cloud point	°C	_	-10	EN 116
Viscosity at 40 °C	mm ² /s	2.30	3.30	EN-ISO 3104
Polycyclic aromatic hydrocarbons	% m/m	2.0	4.0	EN 12916
Sulphur content	mg/kg		10.0	EN ISO 20846/
				EN ISO 20884
Copper corrosion (3 hours, 50_°C)		_	Class 1	EN-ISO 2160
Conradson carbon residue (10 % DR)	% m/m		0.20	EN-ISO10370
Ash content	% m/m		0.010	EN-ISO 6245
Total contamination	mg/kg		24	EN 12662
Water content	mg/kg	_	200	EN-ISO12937
Acid number	mg KOH/g	_	0.10	EN ISO 6618
Lubricity (HFRR wear scan diameter	μm	_	400	EN ISO 12156
at 60 °C)				
Oxidation stability at 110 °C (3)	h	20.0		EN 15751
FAME (4)	% v/v	6.0	7.0	EN 14078

- The values quoted in the specifications are 'true values'. In establishing of their limit values the terms of ISO 4259 Petroleum products Determination and application of precision data in relation to methods of test have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R = reproducibility).

 Notwithstanding this measure, which is necessary for technical reasons, the manufacturer of fuels shall nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify whether a fuel meets the requirements of the specifications, the terms of ISO 4259 shall be applied.
- The range for cetane number is not in accordance with the requirements of a minimum range of 4R. However, in the case of a dispute between fuel supplier and fuel user, the terms of ISO 4259 may be used to resolve such disputes provided replicate measurements, of sufficient number to archive the necessary precision, are made in preference to single determinations.
- Even though oxidation stability is controlled, it is likely that shelf life will be limited. Advice shall be sought from the supplier as to storage conditions and life.
- FAME content to meet the specification of EN 14214.

Annex 4

Road load and dynamometer setting

1. Scope

This Annex describes the determination of the road load of a test vehicle and the transfer of that road load to a chassis dynamometer.

2.[SMD158] Terms and definitions

- 2.1. For the purpose of this document, the terms and definitions given in ISO 3833 and in paragraph 3 of II. Text of the Global Regulation shall have primacy. paragraph 3. of this gtr apply. Where definitions are not provided in paragraph 3, definitions given in ISO 3833:1977 "Road vehicles -- Types -- Terms and definitions" shall apply.
- 2.2. Reference speed points shall start at 20 km/h in incremental steps of 10 km/h and with the highest reference speed according to the following provisions:
 - (a) The highest reference speed point shall be 130 km/h or the reference speed point immediately above the maximum speed of the applicable test cycle if this value is less than 130 km/h. In the case that the applicable test cycle contains less than the 4 cycle phases (Low, Medium, High and Extra High[SMD159]) and on the request of the manufacturer, the highest reference speed may be increased to the reference speed point immediately above the maximum speed of the next higher phase, but no higher than 130 km/h; in this case road load determination and chassis dynamometer setting shall be done with the same reference speed points.
 - (b) If a reference speed point applicable for the cycle plus 14 km/h is more than or equal to the maximum vehicle speed, v_{max} , this reference speed point shall SMD1601 be excluded from the coast down test and from chassis dynamometer setting. The next lower reference speed point shall become the highest reference speed point for the vehicle SMD1611
- 2.3. Unless otherwise specified, a cycle energy demand shall be calculated according to paragraph 5 of Annex 7 over the target speed trace of the applicable drive cycle.
- 3. Measurement criteria
- 3.1. Required overall measurement accuracy

The required overall measurement accuracy shall be as follows:

- (a) Vehicle speed: ± 0.5 km/h or ± 1 per cent, whichever is greater;
- (b) Time accuracy: min. ± 10 ms; time resolution: min. $\pm 0.01-01$ s;
- (c) Wheel torque (per torque meter): ± 3 Nm or ± 0.5 per cent of the maximum measured torque, whichever is greater;
- (d) Wind speed: ± 0.3 m/s;
- (e) Wind direction: $\pm 3^{\circ}$;

- (f) Atmospheric temperature: $\pm 1 \text{ K}$;
- (g) Atmospheric pressure: ± 0.3 kPa;
- (h) Vehicle mass: $\pm 10 \text{ kg}$; $(\pm 20 \text{ kg for vehicles} > 4,000 \text{ kg})$;
- (i) Tyre pressure: ± 5 kPa;
- (j) Product of aerodynamic drag coefficient and frontal projected area $(C_d \times A_f)$: ± 2 per cent; [SMD162]
- (kj) Chassis dynamometer roller speed: ± 0.5 km/h or ± 1 per_cent, whichever is greater;
- ($\frac{1}{k}$) Chassis dynamometer force: ± 10 N or ± 0.1 per_cent of full scale, whichever is greater.

3.2. Wind tunnel criteria

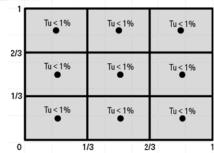
The wind tunnel used for the determination of the product of aerodynamic drag coefficient, C_{d} —and frontal area, A_{f} —within the road load vehicle family[SMD163] shall meet the criteria in this paragraph.

These criteria are only valid for determining $\Delta(C_d \times A_f)$ values in order to use the CO_2 interpolation method.

3.2.1. Wind velocity

The wind velocity during a measurement shall remain within \pm 2 km/h at the centercentre of the test section. The possible wind velocity shall be at least 140 km/h.

3.2.2. Air temperature


The air temperature during a measurement shall remain within $\pm 3 - 3$ K at the centercentre of the test section. The air temperature distribution at the nozzle outlet shall remain within ± 3 K.

3.2.3. Turbulence

For an equally—spaced 3 by 3 grid over the entire nozzle outlet, the turbulence intensity, Tu, shall not exceed <u>lone</u> per cent. See Figure_A4/1.

Figure A4/1

Turbulence Intensity [SMD164]

$$Tu = \frac{u'}{U_{\infty}} \tag{1}$$

where:

Tu is turbulence intensity;

u' is turbulent velocity fluctuation, m/s;

 U_{∞} is free flow velocity, m/s.

3.2.4. Solid[SMD165] blockage <u>ratio</u>

The vehicle blockage <u>ratio</u> fraction, ε_{sb} , expressed as the quotient of the vehicle frontal area and the area of the nozzle outlet as <u>calculated using shown in [SMD166]</u>the following equation, shall not exceed <u>35 per cent</u> <u>35 per cent</u>.

$$\varepsilon_{sb} = \frac{A_f}{A_{nozzle}} \frac{SMD167}{SMD167} \times 100$$

(2)

where:

 ε_{sb} is vehicle blockage <u>ratio</u>, <u>per cent</u> in <u>per cent</u>;

A_f is frontal area of the [SMD168] [SMD169] vehicle, m²;

 A_{nozzle} is the <u>nozzle outlet areaarea of nozzle outlet</u>, m^2 .

3.2.5. Rotating wheels

To determine the aerodynamic influence of the wheels properly, the wheels of the test vehicle shall rotate at such a speed that the resulting vehicle velocity is within a \pm 3 km/h tolerance of the wind velocity.

3.2.6. Moving belt [SMD172][SMD173][SMD174]

To simulate the fluid flow at the underbody of the test vehicle, the wind tunnel shall have a moving belt extending from the front to the rear of the vehicle. The speed of the moving belt shall be within ± 3 km/h of the wind velocity.

3.2.7. Fluid flow angle

At 9-nine SMD175 equally distributed points over the nozzle area, the root mean square deviation of both angles (Y-, Z-plane) α and β at the nozzle outlet shall not exceed 1°.

3.2.8. Air pressure at the nozzle outlet [SMD176][SMD177]

At <u>nine9</u> equally distributed points over the nozzle area, the <u>standard deviation</u> root mean square deviation of the total pressure at the nozzle outlet shall be equal to or less than not exceed 2 per centtwo per cent.

$$\sigma_{\mathbf{Pt}} \times \left(\frac{\Delta P_{\mathbf{t}}}{q}\right) \leq$$

2 % 2 per cen[SMD178][SMD179]t [SMD180]

where:

 σ_{Pt} is the standard deviation of the total pressure ratio $\left(\frac{\Delta P_t}{q}\right)$;

 ΔP_t is the variation of total pressure between the measurement points, N/m^2 ;

q is the dynamic pressure, N/m².

The <u>absolute difference of the pressure coefficient</u>, cp, over a distance 2 metres ahead and 2 metres [SMD181] behind the vehicle shall not deviate more than $\pm 1 \text{ per cent} \pm 1 \text{ per cent}$.

$$||cp_{x=+2m} - cp_{x=-2m}| \le 1 \text{ per cent } [SMD182]$$
 (3)

where:

cp is the pressure coefficient. $\frac{N/m^2}{N}$.

3.2.9. Boundary layer thickness

At x = 0 (balance center point), the wind velocity shall have at least 99 per cent of the inflow velocity 30 mm above the wind tunnel floor.

$$\delta_{99}(x = 0 \text{ m}) \le 30 \text{ mm}$$

where:

 δ_{99} __is the distance perpendicular to the road, where 99 per cent of free stream velocity is reached (boundary layer thickness).

3.2.10. Restraint blockage ratiosystem

The restraint system mounting shall not be in front of the vehicle. The relative blockage ratiofraction [SMD183] of the vehicle frontal area due to for the restraint system, ε_{restr} , shall not exceed 10 per cent 10 per cent of the vehicle frontal area. [SMD184] [SMD185]

$$\varepsilon_{\text{restr}} = \frac{A_{\text{restr}}}{A_{\text{f}}} \times 100 \times 100$$
 (4)

where:

 ε_{restr} is the relative blockage ratio [SMD186] of the restraint system, per cent;

 A_{restr} is the frontal area of the restraint system projected on the nozzle face, m^2 ;

A_f is the frontal area of the vehicle, in m². [SMD187]

3.2.11. Measurement accuracy of the balance in x-direction

The inaccuracy of the resulting force in the x-direction shall not exceed ± 5 N. The resolution of the measured force shall be within ± 3 N.

3.2.12. Measurement repeatability

The repeatability of the measured force shall be within ± 3 N.

- 4. Road load measurement on road
- 4.1. Requirements for road test
- 4.1.1. Atmospheric conditions for road test
- 4.1.1.1. Permissible wind conditions

The maximum permissible wind conditions for road load determination are described in paragraphs 4.1.1.1.1. and 4.1.1.1.2.

In order to determine the applicability of the type of SMD1881 anemometry type to be used, the average wind speed shall be determined by continuous wind speed measurement, using a recognized meteorological instrument, at a location and height above the road level alongside the test road where the most representative wind conditions will be experienced.

If tests in opposite directions cannot be performed at the same part of the test track (e.g. on an oval test track with an obligatory driving direction), wind speed and direction at each part of the test track shall be measured. In this case the higher measured value determines the type of anemometry to be used and the lower value the <u>criterioneriteria</u> for the allowance of waiving of armonderite wind correction.

4.1.1.1.1. Permissible wind conditions when using stationary anemometry

Stationary anemometry shall be used only when wind speeds average less than 5 m/s and peak wind speeds are less than 8 m/s. In addition, the vector component of the wind speed across the test road shall be less than 2 m/s. AnyThe wind correction shall be eonducted calculated as given in paragraph 4.5.3. Wind correction may be waived when the lowest average wind speed is 3 m/s or less.

4.1.1.1.2. Wind conditions using on-board anemometry

For testing with an on-board anemometer, a device shall be used as described in paragraph 4.3.2. of this Annex. The overall average wind speed during the test activity over the test road shall be less than 7 m/s with peak wind speeds of less than 10 m/s. In addition, the vector component of the wind speed across the road shall be less than 4 m/s.

Contracting Parties may choose to permit more relaxed lenient wind speed limits for coastdown test data using on-board anemometry from test facilities that are generally free from wind obstructions and thus providing stable wind conditions. In this case, the limits shall correspond to an overall average wind speed during the test activity over the test road that is less than 10 m/s with peak wind speeds of less than 14 m/s. In addition, the vector component of the wind speed across the road shall be less than 5 m/s.

4.1.1.2. Atmospheric temperature

The atmospheric temperature should [SMD190][SMD191]be within the range of 278 up to and including 313 K.

Contracting Parties may deviate from the upper range by ± 5 K on a regional level.

At its option, a manufacturer may choose to perform coastdowns between 274 and 278 K.

4.1.2. Test road

The road surface shall be flat, clean, dry and free of obstacles or wind barriers that might impede the measurement of the road load, and its texture and composition shall be representative of current urban and highway road surfaces. The test road longitudinal slope shall not exceed \pm_1 per_-cent. The local slope between any points 3 metres apart shall not deviate more than $\pm_0.5$ per cent from this longitudinal slope. If tests in opposite directions cannot be performed at the same part of the test track (e.g. on an oval test track with an obligatory driving direction), the sum of the longitudinal slopes

of the parallel test track segments shall be between 0 and an upward slope of 0.1 per_cent. The maximum camber of the test road shall be 1.5 per_cent.

4.2. Preparation

4.2.1. Test vehicle

Each test vehicle shall conform in all its components with the production series, or, if the vehicle is different from the production vehicle, a full description shall be recorded.

4.2.1.1. Without using the interpolation method

A test vehicle (vehicle H) shall be selected from the CO₂ vehicle SMD193 family (see paragraph 5.6. of this gtr) with the combination of road load relevant characteristics (i.e. e.g. mass, aerodynamic drag and tyre rolling resistance) producing the highest cycle energy demand shall be selected from the interpolation SMD194 family (see II. Text of the global regulation, paragraph 5.6. of this gtr).

If the aerodynamic influence of the different wheel rims within one interpolation family is not known, the selection shall be based on the highest expected aerodynamic drag. As a guideline, the highest aerodynamic drag may be expected for a wheel with a) the largest width, b) the largest diameter, and c) the most open structure design (in that order of importance).

The wheel selection shall be executed without prejudice of the requirement of the highest cycle energy demand.

4.2.1.2. Using the interpolation method

At the request of the manufacturer, the CO₂-interpolation method may be applied for individual vehicles in the CO₂ vehicle—interpolation [SMD195] family (see paragraph 1.2.3.1. of Annex 6 and paragraph 3.2.3.2. of Annex 7).

In this case, two test vehicles shall be selected from the interpolation family complying with the requirements of the interpolation method (paragraphs 1.2.3.1. and 1.2.3.2. of Annex 6).

Test vehicle H shall be the vehicle producing the higher, and preferably highest, cycle energy demand of that selection, test vehicle L the one producing the lower, and preferably lowest, cycle energy demand of that selection.

All options and/or body shapes that are not to be considered in the interpolation method, should be applied to both test vehicles H and L such that they produce the highest combination of the cycle energy demand of their road load relevant characteristics (i.e. mass, aerodynamic drag and tyre rolling resistance).

In that case, the road load shall also be determined on a test vehicle (vehicle L) having a combination of road load relevant characteristics producing the lowest cycle energy demand.

Each test vehicle shall conform in all its components with the production series, or, if the vehicle is different from the production vehicle, a full description shall be recorded. If the manufacturer requests to use the CO2 interpolation method, the increase or decrease in the product of the aerodynamic drag coefficient (C_α) and frontal area (A_τ), m2, expressed as Δf_τ

for all of the optional equipment in the CO2 vehicle family having an influence on the aerodynamic drag of the vehicle shall be recorded.

4.2.1.3. [RESERVED: Road load family]

4.2.1.<u>14</u>. Movable aerodynamic body parts

Movable aerodynamic body parts on test vehicles shall operate during road load determination as intended under WLTP Type 1 test conditions (test temperature, speed and acceleration range, engine load, etc.).

Every vehicle system that dynamically modifies the vehicle's aerodynamic drag (e.g. vehicle height control) shall be considered to be a movable aerodynamic body.

Appropriate part. Appropriate requirements shall be added if future vehicles are equipped with movable aerodynamic options whose influence on aerodynamic drag justifies justify the need for further requirements.

4.2.1.2 Wheels

If the manufacturer is not able to measure the aerodynamic drag of individual rotating wheels, the wheel with the highest expected aerodynamic drag shall be selected for test vehicles H and L.

As a guideline, the highest aerodynamic drag may be expected for a wheel with a) the largest width, b) the largest diameter, and c) the most open structure design (in that order of importance).

4.2.1.35.[SMD196] Weighing

Before and after the road load determination procedure, the selected vehicle shall be weighed, including the test driver and equipment, to determine the average mass, m_{av} . The mass of the vehicle shall be equal to or higher than the target test mass of vehicle H or of vehicle L (TM_H) or TM_L, calculated according to paragraph 4.2.1.3.1. below at the start of the road load determination procedure.

For the test mass correction factor determination in paragraph 4.5.4. of this Annex, the actual test masses, $TM_{H,actual}$ and $TM_{L,actual}$, will-shall be used, i.e. the average mass m_{av} for the respective test vehicles H and Lmasses.

4.2.1.3.1. Vehicle test mass [SMD197]

The maximum and minimum values of test mass TM for vehicle H and vehicle L of the CO₂ vehicle family shall be calculated as follows:

 TM_{H} shall be the sum of the mass in running order, the mass of the optional equipment of vehicle H, 25 kg, and the mass representative of the vehicle load.

 TM_L shall be the sum of the mass in running order, 25 kg, and the mass representative of the vehicle load

The mass representative of the vehicle load shall be 15 per cent for category 1 vehicles or 28 per cent for category 2 vehicle (depending on their anticipated usage to be decided at regional level) from the vehicle load. The vehicle load is the difference between the technically permissible maximum laden mass (LM) and the sum of the mass in running order, 25 kg, and the mass of the optional equipment of vehicle H.

4.2.1.46. Test vehicle configuration

The test vehicle configuration shall be recorded and shall be used for any subsequent testing.

4.2.1.<u>57</u>. Test vehicle condition

4.2.1.57.1. Run-in

The test vehicle shall be suitably run-in for the purpose of the subsequent test for at least 10,000 but no more than 80,000 km.

4.2.1.<u>\$7</u>.1.1. At the request of the manufacturer, a vehicle with a minimum of 3,000 km may be used.

4.2.1.57.2. Manufacturer's specifications

The vehicle shall conform to the manufacturer's intended production vehicle specifications regarding tyre pressures <u>described in paragraph 4.2.2.3. (paragraph 4.2.2.3. below)</u>, wheel alignment <u>described in paragraph 4.2.1.5.3.</u>, ground clearance, vehicle height, drivetrain and wheel bearing lubricants, and brake adjustment to avoid unrepresentative parasitic drag.

4.2.1.<u>57</u>.3.[SMD198] Wheel alignment[SMD199][SMD200]

If an alignment parameter is adjustable (track, camber, caster), it shall be set to the nominal value of the manufacturer's intended production vehicle. In absence of a nominal value, it shall be set to the mean of the values recommended by the manufacturer.

Such adjustable parameter(s) and set value shall be recorded.

Toe and camber shall be set to the maximum deviation from the longitudinal axis of the vehicle in the range defined by the manufacturer. If a manufacturer prescribes values for toe and camber for the vehicle, these values shall be used. At the request of the manufacturer, values with higher deviations from the longitudinal axis of the vehicle than the prescribed values may be used. The prescribed values shall be the reference for all maintenance during the lifetime of the car.

Other adjustable wheel alignment parameters (such as caster) shall be set to the values recommended by the manufacturer. In the absence of recommended values, they shall be set to the mean value of the range defined by the manufacturer.

Such adjustable parameters and set values shall be recorded.

4.2.1.<u>57</u>.4. Closed panels

During the road load determination road test [SMD201], the engine bonnet, manually-operated moveable panels and all windows shall be closed.

4.2.1.<u>57</u>.5. Coastdown mode

If the determination of dynamometer settings cannot meet the criteria described in paragraphs 8.1.3. or 8.2.3. of this Annex due to non-reproducible forces, the vehicle shall be equipped with a vehicle coastdown mode. The coastdown mode shall be approved and recorded by the responsible authority.

- 4.2.1.<u>57</u>.5.1. If a vehicle is equipped with a vehicle coastdown mode, it shall be engaged both during road load determination and on the chassis dynamometer.
- 4.2.2. Tyres
- 4.2.2.1. Tyre selection

The selection of tyres shall be based on paragraph 4.2.1. with their rolling resistances measured according to Annex 6 of Regulation No. 117-02, or an internationally accepted equivalent. The rolling resistance coefficients shall be aligned according to the respective regional procedures (e.g. EU 1235/2011), and categorised according to the rolling resistance classes in Table A4/1.

Table A4/1
Classes of rolling_Rolling_FResistance eCoefficients (RRC) for tTyre eCategories C1, C2 and C3, kg/tonne

Class	C1 range	C2 range	C3 range
1	$RRC \le 6.5$	RRC ≤ 5.5	$RRC \le 4.0$
2	$6.5 < RRC \le 7.7$	$5.5 < RRC \le 6.7$	$4.0 < RRC \le 5.0$
3	$7.7 < RRC \le 9.0$	$6.7 < RRC \le 8.0$	$5.0 < RRC \le 6.0$
4	$9.0 < RRC \le 10.5$	$8.0 < RRC \le 9.2$	$6.0 < RRC \le 7.0$
5	$10.5 < RRC \le 12.0$	$9.2 < RRC \le 10.5$	$7.0 < RRC \le 8.0$
6	RRC > 12.0	RRC > 10.5	RRC > 8.0
Class	C1 class value	C2 class value	C3 class value
1	RRC = 5.9	RRC = 4.9	RRC = 3.5
2	RRC = 7.1	RRC = 6.1	RRC = 4.5
3	RRC = 8.4	RRC = 7.4	RRC = 5.5
4	RRC = 9.8	RRC = 8.6	RRC = 6.5
5	RRC = 11.3	RRC = 9.9	RRC = 7.5
6	RRC = 12.9	RRC = 11.2	RRC = 8.5

The actual rolling resistances values for the tyres fitted to the test vehicles shall be used as input for the calculation procedure of the CO₂ interpolation method in paragraph 3.2.3.2 of Annex 7. For individual vehicles in the CO₂ interpolation method shall be based on the RRC class value for the tyres fitted to anthe individual vehicle.

4.2.2.2. Tyre condition

Tyres used for the test shall:

- (a) Not be older than 2 years after production date;
- (b) Not be specially conditioned or treated (e.g. heated or artificially aged), with the exception of grinding in the original shape of the tread;
- (c) Be run-in on a road for at least 200 km before road load determination;
- (d) Have a constant tread depth before the test between 100 and 80 per__-cent of the original tread depth at any point SMD203 SMD204 over the full tread width of the tyre.
- 4.2.2.2.1. After measurement of tread depth, driving distance shall be limited to 500 km. If 500 km are exceeded, tread depth shall be measured again.
- 4.2.2.2.2. Tread depth shall be measured before performing another road load determination with the same tyres but on another vehicle.
- 4.2.2.3. Tyre pressure

The front and rear tyres shall be inflated to the lower limit of the tyre pressure range for the selected tyre at the coastdown test mass, as specified by the vehicle manufacturer.

4.2.2.3.1. Tyre- pressure adjustment

If the difference between ambient and soak temperature is more than $\frac{5-5}{2}$ K, the tyre pressure shall be adjusted as follows:

- (a) The tyres shall be soaked for more than 1 hour at 10 per_-cent above the target pressure;
- (b) Prior to testing, the tyre pressure shall be reduced to the inflation pressure as specified in <u>paragraph</u> 4.2.2.3., adjusted for difference between the soaking environment temperature and the ambient test temperature at a rate of 0.8 kPa per <u>1</u>K using the following equation:

$$\Delta p_{t} = 0.8 \times (T_{\text{soak}} - T_{\text{amb}})$$
 (5)

where:

Δp_t is the tyre pressure adjustment added to the tyre pressure defined in paragraph 4.2.2.3. of this Annex, kPa;

0.8 is the pressure adjustment factor, kPa/K;

T_{soak} is the tyre soaking temperature, Kelvin (K);

 T_{amb} is the test ambient temperature, Kelvin (K):

(c) Between the pressure adjustment and the vehicle warm-up, the tyres shall be shielded from external heat sources including sun radiation.

4.2.3. Instrumentation

Any instruments, especially those installed outside the vehicle, shall be installed in such a manner as to minimise effects on the aerodynamic characteristics of the vehicle.

4.2.4. Vehicle warm-up

4.2.4.1. On the road

Warming up shall be performed by driving the vehicle only.

4.2.4.1.1. Before warm-up, the vehicle shall be decelerated with the clutch disengaged or an automatic transmission in neutral by moderate braking from 80 to 20 km/h within five-5 to ten 10 seconds. After this braking, there shall be no further manual adjustment of the braking system.

4.2.4.1.2. Warming up and stabilization

All vehicles shall be driven at 90 per cent of the maximum speed of the applicable WLTC. The vehicle may be driven at 90 per cent of the maximum speed of the next higher phase (see Table A4/2) if this phase is added to the applicable WLTC warm-up procedure as defined in paragraph 7.3.4. of this Annex. The vehicle shall be warmed up for at least 20-20 minutes until stable conditions are reached.

Table A4/2
Warming—up and stabilization-Stabilization across pPhases

Vehicle class	Applicable WLTC	90 per cent of maximum speed	Next higher phase
Class1	Low ₁ + Medium ₁	58 km/h	NA
Class2	Low ₂ + Medium ₂ + High ₂ & + Extra High ₂	111 km/h	NA
	Low ₂ + Medium ₂ + High ₂	77 km/h	Extra High (111 km/h)
Class3	Low ₃ + Medium ₃ + High ₃ + Extra High ₃	118 km/h	NA
	Low ₃ + Medium ₃ + High ₃	88 km/h	Extra High (118 km/h)

4.2.4.1.3. <u>Criterion Criteria</u> for stable condition

Refer to paragraph 4.3.1.4.2. of this Annex.

4.3. Measurement and calculation of total resistance by the coastdown method

The total resistance shall be determined by using stationary SMD2051 the multi-segment (paragraph_4.3.1. of this Annex) or on-board anemometer (paragraph_4.3.2. of this Annex) method.

- 4.3.1. Coastdown method Multi-segment method with stationary anemometry SMD206 SMD207
- 4.3.1.1. Selection of reference speeds for road load curve determination [SMD208]

Reference speeds for road load determination shall be selected according to paragraph 2. of this Annex. In order to obtain a road load curve as a function of vehicle speed, a minimum of six reference speeds v_j (j=1, j=2, etc.) shall be selected. The highest reference speed shall not be lower than the highest speed of the speed range, and the lowest speed point shall not be higher than the lowest speed of the speed range. The interval between each speed point shall not be greater than 20 km/h.

4.3.1.2. Data collection

During the test, elapsed time and vehicle speed shall be measured and recorded at a minimum rate-frequency of 5 Hz.

- 4.3.1.3. Vehicle coastdown procedure
- 4.3.1.3.1. Following the vehicle warm-up procedure (paragraph 4.2.4. of this Annex), and immediately prior to each test measurement, the vehicle may be driven at the highest reference speed up to a maximum of one-1 minute. The vehicle shall be accelerated to at least 510 km/h above the highest reference speed speed at which the coastdown time measurement begins (v₁ + Δv) and the coastdown shall be started immediately. [SMD209][SMD210]
- 4.3.1.3.2. During coastdown, the transmission shall be in neutral, and the engine shall run at idle. Steering wheel movement shall be avoided as much as possible, and the vehicle brakes shall not be operated. until the speed drops below (ν₁ Δν). [SMD211] SMD212]
- 4.3.1.3.3. The test shall be repeated until the coastdown data satisfy the statistical accuracy requirements as specified in paragraph 4.3.1.4.2.

- 4.3.1.3.4. Although it is recommended that each coastdown run be performed without interruption, split runs are permitted if data cannot be collected in a continuous way for all the reference speed points the entire speed range. For split runs, care shall be taken so that vehicle conditions remain as stable as possible at each split point. [SMD213]
- 4.3.1.4. Determination of total resistance by coastdown time measurement
- 4.3.1.4.1. SMD214] The coastdown time corresponding to reference speed, v_{j_a} —as the elapsed time from vehicle speed ($v_{ij} + 5 \text{ km/h-}\Delta v$) to ($v_{ji} 5 \text{ km/h}\Delta v$) shall be measured. SMD215 H is recommended that $\Delta v = 5 \text{ km/hwith the option of }\Delta v = 10 \text{ km/h}$ when the vehicle speed is more than $\frac{60 \text{ km/h.}}{1000 \text{ km/h}}$ SMD216]
- 4.3.1.4.2. These measurements shall be carried out in both directions until a minimum of three consecutive pairs of measurements have been obtained which satisfy the statistical accuracy p_i , in per cent, defined below.

$$p = \frac{h \times \sigma}{\sqrt{n}} \times \frac{100}{\Delta t_{j}} \le 3 \text{ per cent}$$

$$p_{j} = \frac{h \times \sigma_{j}}{\sqrt{n}} \times \frac{100}{\Delta t_{pj}} \le 3 \%$$
(6)[SMD217]

where:

 $\frac{pp_{j}}{speed} \quad \text{is the statistical accuracy} \quad \underline{of the measurements made at reference} \\ \frac{v_{j}}{smd218}$

n is the number of pairs of measurements;

At_{pj}[SMD219] is the mean coastdown time at reference speed V[SMD220][SMD221] V₁, in seconds, given by the equation:

$$\Delta t_{pj} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{ji}, \underline{\hspace{1cm}} \underline{\hspace$$

where Δt_{ji} is the harmonized average coastdown time of the ith pair of measurements at velocity v_i [SMD222] [SMD223] v_i , seconds (s), given by the equation:

$$\Delta t_{ji} = \frac{2}{\left(\frac{1}{\Delta t_{jai}}\right) + \left(\frac{1}{\Delta t_{jbi}}\right)}$$

$$= \frac{(8)}{\text{where:}}$$

- - Δt_{jai} and Δt_{jbi} are the coastdown times of the ith measurement at reference speed v SMD226 SMD227 v_i, in seconds (s), in each direction, respectively;
- $\sigma_j \sigma$ is the standard deviation, expressed in seconds (s), defined by:

$$\sigma_{j} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\Delta t_{ji} - \Delta t_{pj})^{2}}$$
 (9)

h is a coefficient given in Table A4/3.

Coefficient h a	s function -Function	of n
Table A4/3		

n	h	h/\sqrt{n}	n	h	h/\sqrt{n}
3	4.3	2.48	10	2.2	0.73
4	3.2	1.60	11	2.2	0.66
5	2.8	1.25	12	2.2	0.64
6	2.6	1.06	13	2.2	0.61
7	2.5	0.94	14	2.2	0.59
8	2.4	0.85	15	2.2	0.57
9	2.3	0.77			

- 4.3.1.4.3. If during a measurement in one direction any external factor or driver action occurs which influences the road load test, that measurement and the corresponding measurement in the opposite direction shall be rejected.
- 4.3.1.4.4. The total resistances, F_{ja} and F_{jb} at reference speed v_{ij} [SMD229][SMD230] in directions a and b, in Newton (N), are determined by the equations:

$$F_{ja} = -\frac{1}{3.6} \times (m_{av} + m_r) \times \frac{2 \times \Delta v}{\Delta t_{ja}}$$
(10)

[SMD231][SMD232][SMD233]

and

$$F_{jb} = \frac{1}{3.6} \times (m_{av} + m_r) \times \frac{2 \times \Delta v}{\Delta t_{jb}}$$
 (11)

[SMD234][SMD235][SMD236]

where:

 F_{ja} is the total resistance at reference speed, (j_a) in direction a, in Newton (N);

F_{jb} is the total resistance at reference speed, (j₂) in direction b, in Newton (N);

m_{av} is the average of the test vehicle masses at the beginning and end of road load determination, kg;

m_r is the equivalent effective mass of all the wheels and vehicle components rotating with the wheels during coastdowns on the road, in kilograms (kg); m_r shall be measured or calculated using an appropriate technique agreed by the responsible authority. Alternatively, m_r may be estimated to be three 3 per_cent of the unladen vehicle sum of the mass in running order plus and 25-25 kg for the CO₂ interpolation vehicle [SMD237] family;

 Δt_{ja} and Δt_{jb} are the mean coastdown times in directions a and b, respectively, corresponding to reference speed v_{ij} , \underline{in} seconds (s), given by the-<u>following e</u>equations:

$$-\Delta t_{ja} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{jai}$$
(12)

$$and_{\Delta} t_{jb} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{jbi}.$$
(13)

4.3.1.4.5. The following equation shall be used to compute the average total resistance where the harmonized average of the alternate coastdown times shall be used.

$$F_{j} = -\frac{1}{3.6} \times (m_{av} + m_{r}) \times \frac{2 \times \Delta v}{\Delta t_{j}}$$
 (14)

[SMD238][SMD239][SMD240]

where:

Δt_j is the harmonized average of alternate coastdown time measurements at velocity [SMD241][SMD242], seconds (s), given by:

$$\Delta t_{j} = \frac{2}{\frac{1}{\Delta t_{ja}} + \frac{1}{\Delta t_{jb}}} \tag{15}$$

where Δt_{ja} and Δt_{jb} are the coastdown times at velocity $v_{j|j|SMD243j}$, seconds (s), in each direction, respectively;

m_{av} is the average of the test vehicle masses at the beginning and end of road load determination, kg;

m_r is the equivalent effective mass of all the wheels and vehicle components rotating with the wheels during coastdowns on the road, in kilograms (kg); m_r shall be measured or calculated using an appropriate technique. Alternatively, m_r may be estimated to be <a href="https://doi.org/10.1001/jhtml.com/shall-leg-coastdowns-nc-all-leg-coastdowns-

The coefficients f_0 , f_1 and f_2 in the total resistance equation shall be calculated with a least squares regression analysis.

4.3.2. Coastdown method with on-board anemometry On-board anemometer based coastdown method [ISMD245] [SMD246]

The vehicle shall be warmed up and stabilised according to paragraph_4.2.4. of this Annex. Calibration of instrumentation shallwill[SMD247] take place during this time.

4.3.2.1. Additional instrumentation for on-board anemometry

The anemometer shall be calibrated by means of operation on the test vehicle where such calibration occurs during the warm-up for the test.

- 4.3.2.1.1. Relative wind speed shall be measured to an accuracy of 0.3 m/s and shall be recorded at a minimum <u>frequency</u> of 1 Hz. Calibration of the anemometer shall include corrections for vehicle blockage.
- 4.3.2.1.2. Wind direction shall be relative to the direction of the vehicle. The relative wind direction (yaw) shall be measured to an accuracy of 3–3 degrees and recorded to a resolution of 1–1 degree; the "dead band" of the instrument shall not exceed 10–10 degrees and shall be directed toward the rear of the vehicle.
- 4.3.2.1.3. Before the coastdown, the anemometer shall be calibrated for speed and yaw offset as specified in ISO 10521-1:2006(E) Annex A ISO 10521 Annex A.
- 4.3.2.1.4. Anemometer blockage shall be corrected for in the calibration procedure as described in ISO 10521-1:2006(E) Annex A.
- 4.3.2.2. Selection of speed range for road load curve determination [SMD248]

The test speed range shall be selected according to paragraph 2 of this Annex. The test speed range as specified in paragraph 4.3.1.1. above shall be selected.

4.3.2.3. Data collection collection

Various data shall be measured and recorded during the procedure. Elapsed time, vehicle speed, and air velocity (speed, direction) relative to the vehicle, shall be measured at a <u>frequency of 5 Hz</u>. Ambient temperature shall be synchronised [SMD249] [SMD250] and sampled at a minimum <u>frequency of 1 Hz</u>.

4.3.2.4. Vehicle coastdown procedure

Vehicle coastdowns shall be conducted as specified in paragraph 4.3.1.3[SMD251] paragraphs 4.3.1.3.1. to 4.3.1.3.4. above with an on-board anemometer installed on the vehicle. A minimum of ten runs shall be made in alternating directions with ;—five runs being performed in each direction. Wind-corrected coastdown data must shall satisfy the statistical accuracy requirements as specified in paragraph 4.3.1.4.2. above. The anemometer shall be installed in a position such that the effect on the operating characteristics of the vehicle is minimised.

The anemometer shall be installed according to (a) or (b) below:

- (a) Using a boom approximately 2 metres in front of the vehicle's forward aerodynamic stagnation point.
- (b) On the roof of the vehicle at its centreline. If possible, the anemometer shall be mounted within 15 cm. from the top of the windshield.

In the event that position (b) is used, the coastdown results shall be analytically adjusted for the additional aerodynamic drag induced by the anemometer. The adjustment shall be made by testing the coastdown vehicle in a wind tunnel both with and without the anemometer installed (same position as used on the track), where the calculated difference will be the incremental aerodynamic drag coefficient. (C_d) , which combined with the frontal area can be used to correct the coastdown results.

4.3.2.5. Determination of the equation of motion

Symbols used in the on-board anemometer equations of motion are listed in Table A4/4.

Table A4/4

Symbols used in the on On-board anemometer Anemometer equations Equations of mMotion

Symbol	Units	Description
$\overline{A_{f}}$	m^2	frontal area
a_0a_n	degrees ⁻¹	coefficients for aerodynamic drag, as a function of yaw angle
$\frac{Am}{m}$	N	coefficient of mechanical drag
$\frac{Bm}{Bm}$	N/(km/h)	coefficient of mechanical drag
$\frac{Cm}{Cm}$	$N/(km/h)^2$	coefficient of mechanical drag
Baro	kPa	barometrie pressure
${\overset{\text{Cd}}{\text{C}}}{}_{d}(Y)$		coefficient of aerodynamic drag at yaw angle Y
D	N	drag
D_{aero}	N	aerodynamic drag
DfD_f	N	front axle drag (including driveline)
D_{grav}	N	gravitational drag
D_{mech}	N	mechanical drag
D_r	N	rear axle drag (including driveline)
D _{tyire}	N	tyre rolling resistance
(dv/dt)	m/s^2	acceleration
g	m/s^2	gravitational constant
m	kg	mass of vehicle
me m _e	kg	effective vehicle mass (including rotating components)
ρ	kg/m ³	air density
t	S	Time
T	K	Temperature
v	km/h	vehicle speed
$\frac{vr}{v_r}$	km/h	apparent wind speed relative to vehicle
Y	degrees	yaw angle of apparent wind relative to direction of vehicle travel

4.3.2.5.1. General form

The general form of the equation of motion can be written as shown in the equation below:

$$m_e \left(\frac{dv}{dt}\right) = D_{mech} + D_{aero}$$
 (16)

where:

$$D_{\text{mech}} = D_{\text{tyre}} + D_f + D_r;$$
 (17)

$$D_{aero} = \left(\frac{1}{2}\right) \rho C_d(Y) A v_r^2; \tag{18}$$

 $m_e = \underline{is the}$ effective vehicle mass, \underline{kg} .

4.3.2.5.2. Mechanical drag modelling

Although mMechanical drag consistings of separate components representing tyre, tire (D_{tyire}) , and front and rear axle frictional losses, $(D_f$ and D_r , including transmissions_ losses), it can be modelled as a three-term polynomial as a function of with respect to speed, v, (v), as in the equation below:

$$D_{\text{mech}} = A_{\text{m}} + B_{\text{m}}v + C_{\text{m}}v^2 \tag{19}$$

where:

A_m, B_m, and C_m are determined in the data analysis using the least squares method. These constants reflect the combined driveline and tyre drag.

4.3.2.5.3. Aerodynamic drag modelling

The aerodynamic drag coefficient₂, $C_d(Y)_{2}$ is modelled as a four-term polynomial as a function of with respect to yaw angle (Y, deg), as in the equation below:

$$C_d(Y) = a_0 + a_1 Y + a_2 Y^2 + a_3 Y^3 + a_4 Y^4$$
 (20)

where:

-a₀ to a₄_are constant coefficients whose values are determined in the data ______ analysis;

Y- is the yaw angle, degrees.

The aerodynamic drag coefficient is combined with the vehicle frontal area, $\underline{A_5}$, (A_F) , and the relative wind velocity, (v_r) , to determine the aerodynamic drag, (D_{aero}) , according to the following two equations:

$$D_{aero} = \left(\frac{1}{2}\right) \times \rho \times A_f \times v_r^2 \times C_d(Y)$$
 (21)

$$D_{aero} = \left(\frac{1}{2}\right) \times \rho \times A_f \times v_r^2 (a_0 + a_1 Y + a_2 Y^2 + a_3 Y^3 + a_4 Y^4)$$
(22)

4.3.2.5.4. Substituting, the final form of the equation of motion becomes:

$$m_{e} \left(\frac{dv}{dt}\right) = \\ = A_{m} + B_{m}v + C_{m}v^{2} + \left(\frac{1}{2}\right) \times \rho \times A \times v_{r}^{2}(a_{0} + a_{1}Y + a_{2}Y^{2} + a_{3}Y^{3} + a_{4}Y^{4})_{(23)}$$

4.3.2.6. Data reduction

Techniques for analysing coastdown data shall be employed in the determination of the coefficients used to describe the road load force. A three-term equation shall be generated to describe the road load force as a function of velocity, $F = A + Bv + Cv^2$, corrected to standard ambient temperature and pressure conditions, and still air.

4.3.2.6.1. Determining calibration coefficients

If not previously determined, calibration factors to correct for vehicle blockage shall be determined for relative wind speed and yaw angle. Vehicle speed_(v), relative wind velocity_(v_r) and yaw_(Y) measurements during the warm-up phase of the test procedure shall be recorded. Paired runs in alternate directions on the test track at a constant velocity of 80 km/h shall be performed, and averages for v, v_r and Y for each run shall be determined. Calibration factors that minimize the total errors in head and cross winds over all the run pairs, i.e. the sum of $\left(\text{head}_i - \text{head}_{i+1}\right)^2$, etc., shall be selected where head_i and head_{i+1} refer to wind speed and wind direction from the paired test runs in opposing directions during the vehicle warm-up/stabilization prior to testing.

4.3.2.6.2. Deriving second by second observations

From the periodic data collected during the coastdown runs, values for v, $\left(\frac{dv}{dt}\right)$, v_r^2 , and Y shall be determined by applying calibration factors and data filtering to adjust samples to a frequency of 1 Hz.

4.3.2.6.3. Preliminary analysis

Using a linear least squares regression technique, all data points shall be analysed at once. A_m , B_m , C_m , a_0 , a_1 , a_2 , a_3 and a_4 given M_e , $\left(\frac{dv}{dt}\right)$, v, v_r , and ρ shall be determined.

4.3.2.6.4. Identifying "outliers"

For each data point, a predicted force, $m_e\left(\frac{dv}{dt}\right)$, shall be calculated and compared to that observed. Data points with excessive deviations, e.g., over three standard deviations, shall be flagged.

4.3.2.6.5. Data filtering

If desired, appropriate data filtering techniques may be employed. Remaining data points shall be smoothed out.

4.3.2.6.6. Elimination of extreme data points

Data points with yaw angles greater than \pm 20 degrees from the direction of vehicle travel shall be flagged. Data points with relative winds less than \pm \pm 5 km/h (to avoid backwind conditions) shall also be flagged. Data analysis shall be restricted to vehicle speeds from 115 to 15 km/h.

4.3.2.6.7. Final data analysis

All data which has not been flagged shall be analysed using a linear least squares regression technique. Given M_e , $\left(\frac{dv}{dt}\right)$, v, v_r , and ρ , A_m , B_m , C_m , a_0 , a_1 , a_2 , a_3 , and a_4 shall be determined.

4.3.2.6.8. Constrained analysis option

In a constrained analysis, the vehicle frontal area, A_f , and the drag coefficient, C_{dD} , are those values which have been previously determined.

4.3.2.6.9. Correction to reference conditions

Equations of motion shall be corrected to reference conditions as specified in paragraph 4.5. of this Annex.

4.4. Measurement of running resistance using the torque meter method

As an alternative to the coastdown methods, the torque meter method may also be used in which the running resistance is determined by measuring wheel torque on the driven wheels at various constant speeds with for time periods of at least five 5 - seconds.

4.4.1. Installation of torque meter

Wheel torque meters shall be installed between the wheel hub and the rim of each driven wheel, measuring the required torque to keep the vehicle at a constant speed.

4.4.2. Procedure and data sampling

4.4.2.1. Speed selection [SMD252]

The range of selected reference speeds v_j (j = 1, j = 2, etc.) where the running resistance is to be measured shall start at 15 km/h and cover the entire speed range of the applicable test cycle, while the difference between v_i and v_{i+1} is 20 km/h or less.

4.4.2.1. Start of data collection

Data collection shall be started after a vehicle warm-up according to paragraph 4.2.4. of this Annex.

The reference speeds <u>will-shall</u> be measured in <u>a</u>-descending order. <u>Upon At</u> the request of the manufacturer, stabilization periods are allowed between measurements but the stabilization speed shall not exceed the speed of the next reference speed.

4.4.2.2.4.4.2.3. Data collection

Data sets consisting of actual speed, v_{ji} , actual torque, C_{ji} and time over a period of at least $\frac{5-5}{5}$ seconds shall be recorded for every v_j at a sampling frequency of at least 10 Hz. The data sets collected over one time period for a reference speed v_i will-shall be referred to as one measurement.

4.4.2.3.4.4.2.4. Velocity deviation

The velocity deviation v_{ji} from the mean velocity v_{jm} (paragraph 4.4.3. of this Annex) shall be within the values in Table A4/5.

Table A4/5 **Velocity deviation**Deviation

Time period, seconds	Velocity deviation, km/h	
5 - 10	± 0.2	
10 - 15	± 0.4	
15 - 20	± 0.6	
20 - 25	± 0.8	
25 - 30	± 1.0	
≥ 30	± 1.2	

4.4.3. Calculation of mean velocity and mean torque

4.4.3.1. Calculation process

Mean velocity v_{jm} , km/h, and mean torque, C_{jm} , Nm, over a time period, shall be calculated from the data sets collected in paragraph 4.4.2.2 [SMD253] 4.4.2.3. above as follows:

$$v_{jm} = \frac{1}{k} \sum_{i=1}^{k} v_{ji}$$
 (24)

and

$$C_{jm} = \frac{1}{k} \sum_{i=1}^{k} C_{ji} - C_{js}$$
 (25)

where:

v_{ii} is vehicle speed of the ith data set, km/h;

k is the number of data sets:

C_{ii} is torque of the ith data set, Nm;

C_{js} is the compensation term for speed drift, Nm, given by the following equation:

$$C_{is} = (m_{av} + m_r) \times \alpha_i r_i.$$
 (26)

 C_{js} shall be no greater than <u>five_5</u> per_cent of the mean torque before compensation, and may be neglected if α_{j} _is not greater than ± 0.005 m/s²;

 m_{av} and m_r are the average test vehicle mass and the equivalent effective mass, in kg, -respectively, defined in paragraph_4.3.1.4.4. above-;

r' is the dynamic radius of the tyre, in meters (m), given by the equation:

$$r' = \frac{1}{3.6} \times \frac{v_{\text{jm}}}{2 \times \pi n N^7}$$
 [SMD254] [SMD255]

where:

Nn _____ is the rotational frequency of the driven tyre, in s⁻¹;

 α_j is the mean acceleration, in metres per second squared (m/s²), which shall be calculated by the equation

$$\alpha_{j} = \frac{1}{3.6} \times \frac{k \sum_{i=1}^{k} t_{i} v_{ji} - \sum_{i=1}^{k} t_{i} \sum_{i=1}^{k} v_{ji}}{k \times \sum_{i=1}^{k} t_{i}^{2} - \left[\sum_{i=1}^{k} t_{i}\right]^{2}},$$
(28)

where:

t_i______is the time at which the ith data set was sampled, seconds (s).

4.4.3.2. Accuracy of measurement

These measurements shall be carried out in opposite directions until a minimum of four consecutive figures at each v_i and in both directions. (a and b.) have been obtained, for which \overline{C}_j satisfies the accuracy. ρ , in per_-cent, according to the equation:

$$\rho = \frac{\text{htxs}}{\sqrt{n}} \times \frac{100}{\overline{C_1}} \le 3 \text{ \%-per cent}$$
 (29)

where:

n is the number pairs of measurements for C_{im} ;

 $\overline{C_j}$ is the running resistance at the speed v_j , expressed in Nm, given by the equation:

$$\underline{C}_{j} = \frac{1}{n} \sum_{i=1}^{n} C_{jmi5}$$
 (30)

where:

_____c_{jmi}__is the average torque of the ith pair of measurements at speed v_j, expressed in Nm and given by:

$$C_{jmi} = \frac{1}{2} \times (C_{jmai} + C_{jmbi})$$
 (where where:

C_{jmai_}and C_{jmbi_}are the mean torques of the ith measurement at speed v_j determined in paragraph 4.4.3.1. above for each direction, a and b respectively, expressed in Nm);

s is the standard deviation, expressed in Nm, defined by the equation

$$s = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (C_{jmi} - \overline{C_j})^2};$$
 (32)

th is a coefficient from Table A4/3 in paragraph 4.3.1.4.2. above.

4.4.3.3. Validity of the measured average speed

The average speed, v_{jmi} , shall not deviate from its mean, $\overline{v_j}$, by more than \pm 1 km/h or_two2 per_cent of the average speed, v_{jmi} , whichever is greater. The values of $\overline{v_{jmi}}$ and $\overline{v_j}$ and $\overline{v_{jmi}}$ shall be calculated as follows:

$$\overline{\mathbf{v}_{j}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{v}_{jmi} \tag{33}$$

$$v_{jmi} = \frac{1}{2} \times \left(v_{jmai} + v_{jmbi} \right)$$
 (34)

where:

-v_{jmai} and v_{jmai} v_{jmbi} are the mean speeds of the ith pair of measurements at velocity v_j determined in paragraph 4.4.3.1. above for each direction, a and b respectively, expressed in km/h.

4.4.4. Running resistance curve determination

The following least squares regression curves for each direction a and b shall be fitted to all the data pairs (v_{jm}, C_{jma}) and (v_{jm}, C_{jmb}) at all at all reference speeds v_j , (j=1, j=2, etc.) described in paragraph 4.3.1.1. above to determine the coefficients c_{0a} , c_{0b} , c_{1a} , c_{1b} , c_{2a} and c_{2b} :

$$C_a = c_{0a} + c_{1a}v + c_{2b}v^2$$
 (35)

$$C_{b} = c_{0b} + c_{1b}v + c_{2b}v^{2}$$
(36)

where:

C_a and C_b are the running resistances in directions a and b, Nm;

 c_{0a} and c_{0b} are constant terms in directions a and b, Nm;

c_{1a} andc_{1b} are the coefficients of the <u>first order first order</u> term in directions a and b, Nm-<u>·</u>(h/km);

 c_{2a} and c_{2b} are the coefficients of the <u>second order</u> term in directions a and b, Nm-<u>·(</u>h/km)²;

v is vehicle velocity, km/h.

The average total torque equation is calculated by the following equation:

$$C_{\text{avg}} = c_0 + c_1 v + c_2 v^2$$
 (37)

where the average coefficients c_0 , c_1 and c_2 shall be calculated using the following equations:

$$c_0 = \frac{c_{0a} + c_{0b}}{2} \tag{38}$$

$$c_1 = \frac{c_{1a} + c_{1b}}{2} \tag{39}$$

$$c_2 = \frac{c_{2a} + c_{2b}}{2} \tag{40}$$

The coefficient c_1 may be assumed to be zero if the value of $(c_1 \times v)$ is no greater than three-3 per_cent of C at the reference speed(s); in this case, the coefficients c_0 and c_2 shall be recalculated according to the least squares method.

The coefficients c_0 , c_1 and c_2 as well as the coastdown times measured at the chassis dynamometer (see paragraph 8.2.3.3. of this Annex) shall be recorded.

- 4.5. Correction to reference conditions
- 4.5.1. Air resistance correction factor

The correction factor for air resistance, K_{2} , shall be determined as follows:

$$K_2 = \frac{T}{293} \times \frac{100}{P} \tag{41}$$

where:

T is the mean atmospheric temperature, Kelvin (K);

P is the mean atmospheric pressure, in kPa.

4.5.2. Rolling resistance correction factor

The correction factor, K_0 , for rolling resistance, in Kelvin⁻¹ (K⁻¹), may be determined based on empirical data and approved by the responsible authority for the particular vehicle and tyre test, or may be assumed to be as follows:

$$K_0 = 8.6 \times 10^{-3}$$

- 4.5.3. Wind correction with stationary anemometry
- 4.5.3.1. Wind correction, for absolute wind speed alongside the test road, shall be made by subtracting the difference that cannot be cancelled out by alternate runs from the constant term, f₀, given in paragraph_4.3.1.4.5. above, or from c₀ given in paragraph_4.4.4. above. The wind correction shall not apply to the on-board anemometer-based coastdown method.
- 4.5.3.2. The wind correction resistance, w_1 , for the coastdown method or w_2 for the torque meter method shall be calculated by the equations:

$$w_1 = 3.6^2 \times f_2 \times v_w^2 \text{ or } w_2 = 3.6^2 \times c_2 \times v_w^2$$
 (42)

where:

w₁ is the wind correction resistance for the coastdown method, N;

f₂ is the coefficient of the aerodynamic term determined in paragraph_4.3.1.4.5. of this Annex;

v_w is the lower average wind speed of both directions alongside the test road during the test, m/s;

w₂ is the wind correction resistance for the torque meter method, Nm;

c₂ is the coefficient of the aerodynamic term <u>for the torque meter method</u> determined in paragraph 4.4.4. of this Annex.

4.5.4. Test mass correction factor

4.5.4.1. Test vehicle H

The correction factor, K₁, for the test mass of test vehicle H shall be determined as follows:

$$K_1 = f_0 \times \left(1 - \frac{TM_H}{TM_{Hactual}}\right) \tag{43}$$

where:

f₀ is a constant term, N;

TM_H is the [SMD256] [SMD257] test mass of the test vehicle H, kg;

TM_{H,actual} is the actual test mass of test vehicle H (the average mass m_{av}); (see paragraph_4.3.1.4.4. of this Annex), kg.

4.5.4.2. Test vehicle L

The correction factor, K_1 , for the test mass of test vehicle L shall be determined as follows:

$$K_1 = f_0 \times \left(1 - \frac{TM_L}{TM_{L,actual}}\right) \tag{44}$$

where:

f₀ is a constant term, N;

TM_L is <u>the</u> test mass of test vehicle L, kg;

 $TM_{L,actual}$ is the actual test mass of the test vehicle L (the average mass m_{av} —see paragraph_4.3.1.4.4. of this Annex), kg.

4.5.5. Road load curve correction

4.5.5.1. The curve determined in paragraph_4.3.1.4.5. of this Annex shall be corrected to reference conditions as follows and shall be used as the target coefficients in paragraph 8.1.1.:

$$\begin{split} F^* &= \left((f_0 - w_1 - K_1) + f_1 v \right) \times \left(1 + K_0 (\text{Tismd258} \text{SMD259} - 2093) \right) + \\ K_2 f_2 v^2 &\underline{\qquad (45)} \end{split}$$

where:

F* is the corrected total resistance, N;

 f_0 is the constant term, N;

 f_1 is the coefficient of the first_-order term, N- \cdot (h/km);

 f_2 is the coefficient of the second_-order term, N- $\frac{1}{2}$ (h/km)²;

K₀ is the correction factor for rolling resistance as defined in paragraph 4.5.2.of this Annex;

K₁ is the test mass correction as defined in paragraph_4.5.4.of this Annex;

K₂ is the correction factor for air resistance as defined in paragraph_4.5.1.of this Annex;

T is the mean atmospheric temperature, °C; [SMD260]

v is vehicle velocity, km/h;

w₁ is the wind resistance correction as defined in paragraph_4.5.3. of this Annex, N.

4.5.5.2. The curve determined in paragraph_4.4.4. above shall be corrected to reference conditions as follows:

$$C^* = ((c_0 - w_2 - K_1) + c_1 v) \times (1 + K_0 (T[SMD261][SMD262] - 2093)) + K_2 c_2 \rho v^2 (46)$$

where:

C* is the corrected total running resistance, Nm;

c₀ is the constant term, Nm;

c₁ is the coefficient of the first_-order term, Nm (h/km);

c₂ is the coefficient of the second_-order term, Nm (h/km)²;

K₀ is the correction factor for rolling resistance as defined in paragraph_4.5.2.of this Annex;

K₁ is the test mass correction as defined in paragraph_4.5.4.;

K₂ is the correction factor for air resistance as defined in paragraph_4.5.1.of this Annex;

v is the vehicle velocity, km/h;

T is the mean atmospheric temperature, °C;

ρ is the mean air density, kg/m³; [SMD263]

w₂ is the wind correction resistance as defined in paragraph_4.5.3. of this Annex.

5. Method for the calculation of default road load based on vehicle parameters

5.1[SMD264]. As an alternative for determining road load with the coastdown or torque meter method, a calculation method for default road load may be used.

For the calculation, of a default road load, several parameters such as test mass, width and height of the vehicle shall be used. The default road load, (F_c) , shall be calculated for the reference speed points for several speeds v, in km/h, shall be calculated. Reference speeds shall be selected according to paragraph 4.3.1.1 and the default road load (F_c) , in N, for these reference speeds v, in km/h, shall be calculated. The results of the calculated default road load values shall be used for the setting of the chassis dynamometer. A coastdown test on a chassis dynamometer shall be conducted to ensure the correct settings of the chassis dynamometer.

5.2. The default road load force shall be calculated using the following equation:

$$F_c = f_0 + f_1 \times v + f_2 \times v^2$$
 (47)

where:

F_c is the calculated default road load force <u>as a function of for a given</u> vehicle velocity v, N; and it is expressed in Newton (N);

 f_0 is the constant road load coefficient, $\frac{in}{in}$ -N, defined by the equation:

		$f_0 = 0.140 \times TM_{\underline{\cdot}}$ (48)	
	f_1	is the first order road load coefficient and shall be equal to zero;	
	f_2	is the second order road load coefficient, in N·(h/km)², defined by the equation: $f_2 = (2.8 \times 10^{-6} \times \text{TM}) + (0.0170 \times \text{width} \times \text{height}); (49)$	
	v	is vehicle velocity, km/h;	
	TM	test mass, kg;	
	width	vehicle width, metres, as defined in 6.2. of Standard ISO 612:1978;	
	height	vehicle height, metres, as defined in 6.3. of Standard ISO 612:1978.	
6 [R	ESERVED: Re	oad load measurement using a combination of a wind tunnel and	
	/namometer]		
6 remport	TeMD2601 Wis	nd tunnel method	
<u>0.[SMD207</u>	<u>∭SIVID208</u> VV II	id tullier method	
	combination tunnel and	tunnel method is a road load measurement method using a on of a wind tunnel and a roller chassis dynamometer or of a wind a flat belt dynamometer. The test benches may be separate r integrated with one another.	
6.1.	Description of the measurement method		
6.1.1.	The total re	oad load shall be determined by:	
	(a) adding using a fla	the road load forces measured in a wind tunnel and those measured ut belt, or,	
		g the road load forces measured in a wind tunnel and those on a chassis dynamometer.	
<u>6.1.2.</u>	The aerody	vnamic drag shall be measured in the wind tunnel.	
6.1.3.	Rolling resistance and drivetrain losses shall be measured using a flat belt or a chassis dynamometer.		
6.1.4.	Fulfilling the requirements of both, flat belt and wind tunnel, with one test bench at the same time are also qualified.		
6.2.	Approval o	of facilities by the responsible authority	
		s of the wind tunnel method shall be compared to those obtained oastdown method to demonstrate qualification of the facilities.	
6.2.1.	should cov	celes shall be selected by the responsible authority. These vehicles ter the range of vehicles (e.g. size, weight) planned to be measured cilities concerned.	

- 6.2.2. Two separate coastdown tests shall be performed with each of the three vehicles according to paragraph 4.3. of this Annex, and the resulting road load coefficients f_{0s} , f_{1} and f_{2} shall be determined according to that paragraph and corrected according to paragraph 4.5.5. The coastdown result of a test vehicle shall be the average of its two separate coastdowns.
- 6.2.3. Measurement with the wind tunnel method according to the following paragraphs SMD269 shall be performed on the same three vehicles in the same conditions, and the resulting road load coefficients f₀, f₁ and f₂ shall be determined. If the alternative preconditioning in paragraph 6.5.2.1 SMD270 is used, it shall also be used for the approval of the facilities.

6.2.4. Approval criteria

The facility or combination of facilities used shall be approved if the following two criteria are met:

(a) The difference in cycle energy, expressed as ε_k , between the wind tunnel method and the coast down method shall be within \pm [5] per cent for each of the three vehicles, k, according to the following equation:

$$\epsilon_{k} = \frac{E_{k,WTM}}{E_{k,coastdown}} - 1 \tag{XX}$$

where:

 $\underline{\varepsilon}_k$ is the difference in cycle energy for vehicle k between the wind tunnel method and the coast down method, per cent;

E_{k,WTM} is the cycle energy for vehicle k calculated with the road load derived from the wind tunnel method according to paragraph 5 of Annex 7, J;

 $\underline{E_{k,coast down}}$ is the cycle energy for vehicle k calculated with the road load derived from the coast down method, calculated according to paragraph 5 of Annex 7, J.;

(b) The average, \overline{X} , of the three differences shall be within [2] per cent.

$$\underline{[SMD271]}\overline{X} = \left| \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{3} \right| \underline{(XX)}$$

The facility may be used for road load determination for a maximum of [two] years after the approval has been granted.

Each combination of chassis dynamometer or moving belt and wind tunnel shall be approved separately.

6.3. Vehicle preparation and temperature

The vehicle condition as well as its preparation shall be according to paragraphs 4.2.1. and 4.2.2. of this Annex and applies to both the flat belt or roller chassis dynamometer methods, and the wind tunnel measurements.

	The test cell of the flat belt or the roller chassis dynamometer test cells shall have a temperature set point of 20 °C with a tolerance of \pm 3 °C. At the
	request of the manufacturer, the set point may also be 23 °C with a tolerance
	$of \pm 3 \degree C$.
6.4.	Wind tunnel procedure
6.4.1.	Wind tunnel criteria
	The wind tunnel design, test methods and the corrections shall provide a value with an accuracy of 0.015 m ² of $C_d \times A_f$ representative of the on-road $C_d \times A_f$ value.
	For all $C_d \times A_f$ measurements, the wind tunnel criteria listed in paragraph 3.2. of this Annex shall be met with the following modifications-:
	(a) The solid blockage ratio described in paragraph 3.2.4. of this Annex shall be below [25] per cent,
	(b) The belt surface contacting any tyre shall exceed the length of that tyre's contact area by at least 20 per cent and shall be at least as wide as that contact patch area.
	(c) The standard deviation of total air pressure at the nozzle outlet described in paragraph 3.2.8. of this Annex shall be below 0.5 per cent.
	(d) The restraint system blockage ratio described in paragraph 3.2.10. of this Annex shall be below [3] per cent.
6.4.2.	Wind tunnel measurement
	The vehicle shall be in the condition described in paragraph 6.3 of this Annex.
	The vehicle shall be placed parallel to the longitudinal centre line of the tunnel with a maximum deviation of [10] mm.
	The vehicle shall be placed with 0° yaw angle with a tolerance of $\pm 0.1^{\circ}$.
	The aerodynamic drag shall be measured at least for [60] seconds and at a minimum frequency of [5] Hz. The result shall be the average of the measured drag during the measurement.
	If the vehicle has movable aerodynamic body parts, paragraph 4.2.1.4. of this Annex shall apply. In the case where movable parts are velocity-dependent, every applicable position shall be measured in the wind tunnel and evidence shall be given to the responsible authority indicating the relationship between (a) reference speed, (b) movable part position, and (c) the corresponding Cd × Af.
<u>6.5.</u>	Flat belt method
6.5	.1. Flat belt criteria

The test cell of the flat belt or the roller chassis dynamometer test cells shall

6.5.1.1. Layout of a flat belt test bench The wheels shall rotate on flat belts which do not change the rolling characteristics of the wheels compared to that on the road. The measured forces in the x-direction shall include the frictional forces in the drivetrain. 6.5.1.2. Vehicle restraint system The dynamometer shall be equipped with a centring device which aligns the vehicle within a tolerance of ± 0.5 degrees to the longitudinal centre line of the test bed. The restraint system shall maintain the centred drive wheel position within the following recommended [SMD272][SMD273]throughout the coastdown runs of the road load determination. 6.5.1.2.1. Lateral position (y axis) The vehicle shall remain aligned in the y-direction and lateral movement shall be minimized. 6.5.1.2.2. Front and rear position (x axis) Without prejudice to the requirement of paragraph 6.5.1.2.1., both wheel axes shall be within \pm 10 mm of the belt's lateral centrelines. 6.5.1.2.3. Vertical force The restraint system shall be designed so as to impose no vertical force on the drive wheels. 6.5.1.3. Accuracy of measured forces Only the reaction force for turning the wheels shall be measured. No external forces shall be included in the result (e.g. air force of the cooling fan, vehicle restraints, aerodynamic reaction forces of the flat belt, etc.). The force in the x-direction shall be measured with an accuracy of \pm 5 N. 6514 Flat belt speed control The belt speed shall be controlled with an accuracy of ± 0.1 km/h. Flat belt surface The flat belt surface shall be clean, dry and free from foreign material which might cause tyre slippage. 6.5.1.6. Cooling A current of air of variable speed shall be blown towards the vehicle. At measurement speeds above 5 km/h, the set point of the linear velocity of the air at the blower outlet shall be equal to the corresponding roller speed. The deviation of the linear velocity of the air at the blower outlet shall remain

	within ± 5 km/h or ± 10 per cent of the corresponding measurement speed, whichever is greater [SMD274]
6.5.2.	Flat belt measurement
6.5.2.	1. Preconditioning
	The vehicle shall be conditioned as described in paragraphs 4.2.4.1.1. to 4.2.4.1.3. of this Annex by driving the vehicle under its own power.
	At the request of the manufacturer, as an alternative to paragraph 4.2.4.1.2, the warm-up may be conducted by driving the vehicle with the flat belt, but only if this warm-up method was used during approval of the facility.
	In this case, the warm-up speed shall be 110 per cent of the maximum speed of the applicable WLTC and the duration shall exceed 1200 seconds until the change of measured force over a period of 200 seconds is smaller than 5 N.[SMD275]
6.5.2.	2. Measurement procedure
6.5.2.2.1.	The test shall be conducted from the highest to the lowest reference speed point.
6.5.2.2.2.	Brake conditioning and warm-up shall be performed according to paragraphs 4.2.4.1.1. to 4.2.4.1.3. inclusive of this Annex.
6.5.2.2.3.	The deceleration from the current to the next applicable reference speed point shall be done in a smooth transition from approximately 1 m/s².
6.5.2.2.4.	The reference speed shall be stabilised for at least [4] seconds;
6.5.2.2.5.	The average force at each reference speed shall be measured for at least [6] seconds while the vehicle speed is kept constant. The resulting force for that reference speed point shall be the average of the recorded force during the measurement. [SMD276]
	The steps in paragraphs 6.5.2.2.3. to 6.5.2.2.5. inclusive shall be repeated for each reference speed.
6.5.2.3.	Measurement conditions
	During measurement, the transmission shall be in a neutral position, and the engine shall run at idle. Steering wheel movement shall be avoided as much as possible, and the vehicle brakes shall not be operated.
6.6.	Chassis dynamometer
	[Reserved]
6.7.	Calculations
6.7.1.	Correction of flat belt and chassis dynamometer result

The measured forces determined in paragraphs 6.5, and 6.6, of this Annex shall be corrected to reference conditions as follows: <u>F Dj= (f j- K 1)×(1+K 0 (T-293 K))</u> (XX) F Dj is the corrected total resistance measured at the flat belt or chassis dynamometero at reference speed j N; f j is the measured force at reference speed j, N; K 0 is the correction factor for rolling resistance as defined in paragraph 4.5.2.of this Annex, K-1; K 1 is the test mass correction as defined in paragraph 4.5.4.of this Annex, N; is the mean temperature in the test cell during the measurement, Kelvin. Calculation of the aerodynamic force The aerodynamic drag shall be calculated as follows. If the vehicle is equipped with velocity- dependent movable aerodynamic body parts, the corresponding Cd × Af values shall be applied for the concerned reference speed points. <u>F</u> Aj= (C d* A f) j* ρ 0/2*(v j^2)/[3.6]\^2 (XX) where: F A is the aerodynamic drag measured in the wind tunnel, N; (C d* A f) j is the measured aerodynamic drag, if applicable at a certain reference speed point j, m2; is the dry air density defined in paragraph 3.2.9. of this gtr, $\rho 0$ kg/m^3 ; v j is the reference speed j, km/h. Calculation of road load values 6.7.3. The following equation shall be used to calculate the total road load as a sum of the results of paragraphs 6.7.1 and 6.7.2. of this Annex. F $j^*=F$ Dj + F Aj for all applicable reference speed points j, N; With all calculated F j^* the coefficients f 0, f 1 and f 2 in the total resistance equation shall be calculated with a least squares regression analysis and shall be used as the target coefficients in paragraph 8.1.1.

- 7. Transferring road load to a chassis dynamometer
- 7.1. Preparation for chassis dynamometer test
- 7.1.1. Laboratory condition

7.1.1.1. Roller(s)

The chassis dynamometer roller(s) shall be clean, dry and free from foreign material which might cause tyre slippage. For chassis dynamometers with multiple rollers, the dynamometer shall be run in the same coupled or uncoupled state as the subsequent Type 1 test. Chassis dynamometer speed shall be measured from the roller coupled to the power_-absorption unit.

7.1.1.1.1 Tyre <u>slippage slip</u>

Additional weight may be placed on or in the vehicle to eliminate tyre slippage. The manufacturer shall perform the load setting on the chassis dynamometer with the additional weight. The additional weight shall be present for both load setting and the emissions and fuel consumption tests. The use of any additional weight shall be recorded.

7.1.1.2. Room temperature

The laboratory atmospheric temperature shall be at a set point of 296 K (23 °C) and shall not deviate by more than \pm 5 K (\pm 5 °C) during the test as the standard condition, unless otherwise required by the subsequent test(s).

7.2. Preparation of chassis dynamometer

7.2.1.[SMD277] Inertia mass setting

The equivalent inertia mass of the chassis dynamometer shall be set to the test mass used at the corresponding road load determination—if a dual-axis chassis dynamometer is used. In the case that a single-axis chassis dynamometer is used, the equivalent inertia mass shall be increased by the inertia of the wheels and connected vehicle parts which are not rotating. If m_F is estimated at 3 per cent of the mass in running order plus 25 kg, , the mass added to the inertia setting shall be 1.5 per cent_—of UM. If the chassis dynamometer is not capable to meet the inertia setting exactly, the next higher inertia setting shall be applied with a maximum increase of 10 kg.

7.2.2. Chassis dynamometer warm-up

The chassis dynamometer shall be warmed up in accordance with the dynamometer manufacturer's recommendations, or as appropriate, so that friction losses of the dynamometer can be stabilized.

7.3. Vehicle preparation

7.3.1. Tyre pressure adjustment

The tyre pressure at the soak temperature of a Type 1 test shall be set to no more than 50 per cent (see paragraph 4.2.2.3. of this Annex) above the lower limit of the tyre pressure range for the selected tyre, as specified by the vehicle manufacturer (see paragraph 4.2.2.3. of this Annex), and shall be recorded.

7.3.2. If the determination of dynamometer settings cannot meet the criteria described in paragraph -8.1.3. of this Annex due to non-reproducible forces,

the vehicle shall be equipped with a vehicle coastdown mode. The <u>coastdown</u> coasting mode shall be approved and recorded by the responsible authority.

- 7.3.2.1. If a vehicle is equipped with a vehicle coastdown mode, it shall be engaged both during road load determination and on the chassis dynamometer.
- 7.3.3. Vehicle setting

The tested vehicle shall be <u>installed placed</u> on the chassis dynamometer <u>roller</u> in a straight position and restrained in a safe manner. In case of a single roller, the tyre contact point shall be within ± 25 mm or ± 2 per_-cent of the roller diameter, whichever is smaller, measured from the top of the roller.

- 7.3.4. Vehicle warm-up
- 7.3.4.1. The vehicle shall be warmed up with the applicable WLTC. In case the vehicle was warmed up at 90 per_cent of the maximum speed of the next higher phase during the procedure defined in paragraph-4.2.4.1.2._of this Annex, this higher phase shall be added to the applicable WLTC.

Table A4/6 **Vehicle warmWarm</u>-up**

Vehicle class	Applicable WLTC	Adopt next higher phase	Warm-up cycle	
Class 1	Low ₁ + Medium ₁	NA	Low ₁ + Medium ₁	
Class 2	Low ₂ + Medium ₂ + High ₂ + Extra High ₂	NA	Low ₂ + Medium ₂ +	
	Low ₂ + Medium ₂ + High ₂	Yes (Extra High ₂)	High ₂ + Extra High ₂	
		No	Low ₂ + Medium ₂ + High ₂	
Class 3	Low ₃ + Medium ₃ + High ₃ + Extra High ₃	Low ₃ + Medium ₃ + High ₃ + Extra High ₃	Low ₃ + Medium ₃ +	
	Low ₃ + Medium ₃ + High ₃	Yes_(Extra High ₃)	High ₃ + Extra High ₃	
		No	Low ₃ + Medium ₃ + High ₃	

7.3.4.2. If the vehicle is already warmed up, the WLTC phase applied in paragraph_7.3.4.1. above, with the highest speed, shall be driven.

7.3.4.3.[SMD278] Alternative warm-up procedure

- 7.3.4.3.1. At the request of the vehicle manufacturer and approval of the responsible authority, an alternative warm-up procedure may be used. The approved alternative warm-up procedure may be used for vehicles within the same road load family[SMD279][SMD280] and shall satisfy the requirements outlined in paragraphs 7.3.4.3.2. [SMD281] to 7.3.4.3.5. inclusive.
- 7.3.4.3.2. At least one vehicle representing the road load family shall be selected.
- 7.3.4.3.3. The cycle energy demand calculated according to paragraph 5 of Annex 7 with corrected road load parameters, f_{0a} , f_{1a} and f_{2a} , for the alternative warm-up procedure shall be equal to or higher than the cycle energy demand calculated with the target road load parameters, f_{0a} , f_{1a} , and f_{2a} , for each applicable phase.

The corrected road load parameters, f_{0a} , f_{1a} and f_{2a} , shall be calculated according to the following equations:

 $\underline{\qquad} f_{0a} = f_0 + A_{d_alt} - A_{d_WLTC}. \tag{XX}$

 $\underline{f_{1a}} = f_1 + B_{d_alt} - B_{d_WLTC}$ (YY)

$$\underline{f_{2a}} = f_2 + C_{\underline{d_alt}} - C_{\underline{d_WLTC}}$$
 (ZZ)

where:

 $\frac{A_{\underline{d} \ \underline{alt}}, B_{\underline{d} \ \underline{alt}} \ \underline{and} \ C_{\underline{d} \ \underline{alt}}}{coefficients \ \underline{after} \ the \ \underline{alternative}}}{coefficients \ \underline{after} \ the \ \underline{alternative}}$ warm-up procedure;

- 7.3.4.3.4. The corrected road load parameters, f_{0a} , f_{1a} and f_{2a} , shall be used only for the purpose of paragraph 7.3.4.3.3. of this Annex. For other purposes, the target road load parameters, f_0 , f_1 and f_2 , shall be used as the target road load parameters.
- 7.3.4.3.5. Details of the procedure and of its equivalency shall be provided [SMD282]to the responsible authority.
- 8. Chassis dynamometer load setting
- 8.1. Chassis dynamometer setting by the coastdown method

This method is applicable when the road load is determined using the coastdown method as specified in paragraph 4.3. of this Annex.

8.1.1. Initial load setting

For a chassis dynamometer with coefficient control, the chassis dynamometer power_absorption unit shall be adjusted with the arbitrary initial coefficients, A_d , B_d and C_d , of the following equation:

$$F_d = A_d + B_d v + C_d v^2$$
 (50)

where:

 F_d is the chassis dynamometer setting load, N;

v is the speed of the chassis dynamometer roller, km/h.

The following are recommended coefficients to be used for the initial load setting:

(a)
$$A_d = 0.5 \times A_t, B_d = 0.2 \times B_t, C_d = C_t$$
 (51)

for single-axis chassis dynamometers, or

$$A_d = 0.1 \times A_t$$
, $B_d = 0.2 \times B_t$, $C_d = C_t$ (52)
for dual-axis chassis dynamometers, where A_t , B_t and C_t are the target

for dual-axis chassis dynamometers, where A_t, B_t and C_t are the target road load coefficients;

(b) empirical values, such as those used for the setting for a similar type of vehicle. For a chassis dynamometer of polygonal control, adequate load values at each reference speed shall be set to the chassis dynamometer power_absorption unit.

8.1.2. Coastdown

The coastdown test on the chassis dynamometer shall be performed with the procedure given in paragraphs_4.3.1.3.1. and 4.3.1.3.2. of this Annex.

8.1.3. Verification

8.1.3.1. The target road load value shall be calculated using the target road load coefficient, A_t , B_t and C_t , for each reference speed, v_i :

$$F_{ti} = A_t + B_t v_i + C_t v_i^2$$
 (53)

where:

F_{ti} is the target road load at reference speed v_i, N;

v_i is the jth reference speed, km/h.

8.1.3.2. For dynamometer load setting, two different methods may be used. If the vehicle is accelerated by the dynamometer, the methods described in paragraph_8.1.3.2.1. below shall be used. If the vehicle is accelerated under its own power, -the methods in paragraphs_-8.1.3.2.1. or_-8.1.3.2.2. below shall be used. The acceleration multiplied by speed shall be approximately 6 m²/sec³. ISMD283

8.1.3.2.1. Fixed run method

For the fixed-run procedure, the dynamometer software shall automatically run three coastdowns adjusting the set coefficients for each run using the difference between the previous run's measured and target coefficients. The final set coefficients shall be calculated by subtracting the average of the vehicle coefficients obtained from the last two runs from the target coefficients. Optionally, a single stabilization coastdown may be performed before beginning the 2 run averaging sequence.

8.1.3.2.2. Iterative method

The calculated forces in the specified speed ranges shall be within a tolerance of $\pm\,10\,$ N after a least squares regression of the forces for two consecutive coastdowns.

If an error at any reference speed does not satisfy the <u>criterioneriteria</u> of the method described in this paragraph, paragraph_8.1.4. below shall be used to adjust the chassis dynamometer load setting.

8.1.4. Adjustment

The chassis dynamometer setting load shall be adjusted in accordance with the procedure specified in <u>paragraph 1 of Appendix 2</u> to this Annex, paragraph 1. Paragraphs_-8.1.2. and 8.1.3. above (including subparagraphs) shall be repeated.

8.2. Chassis dynamometer load setting using the torque meter method

This method is applicable when the road load is determined using the torque meter method, as specified in paragraph_4.4. of this Annex.

8.2.1. Initial load setting

For a chassis dynamometer of coefficient control, the chassis dynamometer power absorption unit shall be adjusted with the arbitrary initial coefficients, A_d , B_d and C_d , of the following equation:

$$F_d = A_d + B_d v + C_d v^2$$
 (54)

where:

F_d is the chassis dynamometer setting load, N;

v is the speed of the chassis dynamometer roller, km/h.

The following coefficients are recommended for the initial load setting:

(a)
$$A_d = 0.5 \times \frac{a_t}{r'}$$
, $B_d = 0.2 \times \frac{b_t}{r'}$, $C_d = \frac{c_t}{r'}$ (55) for single-axis chassis dynamometers, or

$$A_d = 0.1 \times \frac{a_t}{r'}$$
, $B_d = 0.2 \times \frac{b_t}{r'}$, $C_d = \frac{c_t}{r'}$ (56)

_for dual-axis chassis dynamometers, where: a_t, b_t and c_t are the coefficients for the target torque; r' is the dynamic radius of the tyre on the chassis dynamometer, metres, obtained by averaging the r'_j values calculated in paragraph 2.1. of Appendix 1_to this Annex; paragraph 2.1;

(b) Empirical values, such as those used for the setting for a similar type of vehicle.

For a chassis dynamometer of polygonal control, adequate load values at each reference speed shall be set for the chassis dynamometer power_-absorption unit.

8.2.2. Wheel torque measurement

The torque measurement test on the chassis dynamometer shall be performed with the procedure defined in <u>paragraph</u> 4.4.2. The torque meter(s) shall be identical to the one(s) used in the preceding road test.

- 8.2.3. Verification
- 8.2.3.1. The target road load value shall be calculated using the target torque coefficients a_t , b_t and c_t , for each reference speed v_i .

$$F_{tj} = \frac{a_t + b_t \times v_j + c_t \times v_j^2}{r'}$$
 (57)

where:

F_{ti} is the target road load at reference speed v_i, N;

v_i is the jth reference speed, km/h;

r' is the dynamic radius of the tyre on the chassis dynamometer, metres, obtained by averaging the r'_j values calculated according to paragraph 2.1. in Appendix 1 to this Annex, paragraph 2.1.

8.2.3.2. The error, ε_j , in per cent of the simulated road load F_{sj} , shall be calculated. F_{sj} is determined according to the method specified in Appendix 1_to this Annex, paragraph 2, for target road load F_{tj} at each reference speed v_j .

$$\varepsilon_{\rm j} = \frac{F_{\rm sj} - F_{\rm tj}}{F_{\rm ti}} \times 100$$
 (58)

 $\frac{c_{jm}}{r'}$ obtained in <u>paragraph 2.1. of</u> Appendix 1 to this Annex, paragraph 2.1. and paragraph 8.2.3., respectively, may be used in the above equation instead of F_{sj} .

Errors at all reference speeds shall satisfy the following error criteria in two consecutive coastdown runs, unless otherwise specified by regulations.

 $\varepsilon_i \stackrel{E_i}{=} \le 3 \text{ per cent for } v_i \ge 50 \text{ km/h}$

 $m \epsilon_{i} \leq 5~per~cent~for~20~km/h < v_{i} < 50~km/h$

 $\epsilon_i \leq 10$ per cent for $v_i = 20$ km/h.

8.2.3.3. Adjustment

The chassis dynamometer setting load shall be adjusted according to the procedure specified in <u>paragraph 2</u>. of Appendix 2 to Annex 4, paragraph 2. Paragraphs 8.2.2. and 8.2.3. shall be repeated.

Once the chassis dynamometer has been set within the specified tolerances, a vehicle coastdown shall be performed on the chassis dynamometer as outlined in paragraph_4.3.1.3. The coastdown times shall be recorded.

Annex 4 - Appendix 1

Calculation of road load for the dynamometer test

1. Calculation of simulated road load using the coastdown method

When the road load is measured by the coastdown method as specified in <u>paragraph</u> 4.3. of this Annex, calculation of the simulated road load, $F_{sj'}$ for each reference speed, v_j , in km per hour, shall be conducted as described in <u>paragraphs</u> 1.1. to 1.3. inclusive of this Appendix.

1.1. ______The measured road load shall be calculated using the following _______equation:

$$F_{mj} = \frac{1}{3.6} \times (m_d + m'_r) \times \frac{2 \times \Delta v}{\Delta t_j}$$
 (1)

where

 $F_{mi} \quad \text{ is the measured road load for each reference speed } v_j, N; \\$

m_d is the equivalent inertia-mass of the chassis dynamometer, kg;

m'_r is the equivalent effective mass of drive wheels and vehicle components rotating with the wheels during coastdown on the road, kg; m'_r may be measured or calculated by an appropriate technique. As an alternative, m'_r may be estimated as 3 per_cent of the sum of the mass in running order plus and 25 kg;

 Δt_i is the coastdown time corresponding to speed v_i , seconds (s).

1.2. The coefficients A_s , B_s and C_s of the following approximate equation shall be determined using a least_square regression using the calculated values of F_{mj} :

$$F_{s} = A_{s} + B_{s}v + C_{s}v^{2}$$
 (2)

1.3. The simulated road load for each reference speed v_j shall be determined using the following equation, using the calculated A_s , B_s and C_s :

$$F_{sj} = A_s + B_s v_j + C_s v_j^2$$
 (3)

2. Calculation of simulated road load using the torque meter method

When the road load is measured by the torque meter method as specified in paragraph 4.4. of Annex 4, calculation of the simulated road load, F_{sj} for each reference speed v_j , in km per hour, shall be conducted as described in paragraphs_2.1. to 2.3. inclusive of this Appendix.

2.1. The mean speed v_{jm} , in km per hour, and the mean torque, C_{jm} , in Nm, for each reference speed v_j shall be calculated using the following equations:

$$v_{jm} = \frac{1}{k} \sum_{i=1}^{k} v_{ji}$$
 (4)

and

$$C_{jm} = \frac{1}{k} \sum_{i=1}^{k} C_{ji} - C_{jc}$$
 (5)

where:

v_{ji} is the vehicle speed of the ith data set, km/h;

k is the number of data sets;

C_{ii} is the torque of the ith data set, Nm;

C_{jc} is the compensation term for the speed drift,-Nm, given by the following equation:

$$C_{ic} = (m_d + m_r')\alpha_i r_i'$$
 (6)

 C_{jc} —shall be no greater than five 5 per_cent of the mean torque before compensation, and may be neglected if $|\alpha_j|$ is no greater than 0.005 m/s^2 ;

M_d is the equivalent inertia mass of the chassis dynamometer, kg;

- m'_r is the equivalent effective mass of drive wheels and vehicle components rotating with the wheels during coastdown on the dynamometer, kg; m'_r may be measured or calculated by an appropriate_technique. As an alternative, m'_r may be estimated as three 3 per_cent of the sum of the mass in running order and 25 kg; unladen vehicle mass for a permanent four wheel drive vehicle, and 1.5 per cent of the unladen vehicle mass for a two wheel drive vehicle;
- α_j is the mean acceleration, in metres per second squared (m/s²), which shall be calculated using the following by the equation:

$$\alpha_{j} = \frac{1}{3.6} \times \frac{k \sum_{i=1}^{k} t_{i} v_{ji} - \sum_{i=1}^{k} t_{i} \sum_{i=1}^{k} v_{ji}}{k \sum_{i=1}^{k} t_{i}^{2} - \left(k \sum_{i=1}^{k} t_{i}\right)^{2}}$$
(7)

where:

-t_{ii} is the time at which the ith data set was sampled, seconds (s);

 r'_j is the dynamic radius of the tyre, metres, for the j^{th} reference speed given by the equation:

$$r_{j}' = \frac{1}{3.6} \times \frac{v_{jm}}{2 \times \pi Nn} \tag{8}$$

where:

Nn is the rotational frequency of the driven tyre, s⁻¹.

2.2. The coefficients a_s , b_s and c_s of the following approximate equation shall be determined by the least_-square regression using the calculated v_{jm} and the C_{jm} .

$$F_{s} = \frac{f_{s}}{r'} = \frac{a_{s} + b_{s}v + c_{s}v^{2}}{r'}$$
 (9)

2.3. The simulated road load for each reference speed v_j shall be determined using the following equation and the calculated a_s , b_s and c_s :

$$F_{sj} = \frac{f_{sj}}{r'} = \frac{a_s + b_s v_j + c_s v_j^2}{r'}$$
 (10)

Annex 4—- Appendix 2

-Chassis dynamometer load setting Adjustment of chassis dynamometer load setting

Adjustment_-oof chassis_dynamometer load setting using the coastdown

The chassis dynamometer load setting shall be adjusted using the following equations:

$$F_{dj}^{*} = F_{dj} - F_{j} = F_{dj} - F_{sj} + F_{tj} =$$

$$= (A_{d} + B_{d}v_{j} + C_{d}v_{j}^{2}) - (A_{s} + B_{s}v_{j} + C_{s}v_{j}^{2}) + (A_{t} + B_{t}v_{j} + C_{t}v_{j}^{2}) =$$

$$= (A_{d} + A_{t} - A_{s}) + (B_{d} + B_{t} - B_{s})v_{j} + (C_{d} + C_{t} - C_{s})v_{i}^{2}$$
(1)

Therefore:

$$A_d^* = A_d + A_t - A_s \tag{2}$$

$$B_d^* = B_d + B_t - B_s \tag{3}$$

$$C_d^* = C_d + C_t - C_s \tag{4}$$

The parameters used in these equations are the following:

is the initial chassis dynamometer setting load, N; $\frac{F_{di}}{F_{di}}$

is the adjusted chassis dynamometer setting load, N; F_{di}^*

 F_{i} is the adjustment road load, which is equal to F_{Si} - F_{II.}

 $(F_{si} - F_{ti}) N;$

is the simulated road load at reference speed v_i, N; F_{si}

 F_{tj} is the target road load at reference speed v_i, N;

are the new chassis dynamometer setting coefficients. A_d^* , B_d^* and C_d^*

2. Adjustment of chassis dynamometer load setting using the torque meter method

> The chassis dynamometer load setting shall be adjusted using the following equation:

$$\begin{split} F_{dj}^* &= F_{dj} - \frac{F_{ej}}{r'} = F_{dj} - \frac{F_{sj}}{r'} + \frac{F_{tj}}{r'} = \\ &= \left(A_d + B_d v_j + C_d v_j^2 \right) - \frac{\left(a_s + b_s v_j + c_s v_j^2 \right)}{r'} + \frac{\left(a_t + b_t v_j + c_t v_j^2 \right)}{r'} = \\ &= \left\{ A_d + \frac{\left(a_t - a_s \right)}{r'} \right\} + \left\{ B_d + \frac{\left(b_t - b_t \right)}{r'} \right\} v_j + \left\{ C_d + \frac{\left(c_t - c_s \right)}{r'} \right\} v_j^2 \underline{\hspace{1cm}} \tag{5} \end{split}$$

Therefore:

$$A_{d}^{*} = A_{d} + \frac{a_{t} - a_{s}}{r'} \tag{6}$$

$$B_{d}^{*} = B_{d} + \frac{b_{t} - b_{s}}{r'}$$
 (7)

 $C_{\mathrm{d}}^* = C_{\mathrm{d}} + \frac{c_{\mathrm{t}} - c_{\mathrm{s}}}{r'} \tag{8}$

where:

 $F_{dj}^{*} \hspace{1cm} \text{is the new chassis dynamometer setting load, N;} \\$

 F_{ej} is the adjustment road load, which is equal to $(F_{sj}-F_{tj})$,

Nm;

 F_{sj} is the simulated road load at reference speed v_j , Nm;

 F_{tj} is the target road load at reference speed v_j , Nm;

 A_d^* , B_d^* and C_d^* are the new chassis dynamometer setting coefficients;

r' is the dynamic radius of the tyre on the chassis

dynamometer, m, that is obtained by averaging the r_i' values

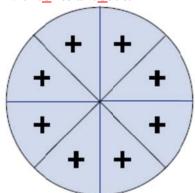
calculated in Appendix 1 to Annex 4, paragraph 2.1.

Annex 5

Test equipment and calibrations

- 1. Test bench specifications and settings
- 1.1. Cooling fan specifications
- 1.1.1. A current of air of variable speed shall be blown towards the vehicle. The set point of the linear velocity of the air at the blower outlet shall be equal to the corresponding roller speed above roller speeds of 5 km/h. The deviation of the linear velocity of the air at the blower outlet shall remain within \pm 5 km/h or \pm 10 per cent of the corresponding roller speed, whichever is greater.
- 1.1.2. The above-mentioned air velocity shall be determined as an averaged value of a number of measuring points which:
 - (a) For fans with rectangular outlets, are located at the centre of each rectangle dividing the whole of the fan outlet into 9 areas (dividing both horizontal and vertical sides of the fan outlet into 3 equal parts). The centre area shall not be measured (as shown in Figure A5/1);

Figure A5/1


Fan with FRectangular Outlet

+	+	+
+		+
+	+	+

(b) For circular fan outlets, the outlet shall be divided into 8 equal sections—sectors by vertical, horizontal and 45° lines. The measurement points lie on the radial centre line of each are sector (22.5°) at two—thirds of the outlet radius (as shown in Figure A5/2).

Figure A5/2

Fan with eCircular eQutlet

These measurements shall be made with no vehicle or other obstruction in front of the fan. The device used to measure the linear velocity of the air shall be located between 0 and 20 cm from the air outlet.

- 1.1.3. The outlet of the fan shall have the following characteristics:
 - (a) An area of at least 0.3 m^2 , and,
 - (b) A width/diameter of at least 0.8 metre.
- 1.1.4. The position of the fan shall be as follows:
 - (a) Height of the lower edge above ground: approximately 20 cm;
 - (b) Distance from the front of the vehicle: approximately 30 cm.
- 1.1.5. The height and lateral position of the cooling fan may be modified at the request of the manufacturer and, if considered appropriate, by the responsible authority.
- 1.1.6. In the cases described above, the cooling fan position (height and distance) shall be recorded and shall be used for any subsequent testing.
- 2. Chassis dynamometer
- 2.1. General requirements
- 2.1.1. The dynamometer shall be capable of simulating road load with at least three road load parameters that can be adjusted to shape the load curve.
- 2.1.2. The chassis dynamometer may have one or two rollers. In the case of twinroller dynamometers, the rollers shall be permanently coupled or the front roller shall drive, directly or indirectly, any inertial masses and the power absorption device.
- 2.2. Specific requirements

The following specific requirements relate to the dynamometer manufacturer's specifications.

- 2.2.1. The roller run-out shall be less than 0.25 mm at all measured locations.
- 2.2.2. The roller diameter shall be within \pm 1.0 mm of the specified nominal value at all measurement locations.
- 2.2.3. The dynamometer shall have a time measurement system for use in determining acceleration rates and for measuring vehicle/dynamometer coastdown times. This time measurement system shall have an accuracy of ± 0.001 per cent or better. This shall be verified upon initial installation.
- 2.2.4. The dynamometer shall have a speed measurement system with an accuracy of \pm 0.080 km/h or better. This shall be verified upon initial installation.
- 2.2.5. The dynamometer shall have a response time (90 per cent response to a tractive effort step change) of less than 100 ms with instantaneous accelerations which are at least 3 m/s². This shall be verified upon initial installation and after major maintenance.
- 2.2.6. The base inertia weight of the dynamometer shall be stated by the dynamometer manufacturer, and $\frac{\text{must-shall}}{\text{must-shall}}$ be confirmed to within \pm 0.5 per cent for each measured base inertia and \pm 0.2 per cent relative to any mean value by dynamic derivation from trials at constant acceleration, deceleration and force.

- 2.2.7. Roller speed shall be recorded at a frequency of not less than 1 Hz.
- 2.3. Additional specific requirements for chassis dynamometers for vehicles to be tested in four wheel drive (4WD) mode
- 2.3.1. The 4WD control system shall be designed such that the following requirements are met when tested with a vehicle driven over the WLTC.
- 2.3.1.1. Road load simulation shall be applied such that operation in 4WD mode reproduces the same proportioning of forces as would be encountered when driving the vehicle on a smooth, dry, level road surface.
- 2.3.1.2. SMD284] Upon initial installation and after major maintenance, the requirements of paragraph 2.3.1.2.1. and either paragraph 2.3.1.2.2 or 2.3.1.2.3 shall be satisfied. The speed difference between the front and rear rollers is assessed by applying a 1 second moving average filter to roller speed data acquired at a minimum frequency of 20 Hz. The difference in distance covered by the front and rear rollers shall be less than 0.1 m in any 200 ms time period. If it can be demonstrated that this criteria is met, the speed synchronization requirement in paragraph 2.3.1.3. below is not required. This must be checked for new dynamometer instalments and after major repairs or maintenance.
- 2.3.1.2.1.2.3.1.3. The difference in distance covered by the front and rear rollers shall be less than 0.2 per cent of the distance driven distance over the WLTC. The absolute number shall be integrated for the calculation of the total difference in distance over the WLTC. All roller speeds shall be synchronous to within ±0.16 km/h. This may be assessed by applying a 1s moving average filter to roller speed data acquired at a minimum of 20 Hz. This must be checked for new dynamometer instalments and after major repairs or maintenance.
- 2.3.1.2.2. 2.3.1.4.The difference in distance covered by the front and rear rollers shall be less than 0.1 m in any 200 ms time period. The difference in distance covered by the front and rear rollers shall be less than 0.2 per cent of the driven distance over the WLTC. The absolute number shall be integrated for the calculation of the total difference in distance over the WLTC.
- 2.3.1.2.3. The speed difference of all roller speeds shall be within +/- 0.16 km/h.
- 2.4. Chassis dynamometer calibration
- 2.4.1. Force measurement system

The accuracy and linearity of the force transducer shall be at least \pm 10 N for all measured increments. This shall be verified upon initial installation, after major maintenance and within 370 days before testing.

2.4.2. Dynamometer parasitic loss calibration

The dynamometer's parasitic losses shall be measured and updated if any measured value differs from the current loss curve by more than 2.5 N. This shall be verified upon initial installation, after major maintenance and within 35 days before testing.

2.4.3. Verification of road load simulation without a vehicle

The dynamometer performance shall be verified by performing an unloaded coastdown test upon initial installation, after major maintenance, and within 7 days before testing. The average coastdown force error shall be less than 10-10 N or 2 per -cent, whichever is greater, at each reference speed

point_measured_point_(10 km/h_speed_intervals)_in_the_speed_range.. ||
[SMD285||SMD286||SMD287]

- 3. Exhaust gas dilution system
- 3.1. System specification
- 3.1.1. Overview
- 3.1.1.1. A <u>full flow_full flow_exhaust gas_dilution</u> system shall be used. The total vehicle exhaust shall be continuously diluted with ambient air under controlled conditions using a constant volume sampler. A critical flow venturi (CFV) or multiple critical flow venturis arranged in parallel, a positive displacement pump (PDP), a subsonic venturi (SSV), or an ultrasonic flow meter (USM) may be used. The total volume of the mixture of exhaust and dilution air shall be measured and a continuously proportional sample of the volume shall be collected for analysis. The quantities of exhaust gas compounds are determined from the sample concentrations, corrected for their respective content of the dilution air and the totalised flow over the test period.
- 3.1.1.2. The exhaust dilution system shall consist of a connecting tube, a mixing device and dilution tunnel, dilution air conditioning, a suction device and a flow measurement device. Sampling probes shall be fitted in the dilution tunnel as specified in paragraphs 4.1., 4.2. and 4.3. of this Annex.
- 3.1.1.3. The mixing device <u>referred to described</u> in paragraph_-3.1.1.2. shall be a vessel such as that illustrated in Figure A5/3 in which vehicle exhaust gases and the dilution air are combined so as to produce a homogeneous mixture at the sampling position.
- 3.2. General requirements
- 3.2.1. The vehicle exhaust gases shall be diluted with a sufficient amount of ambient air to prevent any water condensation in the sampling and measuring system at all conditions which may occur during a test.
- 3.2.2. The mixture of air and exhaust gases shall be homogeneous at the point where the sampling probes are located (paragraph_-3.3.3. below). The sampling probes shall extract representative samples of the diluted exhaust gas.
- 3.2.3. The system shall enable the total volume of the diluted exhaust gases to be measured.
- 3.2.4. The sampling system shall be gas-tight. The design of the variable_dilution sampling system and the materials used in its construction shall be such that they do not affect the <u>concentration of any</u> compound concentration in the diluted exhaust gases. If any component in the system (heat exchanger, cyclone separator, suction device, etc.) changes the concentration of any of the exhaust gas compounds—in the diluted exhaust gases and the systematic error cannot be corrected, sampling for that compound shall be carried out upstream from that component.
- 3.2.5. All parts of the dilution system in contact with raw or diluted exhaust gas shall be designed to minimise deposition or alteration of the particulates or particles. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.

- 3.2.6. If the vehicle being tested is equipped with an exhaust pipe comprising several branches, the connecting tubes shall be connected as near as possible to the vehicle without adversely affecting their operation.
- 3.3. Specific requirements
- 3.3.1. Connection to vehicle exhaust
- 3.3.1.1. The start of the connecting tube is the exit of the tailpipe. The end of the connecting tube is the sample point, or first point of dilution. For multiple tailpipe configurations where all the tailpipes are combined, the start of the connecting tube may be taken at the last joint of where all the tailpipes are combined.
- 3.3.1.2. The connecting tube between the vehicle and dilution system shall be designed so as to minimize heat loss.
- 3.3.1.3. The connecting tube shall satisfy the following requirements:
 - (a) Be less than 3.6 metres long, or less than 6.1 metres long if heat-insulated. Its internal diameter shall not exceed 105 mm; the insulating materials shall have a thickness of at least 25 mm and thermal conductivity not exceeding 0.1 W/m⁻¹K⁻¹ at 673 K (400 °C). Optionally, the tube may be heated to a temperature above the dew point. This may be assumed to be achieved if the tube is heated to 343 K (70 °C);
 - (b) Not cause the static pressure at the exhaust outlets on the vehicle being tested to differ by more than ±0.75 kPa at 50 km/h, or more than ±1.25 kPa for the duration of the test from the static pressures recorded when nothing is connected to the vehicle exhaust pipes. The pressure shall be measured in the exhaust outlet or in an extension having the same diameter, as near as possible to the end of the tailpipe. Sampling systems capable of maintaining the static pressure to within ±0.25 kPa may be used if a written request from a manufacturer to the responsible authority substantiates the need for the closer tolerance:
 - (e(c) No component of the connecting tube shall be of a material which might affect the gaseous or solid composition of the exhaust gas. To avoid generation of any particles from elastomer connectors, elastomers employed shall be as thermally stable as possible and have minimum exposure to the exhaust gas. It is recommended not to use elastomer connectors to bridge the connection between the vehicle exhaust and the connecting tube.
- 3.3.2. Dilution air conditioning
- 3.3.2.1. The dilution air used for the primary dilution of the exhaust in the CVS tunnel shall passbe passed through a medium capable of reducing particles of the most penetrating particle size in the filter material by ≤ 99.95 per_cent, or through a filter of at least class H13 of EN 1822:2009. This represents the specification of High Efficiency Particulate Air (HEPA) filters. The dilution air may optionally be charcoal scrubbed before being passed to the HEPA filter. It is recommended that an additional coarse particle filter be situated before the HEPA filter and after the charcoal scrubber, if used.
- 3.3.2.2. At the vehicle manufacturer's request, the dilution air may be sampled according to good engineering practice to determine the tunnel contribution

to background PM and PNparticulate mass [SMD288] and particle number [SMD289] levels, which can then be subtracted from the values measured in the diluted exhaust. See paragraph 1.2.1.3. of Annex 6.

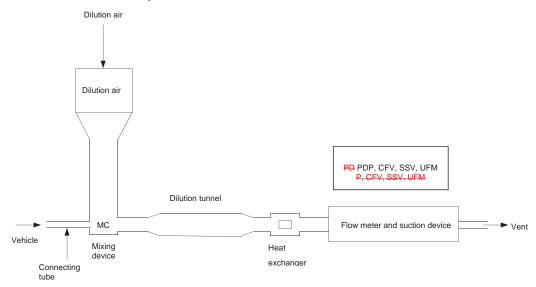
- 3.3.3. Dilution tunnel
- 3.3.3.1. Provision shall be made for the vehicle exhaust gases and the dilution air to be mixed. A mixing device may be used.
- 3.3.3.2. The homogeneity of the mixture in any cross-section at the location of the sampling probe shall not vary by more than \pm 2 per_-cent from the average of the values obtained for at least five points located at equal intervals on the diameter of the gas stream.
- 3.3.3.3.3.4. For particulate and particle emissions sampling, a dilution tunnel shall be used which:
 - (a) Consists of a straight tube of electrically-conductive material, which shall be grounded;
 - (b) Shall cause turbulent flow (Reynolds number ≥ 4,000) and be of sufficient length to cause complete mixing of the exhaust and dilution air;air;
 - (c) Shall be at least 200 mm in diameter;
 - (d) May be insulated and/or heated. [SMD290]
- 3.3.4. Suction device
- 3.3.4.1. This device may have a range of fixed speeds to ensure sufficient flow to prevent any water condensation. This result is obtained if the flow is either:
 - (a) Twice as high as the maximum flow of exhaust gas produced by accelerations of the driving cycle; or
 - (b) Sufficient to ensure that the CO₂ concentration in the dilute exhaust sample bag is less than 3 per_cent by volume for petrol and diesel, less than_2.2 per_cent by volume for LPG and less than 1.5 per_cent by volume for_NG/biomethane.
- 3.3.4.2. Compliance with the above requirements may not be necessary if the CVS system is designed to inhibit condensation by such techniques, or combination of techniques, as:
 - (a) Reducing water content in the dilution air (dilution air dehumidification);
 - (b) Heating of the CVS dilution air and of all components up to the diluted exhaust flow measurement device, and optionally, the bag sampling system including the sample bags and also the system for the measurement of the bag concentrations.

In such cases, the selection of the CVS flow rate for the test shall be justified by showing that condensation of water cannot occur at any point within the CVS, bag sampling or analytical system.

- 3.3.5. Volume measurement in the primary dilution system
- 3.3.5.1. The method of measuring total dilute exhaust volume incorporated in the constant volume sampler shall be such that measurement is accurate to ± 2 per cent under all operating conditions. If the device cannot compensate

for variations in the temperature of the mixture of exhaust gases and dilution air at the measuring point, a heat exchanger shall be used to maintain the temperature to within ± 6 K (± 6 °C) of the specified operating temperature for a PDP_-CVS, ± 11 K (± 11 °C) for a CFV CVS, ± 6 K (± 6 °C) for a USM CVS, and ± 11 K (± 11 °C) for an SSV CVS.

- 3.3.5.2. If necessary, some form of protection for the volume measuring device may be used e.g. a cyclone separator, bulk stream filter, etc.
- 3.3.5.3. A temperature sensor shall be installed immediately before the volume measuring device. This temperature sensor shall have an accuracy and a precision of \pm 1 K (\pm 1 °C) and a response time of 0.1 seconds at 62 per_-cent of a given temperature variation (value measured in silicone oil).
- 3.3.5.4. Measurement of the pressure difference from atmospheric pressure shall be taken upstream from and, if necessary, downstream from the volume measuring device.
- 3.3.5.5. The pressure measurements shall have a precision and an accuracy of ± 0.4 kPa during the test. See Table A5/5 SMD2911
- 3.3.6. Recommended system description

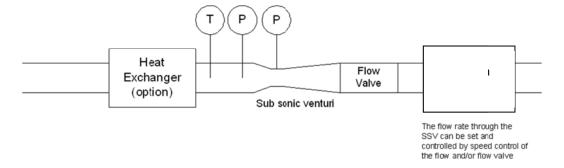

Figure A5/3 is a schematic drawing of exhaust dilution systems which meet the requirements of this Annex.

The following components are recommended:

- (a) A dilution air filter, which can be pre_heated [SMD292]if necessary. This filter shall consist of the following filters in sequence: an optional activated charcoal filter (inlet side), and a HEPA filter (outlet side). It is recommended that an additional coarse particle filter beis situated before the HEPA filter and after the charcoal filter, if used. The purpose of the charcoal filter is to reduce and stabilize the hydrocarbon concentrations of ambient emissions in the dilution air;
- (b) A connecting tube by which vehicle exhaust is admitted into a dilution tunnel:
- (c) An optional heat exchanger as described in paragraph_3.3.5.1. above;
- (d) A mixing device in which exhaust gas and dilution air are mixed homogeneously, and which may be located close to the vehicle so that the length of the connecting_tube_is minimized;
- (e) A dilution tunnel from which particulates and particles are sampled;
- (f) Some form of protection for the measurement system may be used e.g. a cyclone separator, bulk stream filter, etc.;
- (g) A suction device of sufficient capacity to handle the total volume of diluted exhaust gas.

Since various configurations can produce accurate results, exact conformity with these figures is not essential. Additional components such as instruments, valves, solenoids and switches may be used to provide additional information and co-ordinate the functions of the component system.

Figure A5/3 **Exhaust Dilution System**



- 3.3.6.1. Positive displacement pump (PDP)
- 3.3.6.2. Critical flow venturi (CFV)
- 3.3.6.2.1. The use of a critical flow venturi (CFV) for the full flow full flow exhaust dilution system is based on the principles of flow mechanics for critical flow. The variable mixture flow rate of dilution and exhaust gas is maintained at sonic velocity which is directly proportional to the square root of the gas temperature. Flow is continually monitored, computed and integrated throughout the test.
- 3.3.6.2.2. The use of an additional critical flow sampling venturi ensures the proportionality of the gas samples taken from the dilution tunnel. As both pressure and temperature are equal at the two venturi inlets, the volume of the gas flow diverted for sampling is proportional to the total volume of diluted exhaust_gas mixture produced, and thus the requirements of this Annex are met.
- 3.3.6.2.3. A measuring eritical flow venturi (CFV) tube shall measure the flow volume of the diluted exhaust gas.
- 3.3.6.3. Subsonic flow venturi (SSV)
- 3.3.6.3.1. The use of an <u>subsonic venturi</u> (SSV) (Figure A5/4) SMD293 for a <u>full flow</u> exhaust <u>full flow</u> dilution system is based on the principles of flow

mechanics. The variable mixture flow rate of dilution and exhaust gas is maintained at a subsonic velocity which is calculated from the physical dimensions of the subsonic venturi and measurement of the absolute temperature and pressure at the venturi inlet and the pressure in the throat of the venturi. Flow is continually monitored, computed and integrated throughout the test.

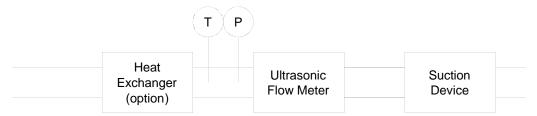
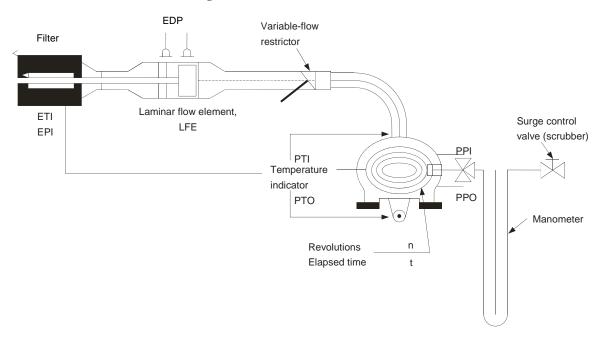

3.3.6.3.2. An SSV shall measure the flow volume of the diluted exhaust gas.

Figure A5/4
Schematic of a Supersonic Venture Venturi Tube (SSV)

- 3.3.6.4. Ultrasonic flow meter (USM)
- 3.3.6.4.1. A USM measures the velocity of the diluted exhaust gas using ultra-sonic transmitters/detectors as in Figure A5/5. The gas velocity is converted to standard volumetric flow using a calibration factor for the tube diameter with real time corrections for the diluted exhaust temperature and absolute pressure.
- 3.3.6.4.2. Components of the system include:
 - (a) A suction device fitted with speed control, flow valve or other method for setting the CVS flow rate and also for maintaining constant volumetric flow at standard conditions;
 - (b) A USM
 - (c) Temperature, (T), and pressure, (P), measurement devices required for flow correction;
 - (d) An optional heat exchanger for controlling the temperature of the diluted exhaust to the USM. If installed, the heat exchanger <a href="mailto:should|sh

Figure A5/5
Schematic of an Ultrasonic Flow Meter (USM) [SMD296]



- 3.3.6.4.3. The following conditions shall apply to the design and use of the USM type CVS:
 - (a) The velocity of the diluted exhaust gas shall provide a Reynolds number higher than 4,000 in order to maintain a consistent turbulent flow before the ultrasonic flow meter;
 - (b) An ultrasonic flow meter shall be installed in a pipe of constant diameter with a length of 10 times the internal diameter upstream and 5 times the diameter downstream;
 - (c) A temperature sensor for the diluted exhaust shall be installed immediately before the ultrasonic flow meter. This sensor shall have an accuracy and a precision of ± 1 K (± 1 °C) and a response time of 0.1 second at 62 per_-cent of a given temperature variation (value measured in silicone oil);
 - (d) The absolute pressure of the diluted exhaust shall be measured immediately before the ultrasonic flow meter to an accuracy of less than [SMD297] ± 0.3 kPa;
 - (e) If a heat exchanger is not installed upstream of the ultrasonic flow meter, the flow rate of the diluted exhaust, corrected to standard conditions shall be maintained at a constant level during the test. This may be achieved by control of the suction device, flow valve or other method.
- 3.4. CVS calibration procedure
- 3.4.1. General requirements
- 3.4.1.1. The CVS system shall be calibrated by using an accurate flow meter and a restricting device and at the intervals listed in Table A5/4[SMD298]. The flow through the system shall be measured at various pressure readings and the control parameters of the system measured and related to the flows. The flow metering device (e.g. calibrated venturi, laminar flow element, calibrated turbine meter) shall be dynamic and suitable for the high flow rate encountered in constant volume sampler testing. The device shall be of certified accuracy traceable to an approved national or international standard.
- 3.4.1.2. The following paragraphs <u>describe give details of</u> methods <u>of for</u> calibrating PDP, CFV, SSV and UFM units; using a laminar flow meter, which gives the required accuracy, <u>along together</u> with a statistical check on the calibration validity.
- 3.4.2. Calibration of a positive displacement pump (PDP)

- 3.4.2.1. The following calibration procedure outlines the equipment, the test configuration and the various parameters that are measured to establish the flow rate of the CVS pump. All the parameters related to the pump are simultaneously measured with the parameters related to the flow meter which is connected in series with the pump. The calculated flow rate (given in m³/min at pump inlet for the measured absolute pressure and temperature) can subsequently be plotted versus a correlation function which includes the relevant pump parameters. The linear equation that relates the pump flow and the correlation function shall then be determined. In the event that a CVS has a multiple speed drive, a calibration for each range used shall be performed.
- 3.4.2.2. This calibration procedure is based on the measurement of the absolute values of the pump and flow meter parameters that relate the flow rate at each point. The following conditions shall be maintained to ensure the accuracy and integrity of the calibration curve:
- 3.4.2.2.1. The pump pressures shall be measured at tappings on the pump rather than at the external piping on the pump inlet and outlet. Pressure taps that are mounted at the top centre and bottom centre of the pump drive head plate are exposed to the actual pump cavity pressures, and therefore reflect the absolute pressure differentials.
- 3.4.2.2.2. Temperature stability shall be maintained during the calibration. The laminar flow meter is sensitive to inlet temperature oscillations which cause the data points to be scattered. Gradual changes of ± 1 K (± 1 °C) in temperature are acceptable as long as they occur over a period of several minutes.
- 3.4.2.2.3. All connections between the flow meter and the CVS pump shall be free of leakage.
- 3.4.2.3. During an exhaust emission test, the measured pump parameters shall be used to calculate the flow rate from the calibration equation.
- 3.4.2.4. Figure A5/6 of this Annex shows an example of a calibration set-up. Variations are permissible, provided that the responsible authority approves them as being of comparable accuracy. If the set-up shown in Figure A5/6 is used, the following data shall be found within the limits of accuracy given:

Barometric pressure (corrected) _a (P _b)	$\pm 0.03 \text{ kPa}$
Ambient temperature (T)	$\pm 0.2 \text{ K}$
Air temperature at LFE _a (ETI)	$\pm 0.15 \text{ K}$
Pressure depression upstream of LFE ₂ (EPI)	$\pm 0.01 \text{ kPa}$
Pressure drop across the LFE matrix (EDP)	± 0.0015 kPa
Air temperature at CVS pump inlet, (PTI)	$\pm 0.2 \text{ K}$
Air temperature at CVS pump outlet, (PTO)	$\pm 0.2 \text{ K}$
Pressure depression at CVS pump inlet (PPI)	$\pm 0.22 \text{ kPa}$
Pressure head at CVS pump outlet (PPO)	$\pm 0.22 \text{ kPa}$
Pump revolutions during test period, (n)	$\pm 1 \text{ min}^{-1}$
Elapsed time for period (minimum 250 s). (t)	$\pm 0.1 \text{ s}$

Figure A5/6 **PDP Calibration Configuration**

- 3.4.2.5. After the system has been connected as shown in Figure A5/6 of this Annex, the variable restrictor shall be set in the wide-open position and the CVS pump shall run for 20 minutes before starting the calibration.
- 3.4.2.5.1. The restrictor valve shall be reset to a more restricted condition in increments of pump inlet depression (about -1 kPa) that will yield a minimum of six data points for the total calibration. The system shall be allowed to stabilize for three 3 minutes and before the data acquisition is repeated.
- 3.4.2.5.2. The air flow rate $\{Q_s\}$ at each test point shall be calculated in standard m³/min from the flow meter data using the manufacturer's prescribed method.
- 3.4.2.5.3. The air flow rate shall then be converted to pump flow, (V_0) in m³/rev at absolute pump inlet temperature and pressure.

$$V_0 = \frac{Q_s}{n} \times \frac{T_p}{273.15 \text{ K}} \times \frac{101.325 \text{ kPa}}{P_p}$$
 (1)

where:

 V_0 is the pump flow rate at T_p and P_p , m^3 /rev;

 Q_s is the air flow at 101.325 kPa and 273.15 K (0 °C), m³/min;

 T_p is the pump inlet temperature, Kelvin (K);

P_p is the absolute pump inlet pressure, kPa;

n is the pump speed, min⁻¹.

3.4.2.5.4. To compensate for the interaction of pump speed pressure variations at the pump and the pump slip rate, the correlation function (x_0) between the pump

speed, (n), the pressure differential from pump inlet to pump outlet and the absolute pump outlet pressure shall be calculated as follows:

$$x_0 = \frac{1}{n} \sqrt{\frac{\Delta P_p}{P_e}} \tag{2}$$

where:

 x_0 is the correlation function;

 ΔP_p is the pressure differential from pump inlet to pump outlet, kPa;

 P_e absolute outlet pressure (PPO + P_h), kPa.

A linear least_squares fit is performed to generate the calibration equations having the following form:

$$V_0 = D_0 - M \times x_0$$

$$n = A - B \times \Delta P_{p} \tag{4}$$

D₀,M, A and B are the slopes and intercepts describing the lines.

- 3.4.2.6. A CVS system having multiple speeds shall be calibrated at each speed used. The calibration curves generated for the ranges shall be approximately parallel and the intercept values (D₀) shall increase as the pump flow range decreases.
- 3.4.2.7. The calculated values from the equation shall be within 0.5 per cent of the measured value of V₀. Values of M will vary from one pump to another. A calibration shall be performed at pump start-up and after major maintenance.
- 3.4.3. Calibration of a critical flow venturi (CFV)
- 3.4.3.1. Calibration of the CFV is based upon the flow equation for a critical venturi:

$$Q_{s} = \frac{K_{v}P}{\sqrt{T}}$$
 (5)

where:

Q_s is the flow, m³/min;

K_v is the calibration coefficient;

P is the absolute pressure, kPa;

T is the absolute temperature, Kelvin (K).

Gas flow is a function of inlet pressure and temperature.

The calibration procedure described below establishes the value of the calibration coefficient at measured values of pressure, temperature and air flow.

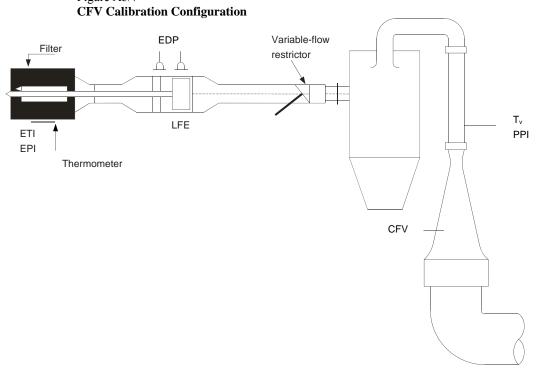
3.4.3.2. Measurements for flow calibration of the critical flow venturi are required and the following data shall be found within the limits of precision given:

Barometric pressure (corrected) (P_b) $\pm 0.03 \text{ kPa}$,

LFE air temperature, flow meter, $\langle ETI \rangle$ ± 0.15 K,

Pressure depression upstream of LFE, (EPI) ± 0.01 kPa,

Pressure drop across LFE matrix, (EDP) $\pm 0.0015 \text{ kPa}$,


Air flow, (Q_s) ± 0.5 per cent,

CFV inlet depression (PPI) $\pm 0.02 \text{ kPa}$,

Temperature at venturi inlet (T_v) $\pm 0.2 \text{ K}$.

3.4.3.3. The equipment shall be set up as shown in Figure A5/7 and checked for leaks. Any leaks between the flow-measuring device and the critical flow venturi will seriously affect the accuracy of the calibration and shall therefore be prevented.

Figure A5/7

- 3.4.3.3.1. The variable-flow restrictor shall be set to the open position, the suction device shall be started and the system stabilized. Data from all instruments shall be recorded.
- 3.4.3.3.2. The flow restrictor shall be varied and at least eight readings across the critical flow range of the venturi shall be made.
- 3.4.3.3.3. The data recorded during the calibration shall be used in the following calculation:
- 3.4.3.3.3.1. The air flow rate₂ (Q_s) at each test point shall be calculated from the flow meter data using the manufacturer's prescribed method.

Calculate values of the calibration coefficient for each test point:

$$K_{v} = \frac{Q_{s}\sqrt{T_{v}}}{P_{v}} \tag{6}$$

where:

 Q_s is the flow rate, m³/min at 273.15 K (0 °C) and 101.325, kPa;

T_v is the temperature at the venturi inlet, Kelvin (K);

P_v is the absolute pressure at the venturi inlet, kPa.-

- 3.4.3.3.2. K_v shall be plotted as a function of venturi inlet pressure. For sonic flow, K_v will have a relatively constant value. As pressure decreases (vacuum increases), the venturi becomes unchoked and K_v decreases. These values of K_v shall not be used for further calculations.
- 3.4.3.3.3. For a minimum of eight points in the critical region, an average K_v and the standard deviation shall be calculated.
- 3.4.3.3.4. If the standard deviation exceeds 0.3 per_cent of the average K_v , corrective action shallmust be taken.
- 3.4.4. Calibration of a subsonic venturi (SSV)
- 3.4.4.1. Calibration of the SSV is based upon the flow equation for a subsonic venturi. Gas flow is a function of inlet pressure and temperature, and the pressure drop between the SSV inlet and throat.
- 3.4.4.2. Data analysis
- 3.4.4.2.1. The airflow rate (Q_{SSV}) at each restriction setting (minimum 16 settings) shall be calculated in standard m³/s from the flow meter data using the manufacturer's prescribed method. –The discharge coefficient, C_d, shall be calculated from the calibration data for each setting as follows:

$$C_{d} = \frac{Q_{SSV}}{\frac{1}{d_{V}^{2} \times p_{p} \times \sqrt{\left\{\frac{1}{T} \times (r_{p}^{1.426} - r_{p}^{1.713}) \times \left(\frac{1}{1 - r_{p}^{4} \times r_{p}^{1.426}}\right)\right\}}}}$$
(7)

where:

 Q_{SSV} is the airflow rate at standard conditions (101.325 kPa, 273.15 K (0 °C)), m³/s;

T is the temperature at the venturi inlet, Kelvin (K);

d_V is the diameter of the SSV throat, m;

 r_p is the ratio of the SSV throat to inlet absolute static pressure, $1 - \frac{\Delta p}{p_p}$;

 r_D is the ratio of the SSV throat diameter, d_V , to the inlet pipe inner diameter D_{τ_a}

C_d is the discharge coefficient of the SSV:

p_p is the absolute pressure at venturi inlet, kPa.

To determine the range of subsonic flow, C_d shall be plotted as a function of Reynolds_number, Re, at the SSV throat. The Re<u>nolds number</u> at the SSV throat shall be calculated with using the following equation:

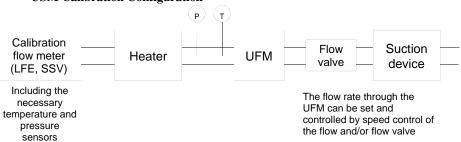
$$Re = A_1 \times \frac{Q_{SSV}}{d_V \times \mu} \tag{8}$$

where:

$$\mu = \frac{b \times T^{1.5}}{S + T} \tag{9}$$

 A_1 is 25.55152 in SI, $\left(\frac{1}{m^3}\right)\left(\frac{min}{s}\right)\left(\frac{mm}{m}\right)$;

Q_{SSV} is the airflow rate at standard conditions (101.325 kPa, 273.15 K $\underline{\text{(0)}}$ °C)), m³/s;


d_V is the diameter of the SSV throat, m;

- μ is the absolute or dynamic viscosity of the gas, kg/ms;
- b is 1.458×10^6 (empirical constant), kg/ms K^{0.5};
- S is 110.4 (empirical constant), Kelvin (K).
- 3.4.4.2.2. Because Q_{SSV} is an input to the Re equation, the calculations $\frac{\text{must-shall}}{\text{shall}}$ be started with an initial guess for Q_{SSV} or C_d of the calibration venturi, and repeated until Q_{SSV} converges. The convergence method shall be accurate to 0.1 per-cent or better.
- 3.4.4.2.3. For a minimum of sixteen points in the region of subsonic flow, the calculated values of C_d from the resulting calibration curve fit equation must shall be within ± 0.5 per_cent of the measured C_d for each calibration point.
- 3.4.5. Calibration of an ultrasonic flow meter (UFM)
- 3.4.5.1. The UFM must shall be calibrated against a suitable reference flow meter.
- 3.4.5.2. The UFM must-shall be calibrated in the CVS configuration which will be used in the test cell (diluted exhaust piping, suction device) and checked for leaks. See Figure A5/8.
- 3.4.5.3. A heater shall be installed to condition the calibration flow in the event that the UFM system does not include a heat exchanger.
- 3.4.5.4. For each CVS flow setting that will be used, the calibration shall be performed at temperatures from room temperature to the maximum that will be experienced during vehicle testing.
- 3.4.5.5. The manufacturer's recommended procedure shall be followed for calibrating the electronic portions (temperature and pressure sensors) [SMD299] of the UFM.
- 3.4.5.6. Measurements for flow calibration of the ultrasonic flow meter are required and the following data (in the case of the use of a laminar flow element) shall be found within the limits of precision given:

```
Barometric pressure (corrected), (P_b) \pm 0.03 kPa, LFE air temperature, flow meter, (ETI) \pm 0.15 K, Pressure depression upstream of LFE, (EPI) \pm 0.01 kPa, Pressure drop across (EDP) LFE matrix \pm 0.0015 kPa, Air flow, (Q_s) \pm 0.5 per cent, UFM inlet depression, (P_{act}) \pm 0.02 kPa, Temperature at UFM inlet, (T_{act}) \pm 0.2 K.
```

- 3.4.5.7. Procedure
- 3.4.5.7.1. The equipment shall be set up as shown in Figure A5/8 and checked for leaks. Any leaks between the flow-measuring device and the UFM will seriously affect the accuracy of the calibration.

Figure A5/8 USM Calibration Configuration

- 3.4.5.7.2. The suction device shall be started. Its The suction device speed and/or the position of the flow valve shallshould [SMD300] [SMD301] be adjusted to provide the set flow for the validation and the system stabilised. Data from all instruments shall be recorded.
- 3.4.5.7.3. For UFM systems without heat exchanger, the heater shall be operated to increase the temperature of the calibration air, allowed to stabilise and data from all the instruments recorded. The temperature shall be increased in reasonable steps until the maximum expected diluted exhaust temperature expected during the emissions test is reached.
- The heater shall then be turned off and the suction device speed and/or flow 3.4.5.7.4. valve shall be adjusted to the next flow setting that willmight be used for vehicle emissions testing after which the calibration sequence shall be repeated.
- 3.4.5.8. The data recorded during the calibration shall be used in the following calculations. The air flow rate, (O₅), at each test point is calculated from the flow meter data using the manufacturer's prescribed method.

$$_{\rm K_{\rm V}} = \frac{\rm Q_{\rm reference}}{\rm Q_{\rm s}} \tag{10}$$

where:

 Q_s is the air flow rate at standard conditions (101.325 kPa,

273.15 K_(0 °C)), m³/s;

is the air flow rate of the calibration flow meter at standard Q_{reference}

conditions (101.325 kPa, 273.15 K<u>(0 °C)</u>), m³/s;

 K_{v} is the calibration coefficient.

For UFM systems without a heat exchanger, K_v shall be plotted as a function of Tact.

The maximum variation in K_v shall not exceed 0.3 per cent of the mean K_v value of all the measurements taken at the different temperatures.

- 3.5. System verification procedure
- 3.5.1. General requirements
- The total accuracy of the CVS sampling system and analytical system shall 3.5.1.1. be determined by introducing a known mass of an emissions gas compound into the system whilst it is being operated under as if during a normal test conditions and subsequently analysing and calculating the emission gas compounds according to the equations of Annex 7 except that the density of

propane shall be taken as 1.967 grams per litre at standard conditions [SMD302]. The CFO (paragraph 3.5.1.1.1. of this Annex) and gravimetric methods (paragraph 3.5.1.1.2. of this Annex) are known to give sufficient accuracy.

The maximum permissible deviation between the quantity of gas introduced and the quantity of gas measured is 2 per cent.

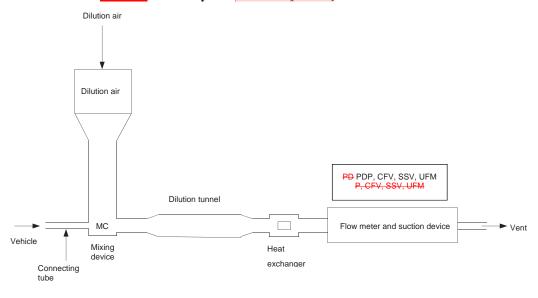
3.5.1.1.1. Critical flow orifice (CFO) method

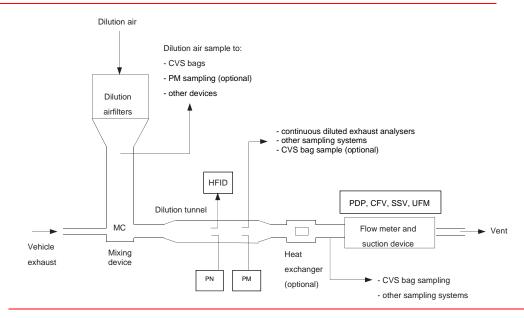
The CFO method meters a constant flow of pure gas (CO, CO₂, or C₃H₈) using a critical flow orifice device.

- 3.5.1.1.1.1. A known massquantity [SMD303] of pure carbon monoxide, carbon dioxide or propane gas (CO, CO2 or C3H8) shall be fed into the CVS system through the calibrated critical orifice. If the inlet pressure is high enough, the flow rate, (q), which is restricted by means of the critical flow orifice, is independent of orifice outlet pressure (critical flow).—If deviations exceed 2 per cent, the cause of the malfunction shall be determined and corrected. The CVS system shall be operated as in a normal exhaust emission test and enough time shall be allowed for subsequent analysis. The gas collected in the sampling-sample bag is analysed by the usual equipment (paragraph 4.1. of this Annex)[SMD304] and the results compared to the concentration of the gas samples which was known beforehand. If deviations exceed 2 per cent, the cause of the malfunction shall be determined and corrected. [SMD305]
- 3.5.1.1.2. Gravimetric method

The gravimetric method weighs a $\frac{\text{limited-[SMD306]}}{\text{quantity of pure gas (CO, CO₂, or C₃H₈).}$

- 3.5.1.1.2.1. The weight of a small cylinder filled with either pure carbon monoxide, carbon dioxide or propane shall be determined with a precision of ± 0.01 g. The CVS system shall operate under as in a normal exhaust emission test conditions while the pure gas is injected into the system for a time sufficient for subsequent analysis. The quantity of pure gas involved shall be determined by means of differential weighing. The gas accumulated in the bag shall be analysed by means of the equipment normally used for exhaust gas analysis (paragraph 4.1. of this Annex) (SMD307). The results shall then be compared to the concentration figures computed previously. If deviations exceed 2 per cent, the cause of the malfunction shall be determined and corrected. (SMD308) (SMD309)
- 4. Emissions measurement equipment
- 4.1. Gaseous emissions measurement equipment
- 4.1.1. System overview
- 4.1.1.1. A continuously proportional sample of the diluted exhaust gases and the dilution air shall be collected for analysis.
- 4.1.1.2. The Mmass of gaseous emissions shall be determined from the proportional sample concentrations and the total volume measured during the test. The ssample concentrations shall be corrected to take into account the respective compound concentrations in dilution air.
- 4.1.2. Sampling system requirements

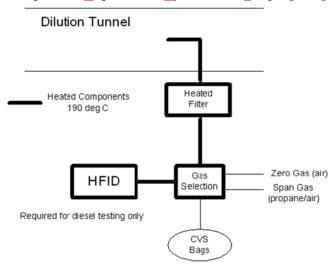

- 4.1.2.1. The sample of diluted exhaust gases shall be taken upstream from the suction device.
- 4.1.2.1.1. With the exception of paragraph 4.1.3.1. (hydrocarbon sampling system), paragraph 4.2. (particulate mass emissions PM [SMD310]measurement equipment) and paragraph 4.3. (particle number emissions PN measurement equipment) of this Annex, the dilute exhaust gas sample may be taken downstream of the conditioning devices (if any).
- 4.1.2.2. The bag sampling flow rate shall be set to provide sufficient volumes of dilution air and diluted exhaust in the CVS bags to allow concentration measurement and shall not exceed 0.3 per_-cent of the flow rate of the dilute exhaust gases, unless the diluted exhaust bag fill volume is added to the integrated CVS volume.
- 4.1.2.3. A sample of the dilution air shall be taken near the dilution air inlet (after the filter if one is fitted).
- 4.1.2.4. The dilution air sample shall not be contaminated by exhaust gases from the mixing area.
- 4.1.2.5. The sampling rate for the dilution air shall be comparable to that used for the dilute exhaust gases.
- 4.1.2.6. The materials used for the sampling operations shall be such as not to change the concentration of the emissions compounds.
- 4.1.2.7. Filters may be used in order to extract the solid particles from the sample.
- 4.1.2.8. Any valve used to direct the exhaust gases shall be of a quick-adjustment, quick-acting type.
- 4.1.2.9. Quick-fastening, gas-tight connections may be used between three-way valves and the <u>sampling-sample</u> bags, the connections sealing themselves automatically on the bag side. Other systems may be used for conveying the samples to the analyser (<u>e.g.</u> three-way stop valves, for example).
- 4.1.2.10. Sample storage
- 4.1.2.10.1. The gas samples shall be collected in <u>sampling sample</u> bags of sufficient capacity <u>so as</u> not to impede the sample flow.
- 4.1.2.10.2. The bag material shall be such as to affect neither the measurements themselves nor the chemical composition of the gas samples by more than \pm 2 per cent after_-30 minutes (e.g.: laminated polyethylene/polyamide films, or fluorinated polyhydrocarbons).
- 4.1.3. Sampling systems
- 4.1.3.1. Hydrocarbon sampling system (heated flame ionisation detector, (HFID))
- 4.1.3.1.1. The hydrocarbon sampling system shall consist of a heated sampling probe, line, filter and pump. The sample shall be taken upstream of the heat exchanger (if fitted). The sampling probe shall be installed at the same distance from the exhaust gas inlet as the particulate sampling probe and; in such a way that neither interferes with samples taken by the other. It shall have a minimum internal diameter of 4 mm.
- 4.1.3.1.2. All heated parts shall be maintained at a temperature of 463 K $\pm 10 \text{ K}$ (190 °C $\pm 10 \text{ °C}$) $\pm 10 \text{ K}$ by the heating system.


- 4.1.3.1.3. The average concentration of the measured hydrocarbons shall be determined by integration of the second-by-second data divided by the phase or test duration.
- 4.1.3.1.4. The heated sampling line shall be fitted with a heated filter, (F_H) , having a 99 per_cent efficiency for particles $\geq 0.3 \, \mu m$ to extract any solid particles from the continuous flow of gas required for analysis.
- 4.1.3.1.5. The sampling system delay time (from the probe to the analyser inlet) shall be no more than 4 seconds.
- 4.1.3.1.6. The HFID shall be used with a constant mass flow (heat exchanger) system to ensure a representative sample, unless compensation for varying CFV or CFO flow is made.
- 4.1.3.2. NO or NO₂ sampling system (if applicable)
- 4.1.3.2.1. A continuous sample flow of diluted exhaust gas shall be supplied to the analyser.
- 4.1.3.2.2. The average concentration of the NO or NO₂ shall be determined by integration of the second-by-second data divided by the phase or test duration.
- 4.1.3.2.3. The continuous NO or NO₂ measurement shall be used with a constant flow (heat exchanger) system to ensure a representative sample, unless compensation for varying CFV or CFO flow is made.
- 4.1.4. Analysers
- 4.1.4.1. General requirements for gas analysis
- 4.1.4.1.1. The analysers shall have a measuring range compatible with the accuracy required to measure the concentrations of the exhaust gas sample compounds.
- 4.1.4.1.2. If not defined otherwise, measurement errors shall not exceed ± 2 per cent (intrinsic error of analyser) disregarding the reference value for the calibration gases.
- 4.1.4.1.3. The ambient air sample shall be measured on the same analyser with the same range.
- 4.1.4.1.4. No gas drying device shall be used before the analysers unless it is shown to have no effect on the content of the compound in the gas stream.
- 4.1.4.2. Carbon monoxide (CO) and carbon dioxide (CO₂) analysis
- 4.1.4.2.1. Analysers shall be of the non-dispersive infrared (NDIR) absorption type.
- 4.1.4.3. Hydrocarbons (HC) analysis for all fuels other than diesel fuel
- 4.1.4.3.1. The analyser shall be of the flame ionization (FID) type calibrated with propane gas expressed in equivalent carbon atoms (C_1) .
- 4.1.4.4. Hydrocarbons (HC) analysis for diesel fuel and optionally for other fuels
- 4.1.4.4.1. The analyser shall be of the heated flame ionization type with detector, valves, pipework, etc., heated to 463 K \pm 10 K (190 °C \pm 10 °C) \pm 10 K. It shall be calibrated with propane gas expressed equivalent to carbon atoms (C₁).
- 4.1.4.5. Methane (CH_4) analysis

- 4.1.4.5.1. The analyser shall be either a gas chromatograph combined with a flame ionization detector (FID), or a flame ionization detector (FID) combined [SMD311] with a non-methane cutter (NMC-FID[SMD312]), calibrated with methane or propane gas expressed equivalent to carbon atoms (C₁).
- 4.1.4.6. Nitrogen oxide (NO_x) analysis
- 4.1.4.6.1. The analysers shall be of chemiluminescent (CLA) or non-dispersive ultraviolet resonance absorption (NDUV) types.
- 4.1.4.7. Nitrogen oxide (NO) analysis (where applicable)
- 4.1.4.7.1. The analysers shall be of chemiluminescent (CLA) or non-dispersive ultraviolet resonance absorption (NDUV) types.
- 4.1.4.8. Nitrogen dioxide (NO₂) analysis (where applicable)
- 4.1.4.8.1. Measurement of NO from continuously diluted exhausts
- 4.1.4.8.1.1. A CLA analyser may be used to measure the NO concentration continuously from diluted exhaust.
- 4.1.4.8.1.2. The CLA analyser shall be calibrated (zero/calibrated) in the NO mode using the NO certified concentration in the calibration gas cylinder with the NO_x converter bypassed (if installed).
- 4.1.4.8.1.3. The NO₂ concentration shall be determined by subtracting the NO concentration from the NO_x concentration in the CVS sample bags.
- 4.1.4.8.2. Measurement of NO₂ from continuously diluted exhausts
- 4.1.4.8.2.1. A specific NO_2 analyser (NDUV, QCL) may be used to measure the NO_2 concentration continuously from diluted exhaust.
- $\frac{4.1.4.8.2.2}{1.4.8.1.2}$ The analyser shall be calibrated (zeroed/ calibrated) in the NO₂ mode using the NO₂ certified concentration in the calibration gas cylinder.
- 4.1.4.9. Nitrous oxide (N₂O) analysis with GC--ECD (where applicable)
- 4.1.4.9.1. A gas chromatograph with an electron-capture detector (GC–ECD) may be used to measure N₂O concentrations of diluted exhaust by batch sampling from exhaust and ambient bags. Refer to paragraph 7.2. of this Annex.
- 4.1.4.10. Nitrous oxide (N₂O) analysis with IR-absorption spectrometry (where applicable)
 - The analyser shall be a laser infrared spectrometer defined as modulated high resolution narrow band infrared analyser. An NDIR or FTIR may also be used but water, CO and CO_2 interference must shall be taken into consideration.
- 4.1.4.10.1. If the analyser shows interference to compounds present in the sample, this interference shall be corrected. Analysers $\frac{\text{must} \text{shall}}{\text{shall}}$ have combined interference that is within 0.0 ± 0.1 ppm.
- 4.1.4.11. Hydrogen (H₂) analysis (where applicable)
 - The analyser shall be of the sector field mass spectrometer type. [SMD313]
- 4.1.5. Recommended system descriptions
- 4.1.5.1. Figure A5/9 is a schematic drawing of the gaseous emissions sampling system.

Figure A5/9

Full Flow Exhaust Dilution System Schematic [SMD314]

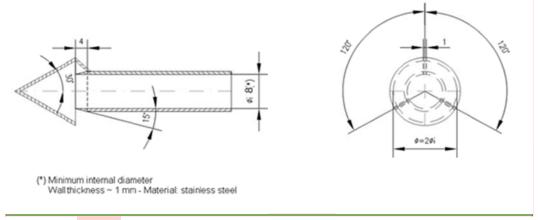


- 4.1.5.2. Examples of system components are as listed in the subparagraphs below.
- 4.1.5.2.1. Two sampling probes for continuous sampling of the dilution air and of the diluted exhaust gas/air mixture.
- 4.1.5.2.2. A filter to extract solid particles from the flows of gas collected for analysis.
- 4.1.5.2.3. Pumps and flow controller to ensure a—constant uniform flow of diluted exhaust gas and dilution air samples taken during the course of the test from sampling probes and flow of the gas samples shall be such that, at the end of each test, the quantity of the samples is sufficient for analysis.

- 4.1.5.2.4. Quick-acting valves to divert a constant flow of gas samples into the sampling sample bags or to the outside vent.
- 4.1.5.2.5. Gas-tight, quick-lock coupling elements between the quick-acting valves and the sampling_sample bags. The coupling shall close automatically on the sampling_-bag side. As an alternative, other ways of transporting the samples to the analyser may be used (three-way stopcocks, for instance).
- 4.1.5.2.6. Bags for collecting samples of the diluted exhaust gas and of the dilution air during the test.
- 4.1.5.2.7. A sampling critical flow venturi to take proportional samples of the diluted exhaust gas (CFV-CVS only).
- 4.1.5.3. Additional components required for hydrocarbon sampling using a heated flame ionization detector (HFID) as shown in Figure A5/10 below.
- 4.1.5.3.1. Heated sample probe in the dilution tunnel located in the same vertical plane as the PM and PN sample probes.
- 4.1.5.3.2. Heated filter located after the sampling point and before the HFID.
- 4.1.5.3.3. Heated selection valves between the zero/calibration gas supplies and the HFID.
- 4.1.5.3.4. Means of integrating and recording instantaneous hydrocarbon concentrations.
- 4.1.5.3.5. Heated sampling lines and heated components from the heated probe to the HFID.

Figure A5/10

Components FRequired for hHydrocarbon Sampling using an HFID


- 4.2. Particulate mass emissions [SMD315] PM[SMD316] measurement equipment
- 4.2.1. Specification
- 4.2.1.1. System overview
- 4.2.1.1.1. The particulate sampling unit shall consist of a sampling probe (PSP) located in the dilution tunnel, a particle transfer tube (PTT), a filter holder(s).

(FH), pump(s), flow rate regulators and measuring units. See Figures A5/1244 and A5/1342.

4.2.1.1.2. A particle size pre-classifier, (PCF), (e.g. cyclone or impactor) may be used. In such case, it is recommended that it be employed upstream of the filter holder. However, a sampling probe, acting as an appropriate size-classification device such as that shown in Figure A5/13, is acceptable. [SMD317]

Figure A5/11

Alternative Particulate Sampling Probe Configuration [SMD318]

[SMD319]

4.2.1.2. General requirements

- 4.2.1.2.1. The sampling probe for the test gas flow for particulates shall be so arranged within the dilution tunnel that a representative sample gas flow can be taken from the homogeneous air/exhaust mixture and shall be upstream of a heat exchanger (if any).
- 4.2.1.2.2. The particulate sample flow rate shall be proportional to the total mass flow of diluted exhaust gas in the dilution tunnel to within a tolerance of ±5 per cent of the particulate sample flow rate. The verification of the proportionality of the PM sampling shallshould[SMD320][SMD321] be made during the commissioning of the system and as required by the responsible authority.
- 4.2.1.2.3. The sampled dilute exhaust gas shall be maintained at a temperature above 293 K (20 °C) and below 325 K (52 °C) within 20 cm upstream or downstream of the particulate filter face. Heating or insulation of components of the PM sampling system to achieve this is permissible.

In the event that the 325 K (52 °C) limit is exceeded during a test where periodic regeneration event does not occur, the CVS flow rate shallshould [SMD322] [SMD323] be increased or double dilution shallshould [SMD324] [SMD325] be applied (assuming that the CVS flow rate is already sufficient so as not to cause condensation within the CVS, sample bags or analytical system).

4.2.1.2.4. The particulate sample shall be collected on a single filter mounted within a holder in the sampled dilute exhaust gas flow.

- 4.2.1.2.5. All parts of the dilution system and the sampling system from the exhaust pipe up to the filter holder, which are in contact with raw and diluted exhaust gas, shall be designed to minimise deposition or alteration of the particulates. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.
- 4.2.1.2.6. If it is not possible to compensate for variations in the flow rate, provision shall be made for a heat exchanger and a temperature control device as specified in paragraphs 3.3.5.1. or 3.3.6.4.2. above, so as to ensure that the flow rate in the system is constant and the sampling rate accordingly proportional.
- 4.2.1.2.7. Temperatures required for the PM mass [SMD326] [SMD327] measurement shall be measured with an accuracy of ± 1 K (± 1 °C) and [SMD328] [SMD329] a response time (t_{10} - t_{90}) of 15fifteen seconds or less.
- 4.2.1.2.8. The PM[SMD330] sample flow from the dilution tunnel shall be measured with an accuracy of ± 2.5 per cent of reading or ± 1.5 per cent full scale, whichever is the least.

The above accuracy of the PM[SMD331] sample flow from the CVS tunnel is also applicable where double dilution is used. Consequently, the measurement and control of the secondary dilution air flow and diluted exhaust flow rates through the PM[SMD332]-filter must_shall_be of a higher accuracy.

- 4.2.1.2.9. All data channels required for the PM mass [SMD333][SMD334]measurement shall be logged at a frequency of 1 Hz or faster. Typically these would include:
 - (a) Diluted exhaust temperature at the PM filter;
 - (b) **PM**-sampling flow rate;
 - (c) PM-secondary dilution air flow rate (if secondary dilution is used);
 - (d) PM—secondary dilution air temperature (if secondary dilution is used).[SMD335]
- 4.2.1.2.10. SMD336 SMD337 SMD338 For double dilution systems, the accuracy of the diluted exhaust transferred from the dilution tunnel, V_{ep.} defined in paragraph 3.2.2.-of Annex 7, in the equation is not measured directly but determined by differential flow measurement:

 $\frac{V_{\text{ep}} = V_{\text{set}} - V_{\text{ssd}}}{V_{\text{ssd}}}$

where:

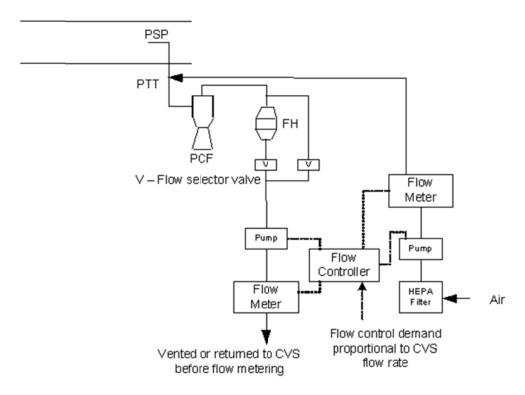
V_{ep} is the volume of diluted exhaust gas flowing through particulate filter under standard conditions;

V_{set} is the volume of the double diluted exhaust gas passing through the particulate collection filters;

V_{scd} is the volume of secondary dilution air.

The accuracy of the flow meters used for the measurement and control of the double diluted exhaust passing through the particulate collection filters and for the measurement/control of secondary dilution air shall be sufficient so

that the differential volume $(V_{\rm ep})$ shall meet the accuracy and proportional sampling requirements specified for single dilution.

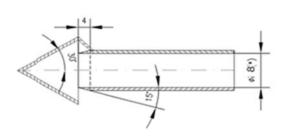

The requirement that no condensation of the exhaust gas shallshould [SMD339] [SMD340] occur in the CVS dilution tunnel, diluted exhaust flow rate measurement system, CVS bag collection or analysis systems shall also apply in the case of double dilution systems.

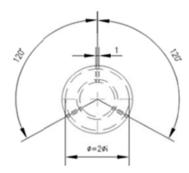
4.2.1.2.11. Each flow meter used in a particulate sampling and double dilution system shall be subjected to a linearity verification as required by the instrument manufacturer.

Figure A5/1211[SMD341] Particulate Sampling System

PSP PTT PCF Flow selector valve Pump Flow control demand proportional to CVS Vented or returned to CVS flow rate before flow metering

Figure A5/1213 **Double Dilution Particulate Sampling System**




4.2.1.3. Specific requirements

4.2.1.3.1. PM s[SMD342][SMD343]Sampleing probe

4.2.1.3.1.1. The sample probe shall deliver the particle_-size classification performance described in paragraph 4.2.1.3.1.4. below. It is recommended that this performance be achieved by the use of a sharp-edged, open-ended probe facing directly into the direction of flow plus a pre_classifier (cyclone impactor, etc.). An appropriate sample probe, such as that indicated in Figure A5/1311, may alternatively be used provided it achieves the pre_classification performance described in paragraph_4.2.1.3.1.4. below.

Figure A5/13
Alternative particulate sampling probe configuration

(*) Minimum internal diameter Wall thickness ~ 1 mm - Material: stainless steel

4.2.1.3.1.2. The sample probe shall be installed at least 10 tunnel diameters downstream of the exhaust gas inlet to the tunnel and have an internal diameter of at least 8 mm.

If more than one simultaneous sample is drawn from a single sample probe, the flow drawn from that probe shall be split into identical sub-flows to avoid sampling artefacts artifacts.

If multiple probes are used, each probe shall be sharp-edged, open-ended and facing directly into the direction of flow. Probes shall be equally spaced around the central longitudinal axis of the dilution tunnel, with <u>a the</u> spacing between probes <u>of</u> at least 5-cm.

- 4.2.1.3.1.3. The distance from the sampling tip to the filter mount shall be at least five probe diameters, but shall not exceed 2,000-mm.
- 4.2.1.3.1.4. The pre-classifier (e.g. cyclone, impactor, etc.) shall be located upstream of the filter holder assembly. The pre-classifier 50 per_cent cut point particle diameter shall be between 2.5-μm and 10-μm at the volumetric flow rate selected for sampling PMparticulate mass emissions [SMD344]. The pre-classifier shall allow at least 99 per_cent of the mass concentration of 1-μm particles entering the pre-classifier to pass through the exit of the pre-classifier at the volumetric flow rate selected for sampling PMparticulate mass [SMD345]emissions [SMD346]. However, a sampling probe, acting as an appropriate size-classification device, such as that shown in Figure A5/13[SMD347]11, is acceptable as an alternative to a separate pre-classifier as long as it fulfils the previously mentioned requirements [SMD348]. [SMD349]
- 4.2.1.3.2. Particle transfer tube (PTT)
- 4.2.1.3.2.1. Any bends in the PTT shall be smooth and have the largest possible radii.
- 4.2.1.3.3. Secondary dilution
- 4.2.1.3.3.1. As an option, the sample extracted from the CVS for the purpose of PM measurement may be diluted at a second stage, subject to the following requirements:
- 4.2.1.3.3.1.1. Secondary dilution air shall be filtered through a medium capable of reducing particles in the most penetrating particle size of the filter material

by_-≥ 99.95 per cent, or through a HEPA filter of at least class H13 of EN 1822:2009. The dilution air may optionally be charcoal—scrubbed before being passed to the HEPA filter. -It is recommended that an additional coarse particle filter is be situated before the HEPA filter and after the charcoal scrubber, if used.

- 4.2.1.3.3.1.2. The secondary dilution air should be injected into the PTT as close to the outlet of the diluted exhaust from the dilution tunnel as possible.
- 4.2.1.3.3.1.3. The residence time from the point of secondary diluted air injection to the filter face shall be at least 0.25 seconds (s), but no longer than five 5 seconds.
- 4.2.1.3.3.1.4. The diluted exhaust flow extracted from the dilution tunnel shall remain proportional to the CVS flow rate, as required for the single dilution method [SMD350]
- 4.2.1.3.3.1.4.5.[SMD351] ——If the double diluted PM[SMD352]—sample is returned to the CVS, the location of the sample return shall be selected so that it does not interfere with the extraction of other samples from the CVS.
- 4.2.1.3.4. Sample pump and flow meter
- 4.2.1.3.4.1. The sample gas flow measurement unit shall consist of pumps, gas flow regulators and flow measuring units.
- 4.2.1.3.4.2. The temperature of the gas flow in the flow meter may not fluctuate by more than $\pm \frac{3-3}{2}$ K except:
 - (a) When the PM[SMD353] sampling flow meter has real time monitoring and flow control operating at <u>a frequency of 1 Hz</u> or faster;
 - (b) During regeneration tests on vehicles equipped with periodically regenerating after-treatment devices.

In addition, the sample mass flow rate shall remain proportional to the total flow of diluted exhaust gas to within a tolerance of ± 5 per cent of the particulate sample mass flow rate. [SMD354]Should the volume of flow change unacceptably as a result of excessive filter loading, the test shall be invalidated. When it is repeated, the rate of flow shall be decreased.

- 4.2.1.3.5. Filter and filter holder
- 4.2.1.3.5.1. A valve shall be located downstream of the filter in the direction of flow. The valve shall open and close within 1 second of the start and end of test.
- 4.2.1.3.5.2. For a given test, the gas filter face velocity shall be set to an initial single [SMD355] value within the range 20—20 cm/s to 105—105 cm/s and shall should [SMD356] [SMD357] be set at the start of the test so that 105—105 cm/s will not be exceeded when the dilution system is being operated with sampling flow proportional to CVS flow rate.
- <u>4.2.1.3.5.3.4.2.1.3.5.4.</u> Fluorocarbon coated glass fibre filters or fluorocarbon membrane filters are required.

All filter types shall have a 0.3-3 µm DOP (di-octylphthalate) or PAO (polyalpha-olefin) CS 68649-12-7 or CS 68037-01-4 collection efficiency of at least 99 per_cent at a gas filter face velocity of 5.33 cm/s measured according to one of the following standards:

(a) U.S.A. Department of Defense Test Method Standard, MIL-STD-282 method 102.8: DOP-Smoke Penetration of Aerosol-Filter Element

- (b) U.S.A. Department of Defense Test Method Standard, MIL-STD-282 method 502.1.1: DOP-Smoke Penetration of Gas-Mask Canisters
- (c) Institute of Environmental Sciences and Technology, IEST-RP-CC021: Testing HEPA and ULPA Filter Media.
- 4.2.1.3.5.4.4.2.1.3.5.3. The filter holder assembly shall be of a design that provides an even flow distribution across the filter stain area. The filter shall be round and have a stain area of at least 1,075 mm².
- 4.2.2. Weighing chamber and analytical balance specifications
- 4.2.2.1. Weighing chamber conditions
 - (a) The temperature of the chamber (or room) in which the particulate filters are conditioned and weighed shall be maintained to within 295 K ± 2 K (22 °C ± 2 °C, 22 °C ± 1 °C if possible) during all filter conditioning and weighing.
 - (b) Humidity shall be maintained to a dew point of less than 283.5 K (10.5 °C) and a relative humidity of 45 per_cent ± 8 per_cent.
 - (c) The levels of ambient contaminants in the chamber (or room) environment that would settle on the particulate filters during their stabilization shall be minimised. [SMD358]Limited deviations from weighing room temperature and humidity specifications will shall be allowed provided their total duration does not exceed 30 minutes in any one filter conditioning period.
 - (d) SMD359 The levels of ambient contaminants in the chamber (or room) environment that would settle on the particulate filters during their stabilisation shall be minimised. SMD360
 - (de) During the weighing operation no deviations from the specified conditions are permitted.

4.2.2.2. <u>Linear response of an Aanalytical [SMD361]</u>balance

The analytical balance used to determine the filter weight shall meet the linearity verification <u>criteria</u> of Table A5/1 below <u>applying linear regression</u>. [SMD362]This implies a precision (standard deviation) of at least 2 µg and a resolution of at least 1 µg (1 digit = 1 µg). At least 4 equally-spaced reference weights shall be tested. The zero value shall be within 1 µg. [SMD363]

Table A5/1 [SMD364]

Analytical balance Balance vVerification eCriteria

Measurement system	Intercept <u>a0</u> b	Slope <u>al</u> m	Standard error SEE	Coefficient of determination r ²
PM Balance	≤ 1 µg 1per cent max	0.99 – 1.01	≤ 1per cent max	≥ 0.998

4.2.2.3. Elimination of static electricity effects

The effects of static electricity shall be nullified. This may be achieved by grounding the balance through placement upon an antistatic mat and neutralization of the particulate filters prior to weighing using a polonium neutraliser or a device of similar effect. Alternatively, nullification of static effects may be achieved through equalization of the static charge.

4.2.2.4.[SMD365] Buoyancy correction

The sample and reference filter weights shall be corrected for their buoyancy in air. The buoyancy correction is a function of sampling filter density, air density and the density of the balance calibration weight, and does not account for the buoyancy of the particulate matterPM[SMD366] itself.

If the density of the filter material is not known, the following densities shall be used:

- (a) PTFE coated glass fiber filter: 2,300 kg/m³;
- (b) PTFE membrane filter: 2,144 kg/m³;
- (c) PTFE membrane filter with polymethylpentene support ring: 920 kg/m^3 .

For stainless steel calibration weights, a density of 8,000 kg/m³ shall be used. If the material of the calibration weight is different, its density must shall be known and be used. International Recommendation OIML R 111-1 Edition 2004(E) or equivalent SMD367 SMD368 SMD369 from International Organization of Legal Metrology on calibration weights should be followed.

The following equation shall be used:

$$\underline{m_f} = m_{uncorr} \times \left(\frac{1 - \frac{\rho_a}{\rho_w}}{1 - \frac{\rho_a}{\rho_c}}\right) \tag{11}$$

where:

m_f is the corrected particulate mass particulate [SMD370]sample mass [SMD371], mg;

m_{uncorr} is the uncorrected particulate mass SMD372 particulate sample mass SMD373 mg;

 ρ_a is the density of the air, kg/m³;

 $\rho_{\rm w}$ is the density of balance calibration weight, kg/m³;

 ρ_f is the density of the particulate sampling filter, kg/m³.

The density of the air ρ_ashall be calculated as follows [SMD374]:

$$\rho_{a} = \frac{p_{b} \times M_{mix}}{R \times T_{a}} \tag{12}$$

p_b is the total atmospheric pressure, kPa;

T_a is the air temperature in the balance environment, Kelvin (K);

M_{mix} is the molar mass of air in a balanced environment, 28.836 g mol⁻¹;

R is the molar gas constant, 8.3144 J mol⁻¹ K⁻¹.

The density of the air pashall be calculated as follows:

$$\rho_{a} = \frac{p_{b} \times 28.836}{8.3144 \times T_{a}}$$

p_b is the total atmospheric pressure, kPa;

 T_a is the air temperature in the balance environment, Kelvin (K).

4.3. Particle number emissions measurement equipment

- 4.3.1. Specification
- 4.3.1.1. System overview
- 4.3.1.1.1. The particle sampling system shall consist of a probe or sampling point extracting a sample from a homogenously mixed flow in a dilution system, a volatile particle remover (VPR) upstream of a particle number counter (PNC) and suitable transfer tubing. See Figure A5/14 [SMD375]
- 4.3.1.1.2. It is recommended that a particle size pre-classifier (e.g. cyclone, impactor, etc.) be located prior to the inlet of the VPR. The pre-classifier 50 per cent cut point particle diameter shall be between 2.5 μm and 10 μm at the volumetric flow rate selected for sampling particle number emissions. The pre-classifier shall allow at least 99 per cent of the mass concentration of 1 μm particles entering the pre-classifier to pass through the exit of the pre-classifier at the volumetric flow rate selected for sampling particle number emissions. SMD376

However, aA [SMD377] sample probe acting as an appropriate size-classification device, such as that shown in Figure A5/1311, is an acceptable alternative to the use of a particle size pre-classifier.

- 4.3.1.2. General requirements
- 4.3.1.2.1. The particle sampling point shall be located within a dilution system. In the case of double dilution systems, the particle sampling point shall be located within the primary dilution system.
- 4.3.1.2.1.1. The sampling probe tip or particle sampling point, (PSP), and particle transfer tube, (PTT), together comprise the particle transfer system, (PTS). The PTS conducts the sample from the dilution tunnel to the entrance of the VPR. The PTS shall meet the following conditions:
 - (a) The sampling probe shall be installed at least 10 tunnel diameters downstream of the exhaust gas inlet, facing upstream into the tunnel gas flow with its axis at the tip parallel to that of the dilution tunnel;
 - (b) The sampling probe shall be upstream of any conditioning device (e.g. heat exchanger);
 - (c) The sampling probe shall be positioned within the dilution tunnel so that the sample is taken from a homogeneous diluent/exhaust mixture.
- 4.3.1.2.1.2. Sample gas drawn through the PTS shall meet the following conditions:
 - (a) In the case of full flow exhaust dilution systems, it shall have a flow Reynolds number, Re, lower than 1,700;
 - (b) In the case of double dilution systems, it shall have a flow Reynolds number, (Re), lower than 1,700 in the PTT i.e. downstream of the sampling probe or point;
 - (c) Shall have a residence time ≤ 3 seconds (s).
- 4.3.1.2.1.3.4.3.# Any other sampling configuration for the PTS for which equivalent particle penetration at 30 nm can be demonstrated will shall be considered acceptable.
- 4.3.1.2.1.4. The outlet tube (OT) conducting the diluted sample from the VPR to the inlet of the PNC shall have the following properties:
 - (a) An internal diameter > 4mm:

- (b) A sample gas flow residence time of ≤ 0.8 seconds (s).
- 4.3.1.2.1.5. Any other sampling configuration for the OT for which equivalent particle penetration at 30 nm can be demonstrated will shall be considered acceptable.
- 4.3.1.2.2. The VPR shall include devices for sample dilution and for volatile particle removal.
- 4.3.1.2.3. All parts of the dilution system and the sampling system from the exhaust pipe up to the PNC, which are in contact with raw and diluted exhaust gas, shall be designed to minimize deposition of the particles. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.
- 4.3.1.2.4. The particle sampling system shall incorporate good aerosol sampling practice that includes the avoidance of sharp bends and abrupt changes in cross-section, the use of smooth internal surfaces and the minimization of the length of the sampling line. Gradual changes in the cross-section are permissible.
- 4.3.1.3. Specific requirements
- 4.3.1.3.1. The particle sample shall not pass through a pump before passing through the PNC.
- 4.3.1.3.2. A sample pre-classifier is recommended.
- 4.3.1.3.3. The sample preconditioning unit shall:
 - (a) Be capable of diluting the sample in one or more stages to achieve a particle number concentration below the upper threshold of the single particle count mode of the PNC and a gas temperature below 308 K (35 °C) at the inlet to the PNC;
 - (b) Include an initial heated dilution stage which outputs a sample at a temperature of $\geq 423 \text{ K} \text{ (}150 \text{ °C)}$ and $\leq 623 \text{ K} \pm 10 \text{ K} \text{ (}350 \text{ °C)} \pm 10 \text{ °C)}$, and dilutes by a factor of at least $\frac{10 \text{ ten}}{\text{[SMD379]}}$ [SMD380][SMD381][SMD382]
 - (c) Control heated stages to constant nominal operating temperatures, within the range_ $-\ge \frac{423 \text{ K} (150 \text{ °C})}{200 \text{ and}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{200 \text{ C}} = \frac{673 \text{ K} \pm 10 \text{ K} (400 \text{ °C} \pm 10)}{2$
 - (d) Provide an indication of whether or not heated stages are at their correct operating temperatures;
 - (e) Be designed to achieve a solid particle penetration efficiency of at least 70 per cent for particles of 100 nm electrical mobility diameter;
 - (f) Achieve a particle concentration reduction factor, $((f_r(d_i)), as)$ calculated below, for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than 30 per_-cent and 20 per_-cent respectively higher, and no more than 5 per_-cent lower than that for particles of 100 nm electrical mobility diameter for the VPR as a whole;

The particle concentration reduction factor at each particle size $(f_r(d_i))$ shall be calculated as follows:

$$f_r(d_i) = \frac{N_{in}(d_i)}{N_{out}(d_i)}$$
 (13)

where:

 $N_{in}(d_i)$ is the upstream particle number concentration for particles of diameter d_i ;

 $N_{out}(d_i)$ is the downstream particle number concentration for particles of diameter d_i ;

 d_i is the particle electrical mobility diameter (30, 50 or 100 nm).

 $N_{in}(d_i)$ and $N_{out}(d_i)$ shall be corrected to the same conditions.

The mean particle concentration reduction, $\overline{f_r}$, at a given dilution setting shall be calculated as follows:

$$\overline{f_r} = \frac{f_r(30 \text{ nm}) + f_r(50 \text{ nm}) + f_r(100 \text{ nm})}{3}$$
(14)

It is recommended that the VPR is calibrated and validated as a complete unit;

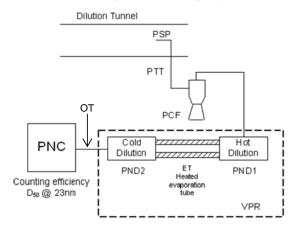
- (g) Be designed according to good engineering practice to ensure particle concentration reduction factors are stable across a test;
- (h) Also achieve_-> 99.0 per cent vaporization of 30 nm_tetracontane $(CH_3(CH_2)_{38}CH_3)$ particles, with an inlet concentration of $\geq 10,000 \, \text{per cm}^3 \, \text{cm}^{-3}$, by means of heating and reduction of partial pressures of the tetracontane.

4.3.1.3.4. The PNC shall:

- (a) Operate under full flow operating conditions;
- (b) Have a counting accuracy of ± 10 per_cent across the range 1 1 per cm³ em² to the upper threshold of the single particle count mode of the PNC against a traceable standard. At concentrations below 100 per cm³ em² measurements averaged over extended sampling periods may be required to demonstrate the accuracy of the PNC with a high degree of statistical confidence;
- (c) Have a resolutionreadability SMD3831 of at least 0.1 particles per cm³ em⁻³ at concentrations below -100 per cm³em⁻³;
- (d) Have a linear response to particle concentrations over the full measurement range in single particle count mode;
- (e) Have a data reporting frequency equal to or greater than <u>a frequency</u> of 0.5-Hz;
- (f) Have a t₉₀ response time over the measured concentration range of less than_5 seconds;
- (g) Incorporate a coincidence correction function up to a maximum 10 per cent correction, and may make use of an internal calibration factor as determined in paragraph_-5.7.1.3.of this Annex but shall not make use of any other algorithm to correct for or define the counting efficiency;
- (h) Have counting efficiencies at the different particle size selsMD384] as specified in Table A5/2.

Table A5/2

Condensation Particle Counter (CPC) counting PCN Counting eEfficiency [SMD385]


Particle size electrical mobility diameter (nm)	Condensation Particle Counter (CPC) PCN counting efficiency (per cent)
23 ± 1	50 ± 12
41 ± 1	> 90

- 4.3.1.3.5. If the PNC makes use of a working liquid, it shall be replaced at the frequency specified by the instrument manufacturer.
- 4.3.1.3.6. Where they are not held at a known constant level at the point at which PNC flow rate is controlled, the pressure and/or temperature at inlet to the PNC inlet shall be measured and recorded for the purposes of correcting particle concentration measurements to standard conditions.
- 4.3.1.3.7. The sum of the residence time of the PTS, VPR and OT plus the t_{90} response time of the PNC shall be no greater than 20 seconds.
- 4.3.1.4. Recommended system description

The following paragraph contains the recommended practice for measurement of particle number. However, systems meeting the performance specifications in paragraphs 4.3.1.2. and 4.3.1.3. of this Annex are acceptable.

Figure A5/14

A Pecommended Particle Sampling System

- 4.3.1.4.1. Sampling system description
- 4.3.1.4.1.1. The particle sampling system shall consist of a sampling probe tip or particle sampling point in the dilution system, a particle transfer tube, (PTT), a particle pre-classifier, (PCF), and a volatile particle remover, (VPR), upstream of the particle number counter, (PNC), unit.
- 4.3.1.4.1.2. The VPR shall include devices for sample dilution (particle number diluters: PND₁ and PND₂) and particle evaporation (evaporation tube, ET).
- 4.3.1.4.1.3. The sampling probe or sampling point for the test gas flow shall be so arranged within the dilution tunnel that a representative sample gas flow is taken from a homogeneous diluent/exhaust mixture.

- 4.3.1.4.1.4. The sum of the residence time of the system plus the t₉₆ response time of the PNC shall be no greater than 20 s.
- 4.3.1.4.2. Particle transfer system (PTS)

The PTS shall fulfil the requirements of paragraph 4.3.1.2.1.1. of this Annex.

- 4.3.1.4.3. Particle pre-classifier (PCF)
- 4.3.1.4.3.1. The recommended particle pre-classifier shall be located upstream of the VPR.
- 4.3.1.4.3.2. The pre classifier 50 per cent cut point particle diameter shall be between 2.5 μm and 10 μm at the volumetric flow rate selected for sampling particle number emissions.
- 4.3.1.4.3.3. The pre-classifier shall allow at least 99 per cent of the mass concentration of 1 μm particles entering the pre-classifier to pass through the exit of the pre-classifier at the volumetric flow rate selected for sampling particle number emissions.
- 4.3.1.4.4. Volatile particle remover (VPR)
- 4.3.1.4.4.1. The VPR shall comprise one particle number diluter (PND₊), an evaporation tube and a second diluter (PND₂) in series. This dilution function is to reduce the number concentration of the sample entering the particle concentration measurement unit to less than the upper threshold of the single particle count mode of the PNC and to suppress nucleation within the sample.
- 4.3.1.4.4.2. The VPR shall provide an indication of whether or not PND₊ and the evaporation tube are at their correct operating temperatures.
- 4.3.1.4.4.3. The VPR shall achieve > 99.0 per cent vaporization of 30 nmtetracontane (CH₃(CH₂)₃₈CH₃) particles, with an inlet concentration of ≥ 10,000 cm⁻³, by means of heating and reduction of partial pressures of the tetracontane.
- 4.3.1.4.4.4. The VPR shall be designed to achieve a solid particle penetration efficiency of at least 70 per cent for particles of 100 nm electrical mobility diameter.
- 4.3.1.4.4.5. The VPR shall also achieve a particle concentration reduction factor (fr) for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than 30 per cent and 20 per cent respectively higher, and no more than 5 per cent lower than that for particles of 100 nm electrical mobility diameter for the VPR as a whole. It shall be designed according to good engineering practice to ensure particle concentration reduction factors are stable across a test.
- 4.3.1.4.5. First particle number dilution device (PND₊)
- 4.3.1.4.5.1. The first particle number dilution device shall be specifically designed to dilute particle number concentration and operate at a (wall) temperature of 150 °C to 350 °C.
- 4.3.1.4.5.1.1. The wall temperature set point should [SMD386] SMD387] be held at a constant nominal operating temperature, within this range, to a tolerance of ± 10 °C and not exceed the wall temperature of the ET described in paragraph 4.3.1.4.6. of this Annex.
- 4.3.1.4.5.1.2. The diluter should [SMD388] [SMD389] [SMD390] be supplied with HEPA filtered dilution air and be capable of a dilution factor of 10 to 200 times.
- 4.3.1.4.6. Evaporation tube (ET)

- 4.3.1.4.6.1. The entire length of the ET shall be controlled to a wall temperature greater than or equal to that of the first particle number dilution device and the wall temperature held at a fixed nominal operating temperature of 350 °C, to a tolerance of ± 10 °C [SMD391].
- 4.3.1.4.6.2. The residence time within the ET shall be in the range 0.25 0.4 seconds (s).
- 4.3.1.4.7. Second particle number dilution device (PND₂)
- 4.3.1.4.7.1. PND₂ shall be specifically designed to dilute particle number concentration. The diluter shall [SMD392][SMD393]be supplied with HEPA filtered dilution air and be capable of maintaining a single dilution factor within a range of 10 to 30 times. [SMD394][SMD395]
- 4.3.1.4.7.2. The dilution factor of PND₂ shall be selected in the range between 10 and 15 such that particle number concentration downstream of the second diluter is less than the upper threshold of the single particle count mode of the PNC and the gas temperature prior to entry to the PNC is < 35 °C. [SMD396]
- 5. Calibration intervals and procedures
- 5.1. Calibration intervals

Table A5/3

Instrument ealibration Calibration iIntervals

Instrument checks	Interval	Criteria Criterion
Gas analyser linearization (calibration)	Every 6 months	± 2 per cent of reading
Mid span	Every 6 months	± 2 per cent
CO NDIR: CO ₂ /H ₂ O interference	Monthly	-1 to 3 ppm
NO _x converter check	Monthly	> 95 per cent
CH ₄ cutter check	Yearly	98_per cent of Ethane
FID CH ₄ response	Yearly	See paragraph 5.4.3.
FID air/fuel flow	At major maintenance	According to instrument mfr.
NO/NO ₂ NDUV: H ₂ O, HC interference	At major maintenance	According to instrument mfr.
Laser infrared spectrometers (modulated high resolution narrow band infrared analysers): interference check	Yearly or at major maintenance	According to instrument mfr.
GC methods	See paragraph 7.2.	See <u>paragraph</u> 7.2.
FTIR: linearity verification	Within 370 days before testing and after major maintenance	See paragraph 7.1.
Microgram balance linearity	Yearly or at major maintenance	See paragraph 4.2.2.2.
PNC (particle number counter)	See paragraph 5.7.1.1.	See paragraph 5.7.1.3.
VPR (volatile particle remover)	See paragraph 5.7.2.1.	See paragraph 5.7.2.

Table A5/4

Constant volume volume sSampler (CVS) eCalibration iIntervals

CVS	Interval	<u>Criterion</u> Criteria
CVS flow	After overhaul	± 2 percent
Dilution flow	Yearly	± 2 percent
Temperature sensor	Yearly	±1°C
Pressure sensor	Yearly	± 0.4 kPa
Injection check	Weekly	± 2 percent

Table A5/5

Environmental data Data eCalibration Intervals [SMD397]

Climate	Interval	Criteria Criterion
Temperature	Yearly	± 1 °C
Moisture dew	Yearly	± 5 percent RH
Ambient pressure	Yearly	± 0.4 kPa
Cooling fan	After overhaul	According to paragraph 1.1.1.

- 5.2. Analyser calibration procedures
- 5.2.1. Each analyser shall be calibrated as specified by the instrument manufacturer or at least as often as described in Table A5/3.
- 5.2.2. Each normally used operating range shall be linearized by the following procedure:
- 5.2.2.1. The analyser linearization curve shall be established by at least five calibration points spaced as uniformly as possible. The nominal concentration of the calibration gas of the highest concentration shall be not less than 80 per-cent of the full scale.
- 5.2.2.2. The calibration gas concentration required may be obtained by means of a gas divider, diluting with purified N₂ or with purified synthetic air.
- 5.2.2.3. The linearization curve shall be calculated by the least squares method. If the resulting polynomial degree is greater than 3, the number of calibration points shall be at least equal to this polynomial degree plus 2.
- 5.2.2.4. The linearization curve shall not differ by more than_± 2 per cent from the nominal value of each calibration gas.
- 5.2.2.5. From the trace of the linearization curve and the linearization points; it is possible to verify that the calibration has been carried out correctly. The different characteristic parameters of the analyser shall be indicated, particularly:
 - (a) Scale Analyser and gas component;
 - (b) SensitivityRange;
 - (c) Zero point Date of linearisation;
 - (d) Date of the linearization. [SMD398]

- 5.2.2.6. If it can be shown to the satisfaction of the responsible authority that alternative technologies (e.g. computer, electronically controlled range switch, etc.) can give equivalent accuracy, these alternatives may be used.
- 5.3. Analyser zero and calibration verification procedure
- 5.3.1. Each normally used operating range shall be checked prior to each analysis in accordance with <u>paragraphs 5.3.1.1 and 5.3.1.2 the following subparagraphs.</u>
- 5.3.1.1. The calibration shall be checked by use of a zero gas and by use of a calibration gas according to Annex 6, paragraph 1.2.14.2.3. of Annex 6.
- 5.3.1.2. After testing, zero gas and the same calibration gas shall be used for rechecking according to Annex 6, paragraph 1.2.14.2.4. of Annex 6.
- 5.4. FID hydrocarbon response check procedure
- 5.4.1. Detector response optimization

The FID shall be adjusted as specified by the instrument manufacturer. Propane in air shallshould [SMD399] [SMD400] be used on the most common operating range.

- 5.4.2. Calibration of the HC analyser
- 5.4.2.1. The analyser shall be calibrated using propane in air and purified synthetic air
- 5.4.2.2. A calibration curve as described in paragraph_-5.2.2._of this Annex shall be established.
- 5.4.3. Response factors of different hydrocarbons and recommended limits
- 5.4.3.1. The response factor (R_f) , for a particular hydrocarbon compound is the ratio of the FID C_1 reading to the gas cylinder concentration, expressed as ppm ppm C_1 .

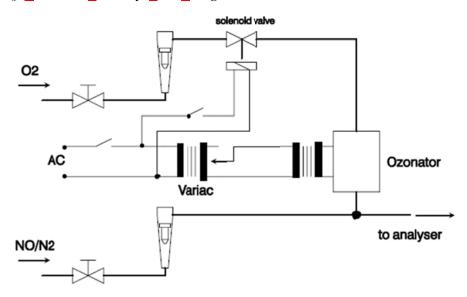
The concentration of the test gas shall be at a level to give a response of approximately 80 per cent of full-scale deflection, for the operating range. The concentration shall be known to an accuracy of ± 2 per_-cent in reference to a gravimetric standard expressed in volume. In addition, the gas cylinder shall be <u>preconditioned pre-conditioned</u> for 24 hours at a temperature between 293 K and 303 K (20 and 30 °C).

5.4.3.2. Response factors shall be determined when introducing an analyser into service and at major service intervals thereafter. The test gases to be used and the recommended response factors are:

Methane and purified air: $1.00 < R_f < 1.15$

Propylene and purified air: $0.90 < R_f < 1.10$

Toluene and purified air: $0.90 < R_f < 1.10$


These are relative to an response factor (R_f) of 1.00 for propane and purified air.

- 5.5. NO_x converter efficiency test procedure
- 5.5.1. Using the test set up as shown in Figure A5/15 and the procedure described below, the efficiency of converters for the conversion of NO₂ into NO shall be tested by means of an ozonator as follows:

- 5.5.1.1. The analyser shall be calibrated in the most common operating range following the manufacturer's specifications using zero and calibration gas (the NO content of which shall amount to approximately 80 per_cent of the operating range and the NO₂ concentration of the gas mixture shall be less than 5 per_cent of the NO concentration). The NO_x analyser shall be in the NO mode so that the calibration gas does not pass through the converter. The indicated concentration shall be recorded.
- 5.5.1.2. Via a T-fitting, oxygen or synthetic air shall be added continuously to the calibration gas flow until the concentration indicated is approximately 10 per_-cent less than the indicated calibration concentration given in paragraph_-5.5.1.1. above. The indicated concentration (c) shall be recorded. The ozonator shall be kept deactivated throughout this process.
- 5.5.1.3. The ozonator shall now be activated to generate enough ozone to bring the NO concentration down to 20 per_cent (minimum 10 per_cent) of the calibration concentration given in paragraph_-5.5.1.1. above. The indicated concentration (d) shall be recorded.
- 5.5.1.4. The NO_x analyser shall then be switched to the NO_x mode, whereby the gas mixture (consisting of NO, NO_2 , O_2 and N_2) now passes through the converter. The indicated concentration (a) shall be recorded.
- 5.5.1.5. The ozonator shall now be deactivated. The mixture of gases described in paragraph_-5.5.1.2. above shall pass through the converter into the detector. The indicated concentration (b) shall be recorded.

Figure A5/15

NO_x eConverter eEfficiency tTest eConfiguration

- 5.5.1.6. With the ozonator deactivated, the flow of oxygen or synthetic air shall be shut off. The NO₂ reading of the analyser shall then be no more than 5 per cent above the figure given in paragraph_5.5.1.1. above.
- 5.5.1.7. The <u>per cent</u> efficiency of the NO_x converter shall be calculated using the concentrations a, b, c and d determined in paragraphs 5.5.1.2. <u>to through</u> 5.5.1.5. <u>inclusive</u> above as follows:

- 5.5.1.7.1. The efficiency of the converter shall not be less than 95 per_-cent. The efficiency of the converter shall be tested in the frequency defined in Table A5/3.
- 5.6. Calibration of the microgram balance
- 5.6.1. The calibration of the microgram balance used for particulate filter weighing shall be traceable to a national or international standard. The balance shall comply with the linearity requirements given in paragraph_4.2.2.2._of this Annex. The linearity verification shall be performed at least every 12 months or whenever a system repair or change is made that could influence the calibration.
- 5.7. Calibration and validation of the particle sampling system

Examples of calibration/validation methods are available at: http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/pmpFCP.html.

- 5.7.1. Calibration of the particle number counter
- 5.7.1.1. The responsible authority shall ensure the existence of a calibration certificate for the PNC demonstrating compliance with a traceable standard within a 13-month period prior to the emissions test. Between calibrations either the counting efficiency of the PNC shallshould SMD406 SMD407 be monitored for deterioration or the PNC wick shallshould SMD408 SMD409 be routinely changed every 6 months. See Figures A5/16 and A5/17 below. PNC counting efficiency may be monitored against a reference PNC or against at least two other measurement PNCs. If the PNC reports particle concentrations within ± 10 per_cent of the average of the concentrations from the reference PNC, or a group of two or more PNCs, then the PNC shall be considered stable, otherwise maintenance of the PNC is required. Where the PNC is monitored against two or more other measurement PNCs_ it is permissible to use a reference vehicle running sequentially in different test cells each with its own PNC.

Figure A5/16
Nominal PNC Annual Sequence

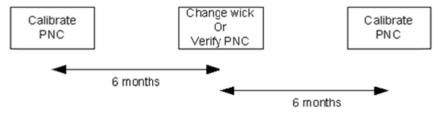


Figure A5/17
Extended PNC aAnnual sSequence (in the case where full PNC calibration is delayed)

- 5.7.1.2. The PNC shall also be recalibrated and a new calibration certificate issued following any major maintenance.
- 5.7.1.3. Calibration shall be traceable to a standard calibration method by comparing the response of the PNC under calibration with that of:
 - (a) A calibrated aerosol electrometer when simultaneously sampling electrostatically classified calibration particles; or
 - (b) A second PNC which has been directly calibrated by the above method.
- 5.7.1.3.1. In paragraph_5.7.1.3. (a) above, calibration shall be undertaken using at least six standard concentrations spaced as uniformly as possible across the PNC's measurement range.
- 5.7.1.3.2. In ease-paragraph_-5.7.1.3. (b) above-, calibration shall be undertaken using at least six standard concentrations across the PNC's measurement range. At least 3 points shall be at concentrations below 1,000 per cm³-em³, the remaining concentrations shall be linearly spaced between 1,000 per cm³-em³-and-the-maximum of the PNC's range in single particle count mode.
- 5.7.1.3.3. In cases of paragraphs -5.7.1.3.-(a) and 5.7.1.3.-(b) above, the selected points shall include a nominal zero concentration point produced by attaching HEPA filters of at least class H13 of EN 1822:2008, or equivalent performance, to the inlet of each instrument. With no calibration factor applied to the PNC under calibration, measured concentrations shall be within \pm 10 per -cent of the standard concentration for each concentration, with the exception of the zero point, otherwise the PNC under calibration shall be rejected. The gradient from a linear least squares regression of the two data sets shall be calculated and recorded. A calibration factor equal to the reciprocal of the gradient shall be applied to the PNC under calibration. Linearity of response is calculated as the square of the Pearson product moment correlation coefficient (R SMD410 SMD411) of the two data sets and shall be equal to or greater than 0.97. In calculating both the gradient and $\mathbb{R}^2 \underline{r}^2$, the linear regression shall be forced through the origin (zero concentration on both instruments).
- 5.7.1.4. Calibration shall also include a check, according to the requirements in paragraph_4.3.1.3.4.(h) of this Annex, on the PNC's detection efficiency with particles of_23 nm electrical mobility diameter. A check of the counting efficiency with_41 nm particles is not required.
- 5.7.2. Calibration/validation of the volatile particle remover
- 5.7.2.1. Calibration of the VPR's particle concentration reduction factors across its full range of dilution settings, at the instrument's fixed nominal operating temperatures, shall be required when the unit is new and following any major maintenance. The periodic validation requirement for the VPR's particle

concentration reduction factor is limited to a check at a single setting, typical of that used for measurement on particulate filter-equipped vehicles. The responsible authority shall ensure the existence of a calibration or validation certificate for the volatile particle remover within a 6-month period prior to the emissions test. If the volatile particle remover incorporates temperature monitoring alarms, a 13 month validation interval shall be permissible.

It is recommended that the VPR is calibrated and validated as a complete unit.

The VPR shall be characterised for particle concentration reduction factor [SMD412][SMD413][SMD414] with solid particles of 30 nm, 50 nm and 100 nm electrical mobility diameter. Particle concentration reduction factors, $(f_r(d))$, for particles of 30 nm and 50 nm electrical mobility diameters shall be no more than 30 per_cent and 20 per_cent higher respectively, and no more than 5 per_cent lower than that for particles of 100 nm electrical mobility diameter. For the purposes of validation, the mean particle concentration reduction factor shall be within \pm 10 per cent of the mean particle concentration reduction factor, (f_r) , determined during the primary calibration of the VPR.

5.7.2.2. The test aerosol for these measurements shall be solid particles of 30, 50 and 100 nm electrical mobility diameter and [SMD415][SMD416]a minimum concentration of -5,000 particles per cm³-cm³ at the VPR inlet. As an option, a polydisperse aerosol with an electrical mobility median diameter of 50 nm may be used for validation. The test aerosol shall be thermally stable at the VPR operating temperatures. Particle concentrations shall be measured upstream and downstream of the components.

The particle concentration reduction factor for each monodisperse particle size, $\{f_r(d_i)\}$, shall be calculated as follows:

$$\underline{f_r(d_i)} = \frac{N_{in}(d_i)}{N_{out}(d_i)}$$
 (16)

where:

 $N_{in}(d_i)$ is the upstream particle number concentration for particles of diameter d_i ;

 $N_{out}(d_i)$ is the downstream particle number concentration for particles of diameter d_i ;

d_i is the particle electrical mobility diameter (30, 50 or 100 nm).

N_{in}(d_i) and N_{out}(d_i) shall be corrected to the same conditions.

The mean particle concentration reduction factor, $\overline{f_r}$, at a given dilution setting _____shall be calculated as follows:

$$\overline{f_r} = \frac{f_r(30nm) + f_r(50nm) + f_r(100nm)}{3}$$
 (17)

Where a polydisperse 50 nm aerosol is used for validation, the mean particle concentration reduction factor, $(\bar{f_v})_{\perp}$ at the dilution setting used for validation shall be calculated as follows:

$$\overline{f_{v}} = \frac{N_{in}}{N_{out}} \tag{18}$$

where:

N_{in} is the upstream particle number concentration;

N_{out} is the downstream particle number concentration.

- 5.7.2.3. A validation certificate for the VPR demonstrating effective volatile particle removal efficiency within a 6 month period prior to the emissions test shall be presented upon request. If the volatile particle remover incorporates temperature monitoring alarms, a 13 month validation interval shall be permissible. [SMD417]
- 5.7.2.3. ☐ SMD418] The VPR shall demonstrate greater than 99.0 per_-cent removal of tetracontane (CH₃(CH₂)₃₈CH₃) particles of at least 30 nm electrical mobility diameter with an inlet concentration ≥ 10,000-per cm³em⁻³ when operated at its minimum dilution setting and manufacturers recommended operating temperature.
- 5.7.3. Particle number system check procedures
- 5.7.3.1. On a monthly basis, the flow into the particle counter shall have report a measured value within 5 per_-cent of the particle counter nominal flow rate when checked with a calibrated flow meter. <a href="[SMD419]][SMD420]
- 5.8. Accuracy of the mixing device

If a gas divider is used to perform the calibrations as defined in paragraph_-5.2., the accuracy of the mixing device shall be such that the concentrations of the diluted calibration gases may be determined to within ± 2 per cent. A calibration curve must-shall be verified by a mid-span check as described in paragraph 5.3. A calibration gas with a concentration below 50 per cent of the analyser range shall be within 2 per cent of its certified concentration.

- Reference gases
- 6.1. Pure gases
- 6.1.1. All values in ppm mean V-ppm (vpm)
- 6.1.2. The following pure gases shall be available, if necessary, for calibration and operation:
- 6.1.2.1.[SMD421] Nitrogen: (

```
<u>purityPurity</u>: ≤ 1 ppm C<mark>1[SMD422]</mark>, ≤1 ppm CO, ≤ 400 ppm CO<sub>2</sub>,
≤ 0.1 ppm NO, <_0.1 ppm NO<sub>2</sub>, <0.1 ppm N<sub>2</sub>O, <0.1 ppm_-NH<sub>3</sub>);
```

6.1.2.2. Synthetic air: \leftarrow

<u>purityPurity</u>: ≤ 1 ppm C<u>1</u>, ≤ 1 ppm CO, ≤ 400 ppm CO₂, ≤ 0.1 ppm NO); oxygen content between 18 and 21 per -cent volume;

6.1.2.3. Oxygen: (

<u>purityPurity</u>: $> 99.5 \text{ per_-cent vol. } O_2$;

6.1.2.4. <u>Hydrogen (and mixture containing helium or nitrogen):</u>

purity: ≤ 1 ppm C1, ≤ 400 ppm CO2; hydrogen content between 39 and 41 per cent volume: SMD423 SMD4241 Hydrogen (and mixture containing helium or nitrogen): (purity: ≤ 1 ppm C, ≤ 400 ppm CO₂);

6.1.2.5. Carbon monoxide:

(minimum-Minimum purity 99.5 per_cent);

6.1.2.6. Propane: (

minimum Minimum purity 99.5 per_-cent).

- 6.2. Calibration gases
- 6.2.1. The true concentration of a calibration gas shall be within \pm_1 per_-cent of the stated value or as given below.

Mixtures of gases having the following compositions shall be available with a bulk gas specifications according to paragraphs_6.1.2.1. or 6.1.2.2. of this Annex:

- (a) C_3H_8 in synthetic air (see paragraph_-6.1.2.2. above);
- (b) CO in nitrogen;
- (c) CO₂ in nitrogen;
- (d) CH₄ in synthetic air;
- (e) NO in nitrogen (the amount of NO₂ contained in this calibration gas shall not exceed 5 per_cent of the NO content);
- (f) NO_2 in nitrogen (tolerance ± 2 per -cent);
- (g) N_2O in nitrogen (tolerance ± 2 per_-cent);
- (h) C_2H_5OH in synthetic air or nitrogen (tolerance ± 2 per_-cent).
- 7. Additional sampling and analysis methods
- 7.1. Fourier transform infrared (FTIR) analyser for NH₃ analysis [SMD425]

Fourier transform infrared (FTIR) analyser

- 7.1.1. Measurement principle | [SMD426]
- 7.1.1.1. An FTIR employs the broad waveband infrared spectroscopy principle. It allows simultaneous measurement of exhaust components whose standardized spectra are available in the instrument. The absorption spectrum (intensity/wavelength) is calculated from the measured interferogram (intensity/time) by means of the Fourier transform method. An FTIR employs the broad waveband infrared spectroscopy principle. It allows simultaneous measurement of exhaust components whose standardized spectra are available in the instrument. The absorption spectrum (intensity/wavelength) is calculated from the measured interferogram (intensity/time) by means of the Fourier transform method.
- 7.1.1.2. The internal analyser sample stream up to the measurement cell and the cell itself shall be heated.
- 7.1.1.3. Extractive sampling

The sample path upstream of the analyser (sampling line, prefilter(s), pumps and valves) shall be made of stainless steel or PTFE, and shall be heated to set points between 383 K (110 °C) and 463 K (190 °C) in order to minimise NH₃ losses and sampling artefacts. In addition, the sampling line shall be as short as possible. At the manufacturer's request, temperatures between 383 K (110 °C) and 406 K (133 °C) may be chosen.

7.1.1.34. Measurement cross interference

- 7.1.1.34.1. The spectral resolution of the target wavelength shall be within 0.5 per cmem in order to minimize cross interference from other gases present in the exhaust gas.
- 7.1.1.34.2. Analyser response shallshould SMD427 SMD428 not exceed ± 2 ppm at the maximum CO₂ and H₂O concentration expected during the vehicle test.
- 7.1.1.4. In order not to influence the results of downstream measurement, the amount of sample lost shall be limited by in-situ measurement, low flow analysers or return of by-pass flow. The maximum volume of by-pass flow shall be calculated as follows:

$$Flow_lost_max = \frac{0.005 \times V_{mix}}{DF[SMD430]}$$
 (19)

where:

Flow lost max is the maximum return by-pass flow, volume/sec;

V_{mix} is the volume of diluted exhaust per phase;

DF is the dilution factor.

- 7.2. Sampling and analysis methods for N₂O
- 7.2.1. Gas chromatographic method
- 7.2.1.1. General description

Followed by the gas chromatographic separation, N_2O shall be analysed by an appropriate detector. This shall be an electron_capture detector (ECD).

7.2.1.2. Sampling

From <u>During</u> each phase of the test, a gas sample shall be taken from the corresponding diluted exhaust bag and dilution air bag for analysis.

<u>Alternatively</u>, <u>aA</u> single composite dilution background sample can be analysed <u>instead</u> (not possible for phase weighing).[SMD431]

7.2.1.2.1. Sample transfer

Secondary sample storage media may be used to transfer samples from the test cell to the GC lab. Good engineering judgement shall be used to avoid additional dilution when transferring the sample from sample bags to secondary sample bags.

7.2.1.2.1.1. Secondary sample storage media.

Gas volumes shall be stored in sufficiently clean containers that minimally off-gas minimally or allow permeation of gases. Good engineering judgment shall be used to determine acceptable thresholds of storage media cleanliness and permeation. In order to clean a container, it may be repeatedly purged, evacuated and heated.

7.2.1.2.2. Sample storage

Secondary sample storage bags <u>must_shall</u> be analysed within 24 hours and <u>shall</u> be stored at room temperature.

7.2.1.3. Instrumentation and apparatus

- 7.2.1.3.1. A gas chromatograph with an electron_capture detector (GC-ECD) may be used to measure N₂O concentrations of diluted exhaust for batch sampling.
- 7.2.1.3.2. The sample may be injected directly into the GC or an appropriate preconcentrator may be used. In case of preconcentration, this <u>must-shall</u> be used for all necessary verifications and quality checks.
- 7.2.1.3.3. A packed or porous layer open tubular (PLOT) column phase of suitable polarity and length may be used to achieve adequate resolution of the N₂O peak for analysis.
- 7.2.1.3.4. Column temperature profile and carrier gas selection must shall be taken into consideration when setting up the method to achieve adequate N₂O peak resolution. Whenever possible, the operator must shall aim for baseline separated peaks.
- 7.2.1.3.5. Good engineering judgement shall be used to zero the instrument and to correct for drift.

Example: A calibration gas measurement may be performed before and after sample analysis without zeroing and using the average area counts of the pre-calibration and post-calibration measurements to generate a response factor (area counts/calibration gas concentration), which is then multiplied by the area counts from the sample to generate the sample concentration.

7.2.1.4. Reagents and material

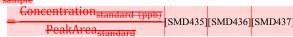
All reagents, carrier and make up gases shall be of $_99.995$ per_cent purity. Make up gas shall be N_2 or Ar/CH_4

- 7.2.1.5. Peak integration procedure
- 7.2.1.5.1. Peak integrations are corrected as necessary in the data system. Any misplaced baseline segments are corrected in the reconstructed chromatogram.
- 7.2.1.5.2. Peak identifications provided by a computer shall be checked and corrected if necessary.
- 7.2.1.5.3. Peak areas shall be used for all evaluations. Peak heights may be used alternatively with approval of the responsible authority.
- 7.2.1.6. Linearity

A multipoint calibration to confirm instrument linearity shall be performed for the target compound:

- (a) For new instruments;
- (b) After doing perfo[SMD432]rming instrument modifications that can affect linearity, and,
- (c) At least once per year.
- 7.2.1.6.1. The multipoint calibration consists of at least 3 concentrations, each above the limit of detection. (LoD), distributed over the range of expected sample concentration.
- 7.2.1.6.2. Each concentration level is measured at least twice.
- 7.2.1.6.3. A linear least squares regression analysis is performed using concentration and average area counts to determine the regression correlation coefficient

(r[SMD433]). The regression correlation coefficient must shall be greater than 0.995 to be considered linear for one point calibrations.


If the weekly check of the instrument response indicates that the linearity may have changed, a multipoint calibration shallmust [SMD434] be done.

- 7.2.1.7. Quality control
- 7.2.1.7.1. The calibration standard shall be analysed each day of analysis to generate the response factors used to quantify the sample concentrations.
- 7.2.1.7.2. A quality control standard shall be analysed within 24 hours before the analysis of the sample.

7.2.1.8. Calculations

Conc. $N_2O = PeakArea_{sample} \times ResponseFactor_{sample}$

ResponseFactor_{sample}

7.2.1.9. Limit of detection, limit of quantification

The detection limit is based on the noise measurement close to the retention time of N_2O (reference DIN 32645, 01.11.2008):

Limit of Detection: LoD = avg. (noise) + $3 \times$ std. dev. (20)

where std. dev. is considered to be equal to noise.

Limit of Quantification: $LoQ = 3 \times LoD$ (21)

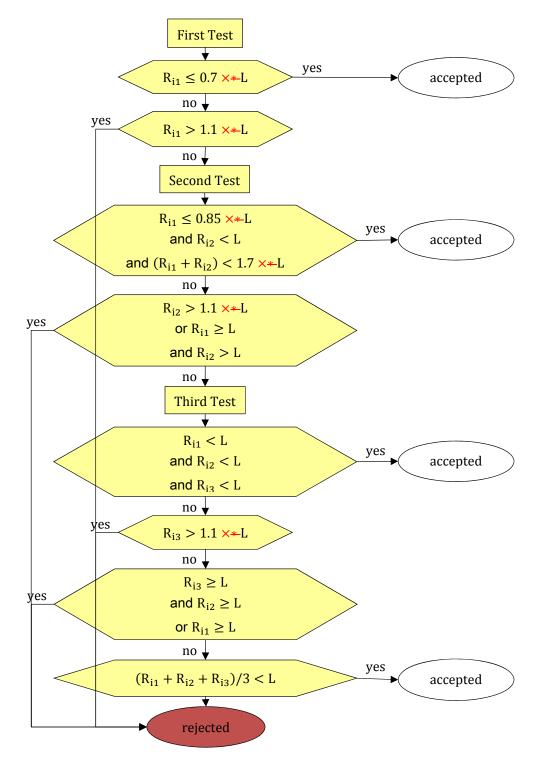
For the purpose of calculating the mass of N_2O , the concentration below LoD is considered to be zero.

7.2.1.10. Interference verification.

Interference is any component present in the sample with a retention time similar to that of the target compound described in this method. To reduce interference error, proof of chemical identity may require periodic confirmations using an alternate method or instrumentation.

[RESERVED: 7.3. Sampling and analysis methods for ethanol (EtOH....]

[RESERVED 7.4. Sampling and analysis methods for formaldehyde and acetaldehyde]


Annex 6

Type 1 test procedures and test conditions

- 1. Test procedures and test conditions
- 1.1 Description of tests
- 1.1.1. The tests verify the emissions of gaseous compounds, particulate matter, particle number, CO₂ emissions, and fuel consumption, in a characteristic driving cycle.
- 1.1.1.1. The tests shall be carried out by the method described in paragraph_-1.2. of this Annex. Gases, particulate matter and particle number shall be sampled and analysed by the prescribed methods.
- 1.1.1.2. The number of tests shall be determined as shown in Figure_-A6/1. R_{i1} to R_{i3} describe the final measurement results of three tests to determine gaseous compounds, particulate matter, particle number, CO₂ emissions, and fuel consumption where applicable. L are limit values as defined by the Contracting Parties. If a vehicle configuration must be driven more than once to show compliance with regional limits (as defined in FigureA6/1), the average CO₂ value must shall be calculated for type approval. SMD438]

Figure A6/1

Flowchart SMD439 for the nNumber of Type 1 tests Tests

- 1.2. Type 1 test conditions
- 1.2.1. Overview
- 1.2.1.1. The Type 1 test shall consist of prescribed sequences of dynamometer preparation, fuelling, soaking, and operating conditions.
- 1.2.1.2. The Type 1 test shall consist of engine start-ups and vehicle operation on a chassis dynamometer on the applicable WLTC for the CO₂ interpolationvehicle SMD4401 family. A proportional part of the diluted exhaust emissions shall be collected continuously for subsequent analysis using a constant volume sampler.
- 1.2.1.3. Background concentrations shall be measured for all compounds for which dilute mass emissions measurements are conducted. For exhaust emission testing, this requires sampling and analysis of the dilution air.
- 1.2.1.3.1. Background particulate mass [SMD441] PM[SMD442] measurement
- 1.2.1.3.1.1. Where the manufacturer requests and the Contracting Party permits subtraction of either dilution air or dilution tunnel particulate matter background from emissions measurements, these background levels shall be determined according to the procedures listed in paragraphs 1.2.1.3.1.1.1. to <a href="mailto:smb43]1.2.1.3.1.1.3. inclusive.the following subparagraphs.
- 1.2.1.3.1.1.1. The maximum permissible background correction shall be a mass on the filter equivalent to 1 mg/km at the flow rate of the test.
- 1.2.1.3.1.1.2. If the background exceeds this level, the default figure of 1 mg/km shall be subtracted.
- 1.2.1.3.1.1.3. Where subtraction of the background contribution gives a negative result, the particulate mass [SMD444] result it [SMD445] shall be considered to be zero.
- 1.2.1.3.1.2. Dilution air particulate matter background level shall be determined by passing filtered dilution air through the particulate filter. This shall be drawn from a point immediately downstream of the dilution air filters. Background levels in $\mu g/m^3$ shall be determined as a rolling average of at least 14 measurements with at least one measurement per week.
- 1.2.1.3.1.3. Dilution tunnel particulate matter background level shall be determined by passing filtered dilution air through the particulate filter. This shall be drawn from the same point as the particulate matter sample. Where secondary dilution is used for the test, the secondary dilution system shall be active for the purposes of background measurement. One measurement may be performed on the day of test, either prior to or after the test. [ISMD446]
- 1.2.1.3.2. Background particle number determination
- 1.2.1.3.2.1. Where the Contracting Party permits subtraction of either dilution air or dilution tunnel particle number background from emissions measurements or a manufacturer requests a background correction, these background levels shall be determined as follows:
- 1.2.1.3.2.1.1. The background value can be calculated or measured. The maximum permissible background correction shall be related to the maximum allowable leak rate of the particle number measurement system (0.5 particles perfcm³) scaled from the particle concentration reduction factor (PCRF) and the CVS flow rate used in the actual test;

- 1.2.1.3.2.1.2. Either the Contracting Party or the manufacturer can request that actual background measurements are used instead of calculated ones.
- 1.2.1.3.2.1.3. Where subtraction of the background contribution gives a negative result, the particle number result shall be considered to be zero.
- 1.2.1.3.2.2. Dilution air particle number background level shall be determined by sampling filtered dilution air. This shall be drawn from a point immediately downstream of the dilution air filters into the particle number measurement system. Background levels in particles per cm³#/em³ shall be determined as a rolling average of least 14 measurements with at least one measurement per week.
- 1.2.1.3.2.3. Dilution tunnel particle number background level shall be determined by sampling filtered dilution air. This shall be drawn from the same point as the particle number sample. Where secondary dilution is used for the test the secondary dilution system <a href="mailto:shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-should-shall-sh
- 1.2.2. General test cell equipment
- 1.2.2.1. Parameters to be measured
- 1.2.2.1.1. The following temperatures shall be measured with an accuracy of ± 1.5 K (± 1.5 °C):
 - (a) Test cell ambient air
 - (b) Dilution and sampling system temperatures as required for emissions measurement systems defined inef Annex 5.
- 1.2.2.1.2. Atmospheric pressure shall be measurable with a resolution of ± 0.1 kPa.
- 1.2.2.1.3. Specific Absolute humidity (H)(H_a) shall be measurable with a resolution of $\pm 1 \text{ g}_-H_2\text{O/kg}_-\text{dry}_-\text{air}$. [SMD449][SMD450]
- 1.2.2.2. Test cell and soak area
- 1.2.2.2.1. Test cell
- 1.2.2.2.1.1. The test cell shall have a temperature set point of 296 K_(23 °C). The tolerance of the actual value shall be within ±5 -K_(±5 °C). The air temperature and humidity shall be measured at the vehicle cooling fan outlet at a minimum frequency of 1 Hz. For the temperature at the start of the test, see paragraph 1.2.8.1. in Annex 6.
- 1.2.2.2.1.2. The <u>specificabsolute</u> humidity (H)(H_a) of either the air in the test cell or the intake air of the engine shall be such that:

$$5.5 \le H H_{\overline{a}} \le 12.2 \text{ (g H}_2\text{O/kg dry air)}$$

- 1.2.2.2.1.3. Humidity shall be measured continuously at a minimum <u>frequency</u> of 1 Hz.
- 1.2.2.2.2. Soak area

The soak area shall have a temperature set point of 296 K (23 °C) and the tolerance of the actual value shall be within \pm 3 K (\pm 3 °C) on a 5 minute running average and shall not show a systematic deviation from the set point. The temperature shall be measured continuously at a minimum frequency of 1 Hz.

1.2.3. Test vehicle

1.2.3.1. General

The test vehicle shall conform in all its components with the production series, or, if the vehicle is different from the production series, a full description shall be recorded. In selecting the test vehicle, the manufacturer and responsible technical authority shall agree which vehicle model is representative for the CO₂ interpolation vehicl [SMD451]e family. For the measurement of emissions the road load as determined with test vehicle H shall be applied. If at the request of the manufacturer the CO₂ interpolation method is used (see paragraph_-3.2.3.2 of Annex 7), an additional measurement of emissions shall be performed with the road load as determined with at test vehicle L. Tests on Both vehicles H and L should shall be performed with the same test vehicle and shall be tested with the shortest final transmission ratio within the interpolation family. tested with the shortest final transmission ratio within the CO₂ vehicle[SMD452] family SMD453 SMD4541. The CO2 interpolation method shall only be applied on those road load relevant characteristics that were chosen to be different between test vehicle L and test vehicle H; for the other road load relevant characteristic(s), the value of test vehicle H shall be applied in the CO2 interpolation method. [SMD455] The manufacturer may also choose not to apply the interpolation method for road load relevant characteristics between test vehicles L and H; in that case the value of the test vehicle H shall be applied in the CO₂ interpolation method. [SMD456][SMD457][SMD458]

1.2.3.2. CO_2 interpolation range

The CO₂ interpolation method shall only be used if the difference in CO₂ between test vehicles L and H is between a minimum of 5 and a maximum of 30-30 g/km or 20 per_cent of the CO₂ for vehicle H, whichever value is the lower

At the request of the manufacturer, and with approval of the responsible authority, the CO_2 interpolation line may be extrapolated to a maximum of 3 g/km above the CO_2 emission of vehicle H and/or below the CO_2 emission of vehicle L. This extension is only valid only within the absolute boundaries of the above specified interpolation range specified above.

1.2.3.3. Run-in

The vehicle <u>must-shall</u> be presented in good technical condition. It <u>must-shall</u> have been run-in and driven between 3,000_-and 15,000 km before the test. The engine, transmission and vehicle shall be run-in in accordance with the manufacturer's recommendations.

- 1.2.4. Settings
- 1.2.4.1. Dynamometer settings and verification shall be <u>performed_done</u> according to Annex 4.
- 1.2.4.2. Dynamometer operation mode
- 1.2.4.2.1. Dynamometer operation mode can be activated at the manufacturer's request.
- 1.2.4.2.2. A dynamometer operation mode, if any, shall be activated by using the manufacturer's instruction (e.g. using vehicle steering wheel buttons in a special sequence, using the manufacturer's workshop tester, removing a fuse).

The manufacturer shall provide the responsible authority a list of the deactivated devices and justification of the deactivation.

Auxiliaries shall be switched off or deactivated during dynamometer operation.

1.2.4.2.3. Dynamometer operation mode shall not activate, modulate, delay or deactivate the operation of any part that affects the emissions and fuel consumption under the test conditions. Any device that affects the operation on a chassis dynamometer shall be set to ensure a proper operation.

Activation or deactivation of the mode shall be recorded.

- 1.2.4.3. The vehicle's exhaust system shall not exhibit any leak likely to reduce the quantity of gas collected.
- 1.2.4.4.1.2.4.4. The settings of the engine and of the vehicle's controls shall be those prescribed by the manufacturer. The settings of the powertrain and vehicle controls shall be those prescribed by the manufacturer for series production. [SMD459][SMD460][SMD461]
- 1.2.4.5. Tyres shall be of a type specified as original equipment by the vehicle manufacturer. Tyre pressure may be increased by up to 50 per_-cent above the pressure specified in paragraph_-4.2.2.3. of Annex 4. The same tyre pressure shall be used for the setting of the dynamometer and for all subsequent testing. The tyre pressure used shall be recorded.
- 1.2.4.6. Reference fuel
- 1.2.4.6.1. The appropriate reference fuel as defined <u>in of Annex 3</u> shall be used for testing.
- 1.2.4.7. Test vehicle preparation
- 1.2.4.7.1. The vehicle shall be approximately horizontal during the test so as to avoid any abnormal distribution of the fuel.
- 1.2.4.7.2. If necessary, the manufacturer shall provide additional fittings and adapters, as required to accommodate a fuel drain at the lowest point possible in the tank(s) as installed on the vehicle, and to provide for exhaust sample collection.
- 1.2.4.7.3. For particulate mass sampling during a test when the regenerating device is in a stabilized loading condition (i.e. the vehicle is not undergoing a regeneration), it is recommended that the vehicle has completed > 1/3 of the mileage between scheduled regenerations or that the periodically regenerating device has undergone equivalent loading off the vehicle [SMD462]
- 1.2.5. Preliminary testing cycles
- 1.2.5.1. Preliminary testing cycles may be carried out if requested by the manufacturer to follow the speed trace within the prescribed limits.
- 1.2.6. Test vehicle preconditioning
- 1.2.6.1. The fuel tank or fuel tanks shall be filled with the specified test fuel. If the existing fuel in the fuel tank or fuel tanks does not meet the specifications contained in paragraph 1.2.4.6. above, the existing fuel shall be drained prior to the fuel fill. For the above operations, the evaporative emission control system shall neither be abnormally purged nor abnormally loaded.

1.2.6.2. Battery charging

Before the preconditioning test cycle, the batteries shall be fully charged. At the request of the manufacturer, charging may be omitted before preconditioning. The batteries shall not be charged again before official testing.

- 1.2.6.3. The test vehicle shall be moved to the test cell and the operations listed in the following subparagraphs shall be performed.
- 1.2.6.3.1. The test vehicle shall be placed, either by being driven or pushed, on a dynamometer and operated through the applicable WLTCs. The vehicle need not be cold, and may be used to set the dynamometer load.
- 1.2.6.3.2. The dynamometer load shall be set according to paragraphs 7. and 8. of Annex 4. of Annex 4.
- 1.2.6.3.3. During preconditioning, the test cell temperature shall be the same as defined for the Type 1 test (paragraph 1.2.2.2.1. of this Annex).
- 1.2.6.3.4. The drive-wheel tyre pressure shall be set in accordance with paragraph_1.2.4.5. of this Annex.
- 1.2.6.3.5. Between the tests on the first gaseous reference fuel and the second gaseous reference fuel, for <u>vehicles with positive ignition-enginesd vehicles</u> fuelled with LPG or NG/biomethane or so equipped that they can be fuelled with either petrol or LPG or NG/biomethane, the vehicle shall be preconditioned again before the test on the second reference fuel.
- 1.2.6.3.6. For preconditioning, the applicable WLTC shall be driven. Starting the engine and driving shall be performed according to paragraph_1.2.6.4. of this Annex.

The dynamometer shall be set according to Annex 4. The dynamometer setting shall be indicated as in paragraph 1.2.4.1. above.

- 1.2.6.3.7. At <u>the</u> request of the manufacturer or responsible authority, additional WLTCs may be performed in order to bring the vehicle and its control systems to a stabilized condition.
- 1.2.6.3.8. The extent of such additional preconditioning shall be recorded by the responsible authority.
- 1.2.6.3.9. In a test facility in which there may be possible contamination of a low particulate emitting vehicle test with residue from a previous test on a high particulate emitting vehicle, it is recommended, for the purpose of sampling equipment preconditioningpre-conditioning, that a 120 km/h steady state drive cycle of 20_-minutes duration be driven by a low particulate emitting vehicle. Longer and/or higher speed running is permissible for sampling equipment preconditioning pre-conditioning if required. Dilution tunnel background measurements, where applicable, shall be taken after the tunnel preconditioning pre-conditioning running [SMD463][SMD464], and prior to any subsequent vehicle testing.
- 1.2.6.4. The engine shall be started up by means of the devices provided for this purpose according to the manufacturer's instructions.

The switch of the predominant mode to another available mode after the vehicle has been started shall only be possible by an intentional action of the driver having no impact on any other functionality of the vehicle.

- 1.2.6.4.1. If the vehicle does not start, the test is void, preconditioning tests must-shall be repeated and a new test must-shall be driven.
- 1.2.6.4.2. The cycle starts on the initiation of the engine start-up procedure.
- 1.2.6.4.3. In cases where LPG or NG/biomethane is used as a fuel, it is permissible that the engine is started on petrol and switched automatically to LPG or NG/biomethane after a predetermined period of time which cannot be changed by the driver.
- 1.2.6.4.4. During stationary/idling vehicle phases, the brakes shall be applied with appropriate force to prevent the drive wheels from turning.
- 1.2.6.4.5. During the test, speed shall be recorded against time or collected by the data acquisition system at a <u>frequency rate</u> of not less than 1 Hz so that the actual driven speed can be assessed.
- 1.2.6.4.6. The distance actually driven by the vehicle shall be recorded for each WLTC phase.
- 1.2.6.5. Use of the transmission
- 1.2.6.5.1. Manual shift transmission

The gear shift prescriptions described in Annex 2 shall be followed. Vehicles tested according to Annex 8 shall be driven according to paragraph 1.6. of that Annex.

Vehicles which cannot attain the acceleration and maximum speed values required in the applicable WLTC shall be operated with the accelerator control fully activated until they once again reach the required driving curve. Speed trace violations under these circumstances shall not void a test. Deviations from the driving cycle shall be recorded.

- 1.2.6.5.1.1. The tolerances given in paragraph_1.2.6.6. below shall apply.
- 1.2.6.5.1.2. The gear change $\frac{\text{must-shall}}{\text{second}}$ be started and completed within $\pm 1.0 \text{ second}$ of the prescribed gear shift point.
- 1.2.6.5.1.3. The clutch $\frac{\text{must-shall}}{\text{point}}$ be depressed within ± 1.0 second of the prescribed clutch operating point.
- 1.2.6.5.2. Automatic shift transmission
- 1.2.6.5.2.1. Vehicles equipped with automatic shift transmissions shall be tested in the predominant drive mode. The accelerator control shall be used in such a way as to accurately follow the speed trace.
- 1.2.6.5.2.2. Vehicles equipped with automatic shift transmissions with driver-selectable modes shall fulfill the limits of criteria emissions in all automatic shift modes used for forward driving. The manufacturer shall give appropriaterespective evidence to the responsible authority. Provided the manufacturer can give technical evidence with the agreement of the responsible authority, the dedicated driver-selectable modes for very special limited purposes shall not be considered (e.g. maintenance mode, crawler mode).
- 1.2.6.5.2.3. The manufacturer shall give evidence to the responsible authority of the existence of a predominant_mode that fulfils the requirements of paragraph 3.5.10. in section B of this gtr. With the agreement of the responsible authority, the predominant mode may be used as the only mode for the determination of criteria emissions, CO₂ emissions, and fuel consumption.

Notwithstanding the existence of a predominant mode, the criteria emission limits shall be fulfilled in all considered automatic shift modes used for forward driving as described in paragraph 1.2.6.5.2.2.

- 1.2.6.5.2.4. If the vehicle has no predominant mode or the requested predominant mode is not agreed by the responsible authority as a predominant mode, the vehicle shall be tested in the best case mode and worst case mode for criteria emissions, CO₂ emissions, and fuel consumption. Best and worst case modes shall be identified by the given-evidence provided on the CO₂ emissions and fuel consumption in all modes. CO₂ emissions and fuel consumption shall be the average of the test results in both modes. Test results for both modes shall be recorded. Notwithstanding the usage of the best and worst case modes for testing, the criteria emission limits shall be fulfilled in all considered automatic shift modes used for forward driving as described in paragraph 1.2.6.5.2.2.
- 1.2.6.5.2.5. The tolerances given in paragraph_1.2.6.6. below shall apply.

After initial engagement, the selector shall not be operated at any time during the test. Initial engagement shall be done <u>lone</u> second before beginning of the first acceleration.

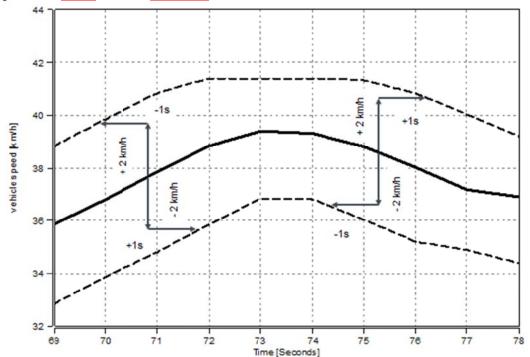
- 1.2.6.5.3. Use of multi-mode transmissions
- 1.2.6.5.3.1. In the case of emissions testing, emission standards shall be fulfilled in all modes.
- 1.2.6.5.3.2. In the case of CO_2 /fuel consumption testing, the vehicle shall be tested in the predominant mode.

If the vehicle has no predominant mode, the vehicle shall be tested in the best case mode and worst case mode, and the CO₂ and fuel consumption results shall be the average of both modes.

Vehicles with an automatic transmission with a manual mode shall be tested according paragraph_1.2.6.5.2. of this Annex.

1.2.6.6. Speed trace tolerances

The following tolerances shall be allowed between the indicated speed and the theoretical speed of the respective WLTC:


- (a) The upper limit is 2.0 km/h higher than the highest point of the trace within ± 1.0 second of the given point in time;
- (b) The lower limit is 2.0 km/h lower than the lowest point of the trace within $\pm 1.0 \text{ second}$ of the given time.

See Figure A6/2. [SMD465]

Speed tolerances greater than those prescribed shall be accepted provided the tolerances are never exceeded for more than 1 second on any one occasion.

There shall be no more than 10-ten such deviations per test.

Figure A6/2 **Speed trace Trace tolerances**Tolerances

1.2.6.7. Accelerations

The vehicle shall be operated with the appropriate accelerator control movement necessary to accurately follow the speed trace.

The vehicle shall be operated smoothly, following representative shift speeds and procedures.

For manual transmissions, the accelerator controller shall be released during each shift and the shift shall be accomplished in minimum time.

If the vehicle cannot follow the speed trace, it shall be operated at maximum available power until the vehicle speed reaches the speed prescribed for that time in the driving schedule.

1.2.6.8. Decelerations

- 1.2.6.8.1. During decelerations of the cycle, the driver shall deactivate the accelerator control but shall not manually disengage the clutch until the point described in paragraph 4.(c) of Annex -2, paragraph 4.(c).
- 1.2.6.8.1.1. If the vehicle decelerates faster than prescribed by the speed trace, the accelerator control shall be operated such that the vehicle accurately follows the speed trace.
- 1.2.6.8.1.2. If the vehicle decelerates too slowly to follow the intended deceleration, the brakes shall be applied such, that it is possible to accurately follow the speed trace

- 1.2.6.9. Unexpected engine stop
- 1.2.6.9.1. If the engine stops unexpectedly, the preconditioning or Type 1 test shall be declared void.
- 1.2.6.10. After completion of the cycle, the engine shall be switched off.
- 1.2.7. Soaking
- 1.2.7.1. After preconditioning, and before testing, vehicles shall be kept in an area in with ambient conditions as described in paragraph_1.2.2.2.2.
- 1.2.7.2. The vehicle shall be soaked for a minimum of 6 hours and a maximum of 36 hours with the bonnet opened or closed. until the engine oil temperature and coolant temperature, if any, are within ± 2 K of the set point. [SMD466] If not excluded by specific provisions for a particular vehicle, cooling may be accomplished by forced cooling down to within $\pm 2 \text{ K of } [\text{SMD467}]$ the set point temperature. If cooling is accelerated by fans, the fans shall be placed so that the maximum cooling of the drive train, engine and exhaust aftertreatment system is achieved in a homogeneous manner. [SMD468][SMD469][SMD470]
- 1.2.8. Emissions test (Type 1 test)
- 1.2.8.1. The test cell temperature at the start of the test shall be 296 K \pm 3 K (23 °C \pm 3 °C) measured at a frequency of minimum frequency of 1 Hz. The engine oil temperature and coolant temperature, if any, shall be within \pm 2 K (\pm 2 °C) of the set point of 296 K (23 °C). SMD471 SMD472 SMD473 [SMD474]
- 1.2.8.2. The test vehicle shall be pushed onto a dynamometer.
- 1.2.8.2.1. The drive wheels of the vehicle shall be placed on the dynamometer without starting the engine.
- 1.2.8.2.2. The drive-wheel tyre pressures shall be set in accordance with the provisions of paragraph_1.2.4.5.1.2.6.3.4. above.
- 1.2.8.2.3. The bonnet shall be closed.
- 1.2.8.2.4. An exhaust connecting tube shall be attached to the vehicle tailpipe(s) immediately before starting the engine.
- 1.2.8.3. Engine starting and driving
- 1.2.8.3.1. The engine shall be started up by means of the devices provided for this purpose according to the manufacturer's instructions.
- 1.2.8.3.2. The vehicle shall be driven as described in paragraphs -1.2.6.4. to 1.2.6.10. inclusive of this Annex, up to and including paragraph 1.2.6.10., over the applicable WLTC, as described in Annex 1.
- 1.2.8.6. RCB data shall be recorded for each phase of the WLTC as defined in Appendix 2 to this Annex.
- 1.2.9. Gaseous sampling
 - Gaseous samples shall be collected in bags and the compounds analysed at the end of the test or a test phase, or the compounds may be analysed continuously and integrated over the cycle.
- 1.2.9.1. The following steps shall be taken prior to each test. The steps listed in the following paragraphs shall be taken prior to each test.

- 1.2.9.1.1. The purged, evacuated sample bags shall be connected to the dilute exhaust and dilution air sample collection systems.
- 1.2.9.1.2. Measuring instruments shall be started according to the instrument manufacturers' instructions.
- 1.2.9.1.3. The CVS heat exchanger (if installed) shall be pre-heated or pre-cooled [SMD475]to within its operating test temperature tolerance as specified in paragraph_3.3.5.1. of Annex 5.
- 1.2.9.1.4. Components such as sample lines, filters, chillers and pumps shall be heated or cooled as required until stabilised operating temperatures are reached.
- 1.2.9.1.5. CVS flow rates shall be set according to paragraph_-3.3.4. of Annex 5, and sample flow rates shall be set to the appropriate levels.
- 1.2.9.1.6. Any electronic integrating device shall be zeroed and may be re-zeroed before the start of any cycle phase.
- 1.2.9.1.7. For all continuous gas analysers, the appropriate ranges shall be selected. These may be switched during a test only if switching is performed by changing the calibration over which the digital resolution of the instrument is applied. The gains of an analyser's analogue operational amplifiers may not be switched during a test.
- 1.2.9.1.8. All continuous gas analysers shall be zeroed and calibrated using gases fulfilling the requirements of paragraph 6. of Annex 5.
- 1.2.10. Particulate mass [SMD476]sSampling for PM determination
- 1.2.10.1. The following steps shall be taken prior to each test.
- 1.2.10.1.1. Filter selection
- 1.2.10.1.1.1. A single particulate filter without back-up shall be employed for the complete applicable WLTC. In order to accommodate regional cycle variations, a single filter may be employed for the first three phases and a separate filter for the fourth phase. [SMD477][SMD478]
- 1.2.10.1.2. Filter preparation
- 1.2.10.1.2.1. At least <u>one-1</u> hour before the test, the filter shall be placed in a petri dish protecting against dust contamination and allowing air exchange, and placed in a weighing chamber for stabilization.

At the end of the stabilization period, the filter shall be weighed and its weight shall be recorded. The filter shall then be stored in a closed petri dish or sealed filter holder until needed for testing. The filter shall be used within <u>Seight</u> hours of its removal from the weighing chamber.

The filter shall be returned to the stabilization room within one_1_hour after the test and shall be conditioned for at least one_1_hour before weighing.

- 1.2.10.1.2.2. The particulate sample filter shall be carefully installed into the filter holder. The filter shall be handled only with forceps or tongs. Rough or abrasive filter handling will result in erroneous weight determination. The filter holder assembly shall be placed in a sample line through which there is no flow.
- 1.2.10.1.2.3. It is recommended that the microbalance be checked at the start of each weighing session, within 24_hours of the sample weighing, by weighing one reference weight of approximately 100_mg. This weight shall be weighed three times and the average result recorded. If the average result of the

- weighings is ± 5 _ μ g of the result from the previous weighing session then the weighing session and balance are considered valid.
- 1.2.11. Particle number sampling
- 1.2.11.1. The following steps shall be taken prior to each test:
- 1.2.11.1.1. The particle specific dilution system and measurement equipment shall be started and made ready for sampling;
- 1.2.11.1.2. The correct function of the particle counter and volatile particle remover elements of the particle sampling system shall be confirmed according to the procedures listed in <u>paragraphs 1.2.11.1.2.1</u> to 1.2.11.1.2.4. inclusive the following subparagraphs.
- 1.2.11.1.2.1. A leak check, using a filter of appropriate performance attached to the inlet of the entire particle number measurement system (VPR and PNC), shall report a measured concentration of less than 0.5 particles per cm³em³.
- 1.2.11.1.2.2. Each day, a zero check on the particle counter, using a filter of appropriate performance at the counter inlet, shall report a concentration of ≤ 0.2 particles per cm³-cm³. Upon removal of the filter, the particle counter shall show an increase in measured concentration to at least 100 particles per cm³-cm² when sampling ambient air and a return to ≤ 0.2 particles per cm³-cm² on replacement of the filter.
- 1.2.11.1.2.3. It shall be confirmed that the measurement system indicates that the evaporation tube, where featured in the system, has reached its correct operating temperature.
- 1.2.11.1.2.4. It shall be confirmed that the measurement system indicates that the diluter PND₁ has reached its correct operating temperature.
- 1.2.12. Sampling during the test
- 1.2.12.1. The dilution system, sample pumps and data collection system shall be started.
- 1.2.12.2. The PM and PN particulate mass [SMD479] and particle number [SMD480] sampling systems shall be started.
- 1.2.12.3. Particle number shall be measured continuously. The average concentrations shall be determined by integrating the analyser signals over each phase.
- 1.2. 12.4. Sampling shall begin before or at the initiation of the engine start up procedure and end on conclusion of the cycle.
- 1.2.12.5. Sample switching
- 1.2.12.5.1. Gaseous emissions
- 1.2.12.5.1.1. Sampling from the diluted exhaust and dilution air shall be switched from one pair of sample bags to subsequent bag pairs, if necessary, at the end of each phase of the applicable WLTC to be driven.
- 1.2.12.5.2. Particulate matter
- 1.2.12.5.2.1. The requirements of paragraph 1.2.10.1.1.1. shall apply. A single particulate filter without back up shall be employed for the complete applicable WLTC. In order to accommodate regional cycle variations, a single filter may be employed for the first three phases and a separate filter for the fourth phase.

 [SMD481][SMD482][SMD483]

- 1.2.12.6. Dynamometer distance shall be recorded for each phase.
- 1.2.13. Ending the test
- 1.2.13.1. The engine shall be turned off immediately after the end of the last part of the test.
- 1.2.13.2. The constant volume sampler (CVS) or other suction device shall be turned off, or the exhaust tube from the tailpipe or tailpipes of the vehicle shall be disconnected.
- 1.2.13.3. The vehicle may be removed from the dynamometer.
- 1.2.14. Post-test procedures
- 1.2.14.1. Gas analyser check
- 1.2.14.1.1. Zero and calibration gas reading of the analysers used for continuous diluted measurement shall be checked. The test shall be considered acceptable if the difference between the pre-test and post-test results is less than 2 per_cent of the calibration gas value.
- 1.2.14.2. Bag analysis
- 1.2.14.2.1. Exhaust gases and dilution air contained in the bags shall be analysed as soon as possible, and eExhaust gases in any event shall, in any event, be analysed not later than 30 minutes after the end of the cycle phase.
 - The gas reactivity time for compounds in the bag shall be taken into consideration.
- 1.2.14.2.2. As soon as practical prior to analysis, the analyser range to be used for each compound shall be set to zero with the appropriate zero gas.
- 1.2.14.2.3. The calibration curves of the analysers shall be set by means of calibration gases of nominal concentrations of 70 to 100 per_cent of the range.
- 1.2.14.2.4. The analysers zero settings shall then be rechecked: if any reading differs by more than_-2 per_-cent of the range from that set in paragraph_-1.2.14.2.2. above, the procedure shall be repeated for that analyser.
- 1.2.14.2.5. The samples shall then be analysed.
- 1.2.14.2.6. After the analysis, zero and calibration points shall be rechecked using the same gases. The test shall be considered acceptable if the difference is less than 2 per cent of the calibration gas value.
- 1.2.14.2.7. At all points in paragraph 1.2.14.2., tThe flow rates and pressures of the various gases through analysers shall be the same as those used during calibration of the analysers.
- 1.2.14.2.8. The content of each of the compounds measured shall be recorded after stabilization of the measuring device.
- 1.2.14.2.9. The mass and number of all emissions, where applicable, shall be calculated according to Annex 7.
- 1.2.14.2.9 SMD484 It is not mandatory to perform calibration and check before and after each phase bag pair but can be done before and after the whole test. In that case, calibration and checks have to be done for all analyser ranges used for the text.

1.2.14.2.9. [SMD485] Calibrations and checks may be performed for each bag pair:

(a) before and after each test phase, or

(b) before and after the complete test.

In the case of (b), calibrations and checks shall be performed on all analysers for all ranges used during the test.

<u>In both cases, (a) and (b), the same analyser range shall be used for corresponding ambient air and exhaust bags.</u>

- 1.2.14.3. Particulate filter weighing
- 1.2.14.3.1. The particulate filter shall be returned to the weighing chamber no later than one-1 hour after completion of the test. It shall be conditioned in a petri dish, which is protected against dust contamination and allows air exchange, for at least one-1 hour, and then weighed. The gross weight of the filter shall be recorded.
- 1.2.14.3.2. At least two unused reference filters shall be weighed within <u>8-8</u> hours of, but preferably at the same time as, the sample filter weighings. Reference filters shall be of the same size and material as the sample filter.
- 1.2.14.3.3. If the specific weight of any reference filter changes by more than $\pm 5\mu g$ between sample filter weighings, then the sample filter and reference filters shall be reconditioned in the weighing room and then reweighed.
- 1.2.14.3.4. The comparison of reference filter weighings shall be made between the specific weights and the rolling average of that reference filter's specific weights. The rolling average shall be calculated from the specific weights collected in the period after since the reference filters were placed in the weighing room. The averaging period shall be at least one day but not more than exceed 15 days.
- 1.2.14.3.5. Multiple reconditionings and reweighings of the sample and reference filters are permissible until a period of 80 hours has elapsed following the measurement of gases from the emissions test. If, prior to or at the 80 hour point, more than half the number of reference filters meet the ±_5-_μg criterion, then the sample filter weighing can be considered valid. If, at the 80 hour point, two reference filters are employed and one filter fails the ±_5-_μg criterion, the sample filter weighing can be considered valid under the condition that the sum of the absolute differences between specific and rolling averages from the two reference filters must shall be less than or equal to 10 μg.
- 1.2.14.3.6. In the case that less than half of the reference filters meet the $\pm 5-5 \mu g$ criterion, the sample filter shall be discarded, and the emissions test repeated. All reference filters must shall be discarded and replaced within 48 hours. In all other cases, reference filters must shall be replaced at least every 30 days and in such a manner that no sample filter is weighed without comparison to a reference filter that has been present in the weighing room for at least one day.
- 1.2.14.3.7. If the weighing room stability criteria outlined in paragraph_4.2.2.1. of Annex 5 are not met, but the reference filter weighings meet the above

criteria, the vehicle manufacturer has the option of accepting the sample filter weights or voiding the tests, fixing the weighing room control system and rerunning the test.

Annex 6 - Appendix 1

Emissions test procedure for all vehicles equipped with periodically regenerating systems

- 1. General [SMD486] [SMD487]
- 1.1. This Appendix-defines the specific provisions regarding testing a vehicle equipped with periodically regenerating systems as defined in paragraph 3.8.1. of Part II B of this gtr. regulation.
- 1.2. During cycles where regeneration occurs, emission standards can be exceeded. If a periodic regeneration occurs at least once per Type_-1 test and has already regenerated at least once during vehicle preparation cycle, it will shall be considered as a continuously regenerating system which does not require a special test procedure. This_Annex 6, Appendix-1_does not apply to continuously regenerating systems.
- 1.3. The provisions of this Appendix shall apply for the purposes of particulate mass measurements only and not particle number measurements. [SMD488]
- 1.34. At the request of the manufacturer, and subject to the agreement of the responsible technical—authority, the test procedure specific to periodically regenerating systems will not apply to a regenerative device if the manufacturer provides data demonstrating that, during cycles where regeneration occurs, emissions remain below the emissions limits applied by the Contracting Party for the relevant vehicle category. [SMD489][SMD490]
- 1.45. At the option of the Contracting Party, the Extra High₂ phase may be excluded for determining the regenerative factor, $(K_i)_2$ for Class 2 vehicles.
- 1.56. At the option of the Contracting Party, the Extra High₃ phase may be excluded for determining the regenerative factor, $\{K_{12}\}$ for Class 3 vehicles.
- 2. Test Procedure

The test vehicle shall be capable of inhibiting or permitting the regeneration process provided that this operation has no effect on original engine calibrations. Prevention of regeneration shall only be permitted during loading of the regeneration system and during the preconditioning preconditioning cycles. It shall not be permitted during the measurement of emissions during the regeneration phase. The emission test shall be carried out with the unchanged[SMD491], original equipment manufacturer's (OEM) control unit.

- 2.1. Exhaust emission measurement between two WLTCs with regeneration events.
- 2.1.1. Average emissions between regeneration events and during loading of the regenerative device shall be determined from the arithmetic mean of several approximately equidistant (if more than two2[SMD492]) Type 1 tests. As an alternative, the manufacturer may provide data to show that the emissions remain constant (± 15 per_cent) on WLTCs between regeneration events. In this case, the emissions measured during the Type 1 test may be used. In any other case, emissions measurements for at least two Type 1_cycles must-shall be completed: one immediately after regeneration (before new loading) and

- one as close as possible prior to a regeneration phase. —All emissions measurements shall be carried out according to this Annex_-and all calculations shall be carried out according to paragraph 3. of this Appendix.
- 2.1.2. The loading process and K_i determination shall be made during the Type_-1 driving cycle on a chassis dynamometer or on an engine test bench using an equivalent test cycle. These cycles may be run continuously (i.e. without the need to switch the engine off between cycles). After any number of completed cycles, the vehicle may be removed from the chassis dynamometer and the test continued at a later time.
- 2.1.3. The number of cycles (D) between two WLTCs -where regeneration events occur, the number of cycles over which emission measurements are made (n), and mass emissions measurement (M'sij) for each compound (i) over each cycle (j) shall be recorded.
- 2.2. Measurement of emissions during regeneration events
- 2.2.1. Preparation of the vehicle, if required, for the emissions test during a regeneration phase, may be completed using the preconditioning cycles in paragraph 1.2.6. of this Annex_or equivalent engine test bench cycles, depending on the loading procedure chosen in paragraph_2.1.2. above.
- 2.2.2. The test and vehicle conditions for the Type 1 test described in this gtr apply before the first valid emission test is carried out.
- 2.2.3. Regeneration shall not occur during the preparation of the vehicle. This may be ensured by one of the following methods:
- 2.2.3.1. A "dummy" regenerating system or partial system may be fitted for the <u>preconditioning pre-conditioning</u> cycles.
- 2.2.3.2. Any other method agreed between the manufacturer and the responsible authority.
- 2.2.4. A cold start exhaust emission test including a regeneration process shall be performed according to the applicable WLTC.
- 2.2.5. If the regeneration process requires more than one WLTC, each WLTC shall be completed. Use of a single particulate matter filter for multiple cycles required to complete regeneration is permissible.
- 2.2.5.1. If more than one WLTC is required, subsequent WLTCType—I [SMD493][SMD494]cycle(s) shall be driven immediately, without switching the engine off, until complete regeneration has been achieved. In the case where the number of gaseous emission bags required for the multiple cycles would exceed the number of bags available, the time necessary to set up a new test shallshould be as short as possible. The engine shall not must be switched off during this period.
- 2.2.6. The emission values during regeneration (M_{ri}) for each compound (i) shall be calculated according to paragraph 3. below. The number of operating cycles (d) measured for complete regeneration shall be recorded.
- 3. Calculations
- 3.1. Calculation of the exhaust and CO₂ emissions, and fuel consumption of a single regenerative system

$$M_{si} = \frac{\sum_{j=1}^{n} M_{sij}'}{n} \text{ for } n \ge 1$$
 (1)

$$M_{ri} = \frac{\sum_{j=1}^{d} M'_{rij}}{d} \text{ for } d \ge 1$$
 (2)

$$M_{pi} = \frac{M_{si} \times D + M_{ri} \times d}{D + d}$$
 (3)

where for each compound (i) considered:

 M'_{sij} are the mass emissions of compound (i) over test cycle (j) without regeneration, g/km;

 M'_{rij} are the mass emissions of compound (i) over test cycle (j) during regeneration, g/km (if d > 1, the first WLTC test shall be run cold and subsequent cycles hot);

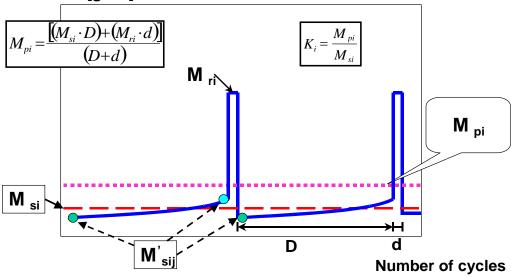
 M_{si} are the mean mass emissions of compound (i) without regeneration, g/km;

 M_{ri} are the mean mass emissions of compound (i) during regeneration, g/km:

M_{pi} are the mean mass emissions of compound (i), g/km;

n is the number of test cycles, between cycles where regenerative events occur, during which emissions measurements on Type 1 WLTCs are made, ≥ 1;

d is the number of complete operating cycles required for regeneration;


D is the number of complete operating cycles between two cycles where regeneration events occur.

The calculation of M_{pi} is shown graphically in Figure A6. App1/1.

Figure A6.App1/1

Parameters <u>measured Measured</u> during <u>emissions Emissions test Test</u> during and between <u>eycles</u> <u>Cycles</u> where <u>regeneration Regeneration</u> occurs (schematic example, the emissions during D may increase or decrease)

Emission [g/km]

3.1.1 SMD495 Calculation of the regeneration factor K_i for each compound (i) considered.

The manufacturer may elect to determine for each compound independently either additive offsets or multiplicative factors.

$$K_i$$
 factor: $K_i = \frac{M_{pi}}{M_{si}}$ (4)

$$K_i$$
 offset: $K_i = M_{pi} - M_{si}$ (5

 M_{si} , M_{pi} and K_i results, and the manufacturer's choice of type of factor shall be recorded. [SMD496][SMD497][SMD498]

K_i may be determined following the completion of a single regeneration sequence comprising measurements before, during and after regeneration events as shown in Figure A6. App1/1.

3.2. Calculation of exhaust and CO₂ emissions, and fuel consumption of multiple periodic regenerating systems [SMD499][SMD500][SMD501][SMD502][SMD503]

The following calculation shall be done over one Type 1 operation cycle for exhaust emissions and over each individual phase for CO₂ emission and fuel consumption The following shall be calculated for (a) one Type 1 operation cycle for exhaust emissions and (b) for each individual phase for CO₂ emissions and fuel consumption.

$$M_{sik} = \frac{\sum_{j=1}^{n_k} M'_{sik,j}}{n_k} \text{ for } n_j \ge 1$$
 (46)

$$M_{rik} = \frac{\sum_{j=1}^{d_k} M'_{rik,j}}{d_k} \text{ for } d \ge 1$$
 (57)

$$\mathbf{M}_{\mathrm{si}} = \frac{\sum_{k=1}^{X} \mathbf{M}_{\mathrm{sik}} \times \mathbf{D}_{k}}{\sum_{k=1}^{X} \mathbf{D}_{k}} \tag{68}$$

$$M_{ri} = \frac{\sum_{k=1}^{x} M_{rik} \times d_k}{\sum_{k=1}^{x} d_k} \tag{79}$$

$$\mathsf{M}_{pi} = \frac{\mathsf{M}_{si} \times \sum_{k=1}^{x} \mathsf{D}_k + \mathsf{M}_{ri} \times \sum_{k=1}^{x} \mathsf{d}_k}{\sum_{k=1}^{x} (\mathsf{D}_k + \mathsf{d}_k)} \tag{810}$$

$$M_{pi} = \frac{\sum_{k=1}^{X} (M_{sik} \times D_k + M_{rik} \times d_k)}{\sum_{k=1}^{X} (D_k + d_k)}$$
(911)

$$K_i$$
 factor: $K_i = \frac{M_{pi}}{M_{si}}$ (12)

$$K_i$$
 offset: $K_i = M_{pi} - M_{si}$ (13)

where:

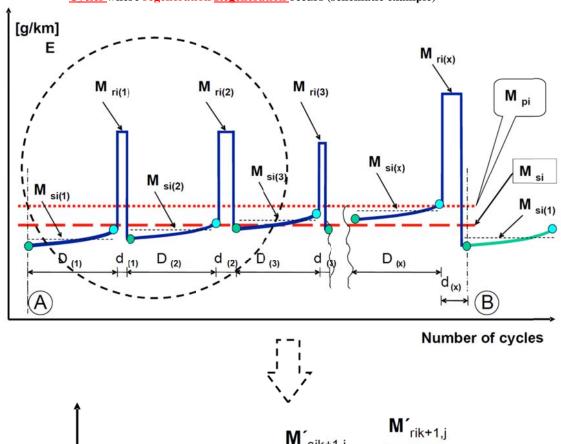
M_{si} are the mean mass emissions of all events k of compound (_i)-without regeneration, g/km;

 M_{ri} are the mean mass emissions of all events k of compound (i) during regeneration, g/km;

M_{pi} are the mean mass emission of all events k of compound (i), g/km;

M_{sik} are the mean mass emissions of event k of compound (i) without regeneration, g/km;

 M_{rik} are the mean mass emissions of event k of compound (i) during regeneration, g/km;


- $M'_{sik,j}$ are the mass emissions of event k of compound (i) in g/km without regeneration measured at point j where $1 \le j \le n_k$, g/km;
- $M'_{rik,j}$ are the mass emissions of event k of compound (i) during regeneration (when j>1, the first Type 1 test is run cold, and subsequent cycles are hot) measured at operating cycle j where $1\leq j\leq d_k$, g/km;
- $\begin{array}{lll} n_k & \text{are the number of complete test cycles of event } k, \text{ between two cycles} \\ & \text{where } & \text{regenerative phases occur, during which emissions} \\ & \text{measurements (Type 1 WLTCs or equivalent engine test bench cycles) are made,} \geq 2; \end{array}$
- d_k is the number of complete operating cycles of event k required for complete regeneration;
- D_k is the number of complete operating cycles of event k between two cycles where regenerative phases occur;
- x is the number of complete regeneration events.

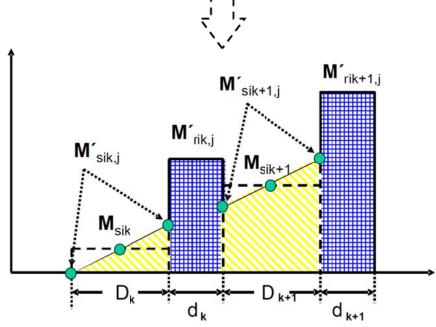

The calculation of M_{pi} is shown graphically in Figure A6.App1/2.

Figure A6.App1/2

Parameters measured Measured during emissions Emissions test-Test during and between eyeles

Cycles where regeneration Regeneration occurs (schematic example)

The calculation of K_i for multiple periodic regenerating systems is only possible after a certain number of regeneration events for each system.

After performing the complete procedure (A to B, see Figure A6.App1/2), the original starting condition A should be reached again.

Annex 6 - Appendix 2 [SMD504][SMD505]

Test procedure for electric power supply system monitoring

1. General

This Appendix_defines the specific provisions regarding the correction of test results for fuel consumption (1/100 km) and CO₂ emissions (g/km) as a function of the energy balance ΔE_{REESS} for the vehicle batteries.

The corrected values for fuel consumption and CO_2 emissions shallshould SMD506 SMD507 correspond to a zero energy balance ($\Delta E_{REESS} = 0$), and are calculated using a correction coefficient determined as defined below

- 2. Measurement equipment and instrumentation
- 2.1 Current transducer
- 2.1.1. The battery current shall be measured during the tests using a clamp-on or closed type current transducer. The current transducer (i.e. a current sensor without data acquisition equipment) shall have a minimum accuracy of 0.5 per_cent of the measured value (in A) or 0.1 per_cent of full scale deflection, whichever is smaller.
- 2.1.2. The current transducer shall be fitted on one of the cables connected directly to the battery. In order to easily measure battery current using external measuring equipment, manufacturers should [SMD508][SMD509]preferably integrate appropriate, safe and accessible connection points in the vehicle. If this is not feasible, the manufacturer shall support the responsible authority by providing the means to connect a current transducer to the battery cables in the above described manner.
- 2.1.3. Current transducer output shall be sampled with a minimum frequency of 5 Hz. The measured current shall be integrated over time, yielding the measured value of Q, expressed in ampere-hours, (Ah).
- 2.2. Vehicle on-board data
- 2.2.1. Alternatively, the battery current shall be determined using vehicle-based data. In order to use this measurement method, the following information shall be accessible from the test vehicle:
 - (a) Integrated charging balance value since last ignition run in Ah;
 - (b) Integrated on-board data charging balance value calculated with a minimum sample frequency of 5 Hz;
 - (c) The charging balance value via an OBD connector as described in SAE J1962.
- 2.2.2. The accuracy of the vehicle on-board battery charging and discharging data shall be demonstrated by the manufacturer to the responsible authority.

The manufacturer may create a battery monitoring vehicle family to prove that the vehicle on-board battery charging and discharging data are correct. The accuracy of the data shall be demonstrated on a representative vehicle. The following family criteria shall be valid:

- (a) Identical combustion processes (i.e. positive ignition, compression ignition, two-stroke, four-stroke); [SMD510] [SMD511]
- (b) Identical charge and/or recuperation strategy (software battery data module);
- (c) On-board data availability;
- (d) Identical charging balance measured by battery data module;
- (e) Identical on-board charging balance simulation.
- 3. Measurement procedure
- 3.1. External battery charging

Before the preconditioning test cycle, the battery shall be fully charged. The battery shall not be charged again before the official testing according to paragraph 1.2.6.2. of this Annex. SMD512 SMD513

- 3.1.3.2. Measurement of the battery current shall start at the same time as the test starts and shall end immediately after the vehicle has driven the complete driving cycle.
- 3.2.3.3. The electricity balance, Q, measured in the electric power supply system, is used as a measure of the difference in the REESS energy content at the end of the cycle —compared to the beginning of the cycle. The electricity balance shallis to be determined for the total WLTC for the applicable vehicle class.
- 3.3.3.4. Separate values of Q_{phase} shall be logged over the cycle phases required to be driven for the applicable vehicle class.
- 3.4.3.5. CO_{2,CS} and FC_{CS} test results shall be corrected as a function of the REESS energy balance₃-RCB. SMD514
- 3.5.3.6. The test results shall be the uncorrected measured values of $CO_{2,CS}$ and FC_{CS} in case any of the following applies:
 - (a) The manufacturer can prove that there is no relation between the energy balance and fuel consumption;
 - (b) ΔE_{REESS} as calculated from the test result corresponds to REESS charging;
 - (c) ΔE_{REESS} as calculated from the test result corresponds to REESS charging and discharging. ΔE_{REESS} , expressed as a percentage of the energy content of the fuel consumed over the cycle, is calculated in the equation below:

$$\Delta E_{REESS} = \frac{0.0036 \times RCB \times U_{REESS}}{E_{Fuel}} \times 100$$
 (1)

where:

 ΔE_{REESS} is the change in the REESS energy content, per cent;

U_{REESS} is the nominal REESS voltage, V;

RCB is REESS charging balance over the whole cycle, Ah;

E_{Fuel}[SMD515] is the energy content of the consumed fuel, MJ.

 ΔE_{REESS} is lower than the RCB correction <u>eriteria_rite</u>

 $\Delta E_{REESS} \le RCB$ correction criterion criteria (2)

Table A6.App2/1

RCB correction Criteria criteria

Cycle	WLTC city(low + # medium)	WLTC (low + medium + + high)	WLTC(low + medium + high + + extra high)
RCB correction criterioneriteria (%)	1.5	1	0.5

- 4. Correction Method
- 4.1. To apply the correction function, the electric power to the battery must-shall be calculated from the measured current and the nominal voltage value for each phase of the WLTC test:______

$$\Delta E_{el-phase(i)} = U_{REESS} \times \int_{0}^{t-end} I(t)_{phase(i)} + dt$$
 (3)

where:

 $\Delta E_{el-phase(i)}$ is the change in the electrical REESS energy content of phase i, MJ;

 $U_{REESS} \qquad \quad \text{is the nominal REESS voltage, V}; \\$

 $I(t)_{phase(i)}$ is the electric current in phase (i), A;

t - end is the time at the end of phase (i), seconds (s).

- 4.2. For correction of fuel consumption, 1/100 km, and CO₂ emissions, g/km, combustion process-dependent specific Willans factors from Table A6.App2/2 (paragraph_4.8. below) shall be used.
- 4.3. The resulting fuel consumption difference of the engine for each WLTC phase due to load behaviour of the alternator for charging a battery shall be calculated as shown below:

$$\Delta FC_{\text{phase(i)}} = \Delta E_{\text{el-phase(i)}} \times \frac{1}{\eta_{\text{alternator}}} \times \text{Willans}_{\text{factor}}$$
 (4

where:

 $\Delta FC_{phase(i)}$ is the resulting fuel consumption difference of phase (i), 1;

 $\Delta E_{el-phase(i)}$ is the change in the electrical REESS energy content of phase (i), MJ;

1), 1113,

 $\eta_{alternator}$ is the efficiency of the alternator;

 $\begin{tabular}{ll} Willans_{factor} is the combustion process specific Willans factor as defined in Table A6. App 2/2. \end{tabular}$

4.4. The resulting CO₂ emissions difference of the engine for each WLTC phase due to load behaviour of the alternator for charging a battery shall be calculated as shown below:_____

 $\underline{\Delta}CO_{2,phase(i)} = \Delta E_{el-phase(i)} \times \frac{1}{\eta_{alternator}} \times Willans_{factor} \underline{\qquad (5)}$

where:

 $\Delta CO_{2,phase(i)}$ is the resulting CO_2 -emission difference of phase (i), g;

 $\Delta E_{el-phase(i)}$ is the change in the electrical REESS energy content of phase (i), MJ;

 $\eta_{alternator} \hspace{0.5cm} \text{is the efficiency of the alternator;} \\$

Willans $_{factor}$ is the combustion process specific Willans factor as defined in Table A6.App2/2.

4.5. For this specific calculation, a fixed electric power supply system alternator efficiency shall be used:

 $\eta_{alternator} = 0.67$ for electric power supply system battery alternators

4.6. The consumption difference of the engine for the WLTC test is the sum over the (i) single phases as shown below:

$$\Delta FC_{\text{cycle}} = \sum_{i=1}^{n} \Delta FC_{\text{phase (i)}}$$
(6)

where:

 ΔFC_{cycle} is the change in consumption over the whole cycle, l.

4.7. The CO₂ emissions difference of the engine for the WLTC test is the sum over the (i) single phases as shown below:

$$\Delta CO_{2,cycle} = \sum_{i=1}^{n} \Delta CO_{2,phase(i)}$$
(7)

where:

 $\Delta CO_{2,cvcle}$ is the change in CO_2 -emission over the whole cycle, g.

4.8. For correction of the fuel consumption, 1/100 km, and CO₂ emission, g/km, the Willans factors in Table A6.App2/2 shall be used.

Table A6.App2/2 Willans factors [SMD516]

			Naturally aspirated	Pressure- charged Supercharged
Positive ignition	PetrolGasoline (E0)	l/ kWh MJ	0.2640.0733	0.280.0778
		gCO ₂ /kWhMJ	630 <u>175</u>	668 <u>186</u>
	PetrolGasoline (E5)	l/ kWh MJ	0.268 <u>0.0744</u>	0.284 <u>0.0789</u>
		gCO ₂ / kWh MJ	628 <u>174</u>	666 185
	Petrol (E10)[SMD517]	<u>l/MJ</u>	<u>0.0756</u>	0.0803
		gCO ₂ /MJ	<u>174</u>	<u>184</u>
	CNG (G20)	m³/ kWh MJ	0.259 <u>0.0719</u>	0.275 <u>0.0764</u>
		gCO ₂ / kWh MJ	465 <u>129</u>	493 <u>137</u>
	LPG	l/ kWh MJ	0.3420.0950	0.363 <u>0.101</u>
		gCO ₂ /kWhMJ	557 <u>155</u>	591 <u>164</u>
	E85	l/ kWh MJ	0.367 <u>0.102</u>	0.389 <u>0.108</u>
		gCO ₂ / kWh MJ	608 <u>169</u>	645 <u>179</u>
Compression ignition	Diesel (B0)	l/ kWh MJ	0.22 <u>0.0611</u>	0.22 <u>0.0611</u>
		gCO ₂ / kWh MJ	581 <u>161</u>	581 <u>161</u>
	Diesel (B5)	l/ kWh MJ	0.22 <u>0.0611</u>	0.22 <u>0.0611</u>
		gCO ₂ /kWhMJ	581 <u>161</u>	581 <u>161</u>
	<u>Diesel</u> (B7)[SMD518]	<u>l/MJ</u>	<u>0.0611</u>	<u>0.0611</u>
		gCO ₂ /MJ	<u>161</u>	<u>161</u>

Annex 7

Calculations

- 1. General requirements
- 1.1. Calculations related specifically to hybrid and pure electric vehicles are described in Annex 8.
- 1.2. The calculations described in this Annex shall be used for vehicles using combustion engines.
- 1.3.- The final test results shall be rounded in one step to the number of places to the right of the decimal point indicated by the applicable emission standard plus one additional significant figure. Intermediate steps in the calculations shall not be rounded.
- 1.4. The NO_x correction factor, KH, shall be rounded to $\frac{2-\text{two}}{2}$ decimal places.
- 1.5. The dilution factor, DF, shall be rounded to 2-two decimal places.
- 1.6. For information not related to standards, good engineering judgement shall be used.
- 2. Determination of diluted exhaust gas volume
- 2.1. Diluted exhaust gas vV[SMD519] olume calculation for a variable dilution device capable of operating at a constant or variable flow rate-
- 2.1.1. The parameters showing the The [SMD520] volumetric flow shall be recorded continuously. The total volume shall be recorded for the duration of the test.
- 2.2. Volume calculation for a variable dilution device using a positive displacement pump
- 2.2.1.[SMD521] The volume shall be calculated using the following equation:

$$V = V_0 \times N \tag{1}$$

where:

V is the volume of the diluted gas, in litres per test (prior to correction);

 V_0 is the volume of gas delivered by the positive displacement pump in testing conditions, -litres per pump revolution N^{-1} ; || [SMD522][SMD523][SMD524][SMD525]

N is the number of revolutions per test.

- 2.2.1.1. Correcting the volume to standard conditions
- 2.2.1.1.1. The diluted exhaust gas volume, V, shall be corrected to standard conditions according to the following equation:

$$V_{\text{mix}} = V \times K_1 \times \left(\frac{P_B - P_1}{T_p}\right) \tag{2}$$

where:

$$K_1 = \frac{273.15 \text{ (K)}}{101.325 \text{ (kPa)}} = 2.6961$$
 (3)

 P_{B} is the test room barometric pressure, kPa;

- P₁ is the vacuum at the inlet to the positive displacement pump relative to the ambient barometric pressure, -kPa;
- T_p is the average temperature of the diluted exhaust gas entering the positive displacement pump during the test, Kelvin (K).
- 3. Mass emissions
- 3.1. General requirements
- 3.1.1. Assuming no compressibility effects, all gases involved in the engine's intake, /combustion and /exhaust processes can be considered to be ideal according to Avogadro's hypothesis.
- 3.1.2.[SMD526] The mass M, of gaseous compounds emitted by the vehicle during the test shall be determined by obtaining the product of the volumetric concentration of the gas in question and the volume of the diluted exhaust gas with due regard for the following densities under the reference conditions of 273.15 K 0 °C) SMD527 SMD528 SMD529 and 101.325 kPa: | SMD530 SMD531

```
Carbon monoxide (CO)  \rho = 1.25 \text{ g/l}  Carbon dioxide (CO<sub>2</sub>)  \rho = 1.964 \text{ g/l}
```

Hydrocarbons:

```
for petrol (E0) (C_1H_{1.85}) \rho = 0.619 \text{ g/1}
for petrol (E5) (C_1H_{1.89}O_{0.016}) \rho =
```

0.632 SMD532 0.631 g/1

```
\begin{array}{lll} & & \underline{\text{for petrol (E10) (C}_1 \underline{\text{H}}_{1.93}} \underline{\text{O}}_{0.033} \underline{\text{SMD533]}}) & \rho = 0.\underline{\text{646}} \underline{\text{SMD534]}} \underline{\text{g/l}} \\ & & \underline{\text{for diesel (B0) (C}_1 \underline{\text{H}}_{1.86})} & \rho = 0.620\underline{\text{0.619}} \, \text{g/l} \\ & & \underline{\text{for diesel (B5) (C}_1 \underline{\text{H}}_{1.86} \underline{\text{O}}_{0.005})} & \rho = 0.623\underline{\text{0.622}} \, \text{g/l} \\ & & \underline{\text{for diesel (B7) (C}_1 \underline{\text{H}}_{1.86} \underline{\text{O}}_{0.007})} & \rho = 0.625\underline{\text{g/l}} \\ & & \underline{\text{for LPG (C}_1 \underline{\text{H}}_{2.525})} & \rho = 0.649 \, \underline{\text{g/l}} \\ \end{array}
```

$$\begin{split} &\text{for NG/biomethane (CH_4)} & &\rho = 0.7160.714 \text{ g/l} \\ &\text{for ethanol (E85) (C$_1$H$_2.742.74$O$_0.385$)} & &\rho = 0.9340.932 \text{ g/l} \end{split}$$

Nitrogen oxides (NO_x) $\rho = 2.05 \text{ g/1}$ Nitrogen dioxide (NO₂) $\rho = 2.05 \text{ g/1}$ Nitrous oxide (N₂O) $\rho = 1.964 \text{ g/1}$

The density for NMHC mass calculations shall be equal to that of total hydrocarbons at 273.15 K (0 °C) and 101.325 kPa and is fuel-dependent. The density for propane mass calculations (see paragraph 3.5. in Annex 5) is 1.967 g/l at standard conditions. SMD5351

If a fuel type is not listed above, the density of that fuel shall be calculated using the equation described in paragraph 3.1.3. below. [SMD536]

3.1.3 SMD537 SMD538 SMD539 The general equation for the calculation of total hydrocarbon density for each reference fuel with an average composition of CxHyOz is as follows:

	$=\frac{MW_{c}+\frac{H}{C}\times MW_{H}+\frac{O}{C}\times MW_{O}}{V_{M}}$	(4)
отнс	=	(4)
where	<u>e:</u>	
<u>ρ_{της}</u>	is the density of total hydrocarbons and non	ı-methane
	hydrocarbons, g/l;	
$\underline{\hspace{1cm}}$ $\hspace{$	is the molar weight of carbon (12.011 g/mo	<u>1);</u>
$\underline{\hspace{1cm}}$ MW _H	is the molar weight of hydrogen (1.008 g/m	<u>ol);</u>
$\underline{\hspace{1cm}}$ MW $_{\mathrm{O}}$	is the molar weight of oxygen (15.999 g/mc	<u>ol);</u>
V_ <u>M</u>	is the molar volume of an ideal gas at 2' 101.325 kPa (22.413 l/mol);	73.15 K (0° C) and
H/C	is the hydrogen to carbon ratio for a specific	c fuel C _X H _Y O _Z ;
O/C	is the oxygen to carbon ratio for a specific f	fuel C _X H _Y O _Z .

- 3.2. Mass emissions calculation
- 3.2.1. Mass emissions of gaseous compounds <u>per test and per phase</u> shall be calculated using the following equations:

If the number of phases, n, per test is 1, M_i per test shall be calculated as follows:

$$\begin{split} M_i &= \frac{V_{mix} \times \rho_i \times KH \times C_i \times 10^{-6}}{d} \\ M_{i,test} &= \frac{V_{mix,test} \times \rho_i \times KH_{test} \times C_{i,test} \times 10^{-6}}{d_{test}} \end{split} \tag{35a}$$

If the number of phases, n, per test is >1, M_i per test shall be calculated as follows:

$$\begin{split} M_{i,phase} &= \frac{v_{mix,phase} \times \rho_i \times KH_{phase} \times C_{i,phase} \times 10^{-6}}{d_{phase}} \\ &\underline{(5b)} \\ M_{i,test} &= \frac{\sum_{phase=1}^{n} (M_{i,phase} \times d_{phase})}{\sum_{phase=1}^{n} d_{phase}} \\ &\underline{[SMD541](5c)} \end{split}$$

(In this case V_{mix} , KH, c_i , and d of the corresponding phase shall be used.)

where:

M_i is the mass emissions of compound (i) per test or phase, g/km;

V_{mix} is the volume of the diluted exhaust gas <u>per test or phase</u> expressed in litres per test/<u>phase</u> and corrected to standard conditions (273.15 K <u>(0 °C) [SMD542] [SMD543]</u> and 101.325 kPa);

 ho_i is the density of compound (i) in grams per litre at standard normal temperature and pressure (273.15 K (0 °C) [SMD544][SMD545] and 101.325 kPa);

KH is a humidity correction factor applicable only to the mass emissions of oxides of nitrogen (NO₂ and NO_x) per test or phase;

- C_i is the concentration of compound (i) <u>per test or phase</u> in the diluted exhaust gas expressed in_-ppm and corrected by the amount of the compound (i) contained in the dilution air;
- d is the distance driven over the corresponding WLTC, km;
- n is the number of phases of the corresponding WLTC...
- 3.2.1.1. The concentration of a gaseous compound in the diluted exhaust gas shall be corrected by the amount of the gaseous compound in the dilution air as follows:

$$C_{i} = C_{e} - C_{d} \times \left(1 - \frac{1}{DF}\right) \tag{46}$$

where:

- C_i is the concentration of gaseous compound (i) in the diluted exhaust gas corrected by the amount of gaseous compound (i) contained in the dilution air, ppm;
- C_e is the measured concentration of gaseous compound (i) in the diluted exhaust gas, ppm;
- C_d is the concentration of gaseous compound (i) in the dilution [SMD546]air-used for dilution, ppm;
- DF is the dilution factor.
- 3.2.1.1.1. The dilution factor, DF, shall be calculated is calculated [SMD547]as follows: [SMD548][SMD549][SMD550]

DF =
$$\frac{13.4}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 for petrol (E0, E5, E10) and diesel (-and B0)

$$DF = \frac{13.5}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}} \qquad \text{for diesel (B5} \underline{\text{and B7}})$$
 (5b7b)

$$DF = \frac{11.9}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}} \qquad \text{for LPG}$$
 (5e/7c)

$$DF = \frac{9.5}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}} \qquad \text{for NG/biomethane}$$
 (5d/7d)

$$DF = \frac{12.5}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}} \qquad \text{for ethanol (E85)}$$
 (5e/7e)

$$DF = \frac{35.03}{C_{H2O} - C_{H2O} - DF + C_{H2} \times 10^{-4}}$$
 for hydrogen for hydrogen (5e7f)

If a fuel type is not listed above, the DF for that fuel shall be calculated using the equations in paragraph 3.2.1.1.2. below. [SMD551]

If the manufacturer uses a DF which covers several phases, it shall calculate a DF using the average concentration of gaseous compounds for the phases concerned.

The average concentration of a gaseous compound shall be calculated by dividing the sum of the product of the concentration of each phase times its V_{mix} by the sum of each phase's V_{mix} SMD552

3.2.1.1.2. The general General equation for calculating the dilution factor $(DF)_x$ for each reference fuel with an average composition of $C_xH_yO_z$ is as follows: | | SMD553 SMD554|

$$DF = \frac{X}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 (68)

where:

$$X = 100 \times \frac{x}{x + \frac{y}{2} + 3.76\left(x + \frac{y}{4} - \frac{z}{2}\right)}$$
 (9)

where:

C_{CO2} is the concentration of CO₂ in the diluted exhaust gas contained in the sampling sample bag, -per -cent volume;

C_{HC} is the concentration of HC in the diluted exhaust gas contained in the sampling sample bag, ppm carbon equivalent;

C_{CO} is the concentration of CO in the diluted exhaust gas contained in the sampling sample bag, -ppm.

3.2.1.1.3. Methane measurement

3.2.1.1.3.1. For methane measurement using a GC-FID, NMHC is shall be calculated as follows:

$$C_{\text{NMHC}} = C_{\text{THC}} - (Rf_{\text{CH4}} \times C_{\text{CH4}}) \tag{710}$$

where:

C_{NMHC} is the corrected concentration of NMHC in the diluted exhaust gas, ppm carbon equivalent;

C_{THC} is the concentration of THC in the diluted exhaust gas, ppm carbon equivalent and corrected by the amount of THC contained in the dilution air;

C_{CH4} is the concentration of CH4 in the diluted exhaust gas, ppm carbon equivalent and corrected by the amount of CH4 contained in the dilution air;

Rf_{CH4} is the FID response factor to methane as defined in paragraph 5.4.3.2. of Annex_5.

3.2.1.1.3.2. For methane measurement using an NMC-FID, the calculation of NMHC depends on the calibration gas/method used for the zero/calibration adjustment.

The FID used for the THC measurement (without NMC) shall be calibrated with propane/air in the normal manner.

For the calibration of the FID in series with NMC, the following methods are permitted :

- (a) The calibration gas consisting of propane/air bypasses the NMC;
- (b) The calibration gas consisting of methane/air passes through the NMC.

It is strongly recommended to calibrate the methane FID with methane/air through the NMC.

In case (a), the concentration of CH₄ and NMHC shall be calculated as follows:

$$C_{\text{CH4}} = \frac{c_{\text{HC(w/NMC)}} - c_{\text{HC(w/oNMC)}} \times (1 - E_{\text{E}})}{r_{\text{h}} \times (E_{\text{E}} - E_{\text{M}})}$$
(811)

$$C_{\text{NMHC}} = \frac{c_{\text{HC(w/oNMC)}} \times (1 - E_{\text{M}}) - C_{\text{HC(w/NMC)}}}{E_{\text{E}} - E_{\text{M}}}$$
(912)

In case (b), the concentration of CH₄ and NMHC shall be calculated as follows:

$$C_{CH4} = \frac{c_{HC(w/NMC)} \times r_h \times (1 - E_M) - C_{HC(w/oNMC)} \times (1 - E_E)}{r_h \times (E_E - E_M)}$$
(1013)

$$C_{\text{NMHC}} = \frac{c_{\text{HC(w/oNMC)}} \times (1 - E_{\text{M}}) - c_{\text{HC(w/NMC)}} \times r_{\text{h}} \times (1 - E_{\text{M}})}{E_{\text{E}} - E_{\text{M}}}$$
(1114)

where:

 $C_{HC(w/NMC)}$ is the HC concentration with sample gas flowing through the NMC, ppm C;

 $C_{HC(w/oNMC)}$ is the HC concentration with sample gas bypassing the NMC, ppm C;

r_h is the methane response factor as determined per paragraph_5.4.3.2_of Annex 5;

E_M is the methane efficiency as determined per paragraph_3.2.1.1.3.3.1. below;

 E_E is the ethane efficiency as determined per paragraph_-3.2.1.1.3.3.2. below.

If $r_h < 1.05$, it may be omitted in equations 11, 13 and 148, 10 and 11.

3.2.1.1.3.3. Conversion efficiencies of the non-methane cutter, (NMC)

The NMC is used for the removal of the non-methane hydrocarbons from the sample gas by oxidizing all hydrocarbons except methane. Ideally, the conversion for methane is 0 per_-cent, and for the other hydrocarbons represented by ethane is 100 per_-cent. For the accurate measurement of NMHC, the two efficiencies shall be determined and used for the calculation of the NMHC emission.

3.2.1.1.3.3.1. Methane conversion efficiency

The methane/air calibration gas shall be flowed to the FID through the NMC and bypassing the NMC and the two concentrations recorded. The efficiency shall be determined as follows:

$$E_{\rm M} = 1 - \frac{c_{\rm HC(w/NMC)}}{c_{\rm HC(w/oNMC)}}$$
 (1215)

where:

 $C_{HC(w/NMC)}$ is the HC concentration with CH_4 flowing through the NMC, -ppm C;

 $C_{HC(w/oNMC)}$ is the HC concentration with CH_4 bypassing the NMC,_ppm_-C.

3.2.1.1.3.3.2. Ethane conversion efficiency, E_E

The ethane/air calibration gas shall be flowed to the FID through the NMC and bypassing the NMC and the two concentrations recorded. The efficiency shall be determined as follows:

$$E_{E} = 1 - \frac{c_{HC(w/NMC)}}{c_{HC(w/oNMC)}}$$
 (1316)

where:

 $C_{HC(w/NMC)}$ is the HC concentration with C_2H_6 flowing through the NMC, ppm C;

 $C_{HC(w/oNMC)}$ is the HC concentration with C_2H_6 bypassing the NMC₂ in ppm C. [SMD555] [SMD556]

If the ethane conversion efficiency of the NMC is 0.98 or above, E_E shall be set to 1 for any subsequent calculation.

3.2.1.1.3.4. If the methane FID is calibrated through the cutter, then E_M is 0.

Equation (1013) from above becomes:

$$C_{CH4} = C_{HC(w/NMC)} \tag{1417}$$

Equation (1114) from above becomes:

$$C_{\text{NMHC}} = C_{\text{HC(w/oNMC)}} - C_{\text{HC(w/NMC)}} \times r_{\text{h}}$$
 (4518)

The density used for NMHC mass calculations shall be equal to that of total hydrocarbons at 273.15 K (0 °C) [SMD557][SMD558] and 101.325 kPa and is fuel-dependent.

3.2.1.1.4. Flow—weighted average concentration calculation

The following calculation method shall only be applied for CVS systems that are not equipped with a heat exchanger or for CVS systems with a heat exchanger that do not comply with paragraph 3.3.5.1. of Annex 5.

When the CVS flow rate, q_{VCVS} over the test varies <u>by</u> more than ± 3 per cent of the average flow rate, a flow—weighted average shall be used for all continuous diluted measurements including PN:

$$C_{e} = \frac{\sum_{i=1}^{n} q_{VCVS}(i) \times \Delta t \times C(i)}{V}$$
 (1619)

where:

C_e is the flow-weighted average concentration;

 $q_{VCVS}(i)$ is the CVS flow rate at time $t = i \times \Delta t$, m³/min;

C(i) is the concentration at time $t = i \times \Delta t$, ppm;

Δt sampling interval, seconds (s);

V total CVS volume, m³.

3.2.1.2. Calculation of the NO_x humidity correction factor

In order to correct the influence of humidity on the results of oxides of nitrogen, the following calculations apply:

$$KH = \frac{1}{1 - 0.0329 \times (HH_{a} - 10.71)} \tag{1.720}$$

where

$$HH_{\frac{1}{a}} = \frac{6.211 \times R_a \times P_d}{P_B - P_d \times R_a \times 10^{-2}}$$
 (1821)

and:

HH_a is the <u>specificabsolute</u> humidity, grams of water <u>vapour</u> per kilogram of ______dry air;

R_a is the relative humidity of the ambient air, per_cent;

P_d is the saturation vapour pressure at ambient temperature, kPa;

P_B is the atmospheric pressure in the room, kPa.

The KH factor shall be calculated for each phase of the test cycle.

The ambient temperature and relative humidity shall be defined as the average of the continuously measured values during each phase.

3.2.1.3. Determination of NO₂ concentration from NO and NO_x

NO₂ is shall be determined by the difference between NO_x concentration from the bag corrected for dilution air concentration and NO concentration from continuous measurement corrected for dilution air concentration

- 3.2.1.3.1. NO concentrations
- 3.2.1.3.1.1. NO concentrations shall be calculated from the integrated NO analyser reading, corrected for varying flow if necessary.
- 3.2.1.3.1.2. The average NO concentration is calculated as follows:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} C_{N0} \cdot dt}{t_{2} - t_{1}}$$
 (1922)

where:

 $\int_{t_1}^{t_2} C_{NO} dt \qquad \text{is the integral of the recording of the } \frac{\text{continuous dilute } \text{modal}}{\text{NO analyser over the test } (t_2-t_1);} \\ \frac{\text{[SMD559][SMD560][SMD561][SMD562][SMD564][SMD565]}}{\text{[SMD563][SMD564][SMD565]}}$

C_e is the concentration of NO measured in the diluted exhaust, ppm;

- 3.2.1.3.1.3. Dilution air concentration of NO <u>is-shall be</u> determined from the dilution air bag. <u>A Cc</u>orrection <u>is-shall be</u> carried out according to paragraph 3.2.1.1. of this Annex.
- 3.2.1.3.2. NO₂ concentrations
- 3.2.1.3.2.1. Determination NO₂ concentration from direct diluted measurement
- 3.2.1.3.2.2. NO₂ concentrations shall be calculated from the integrated NO₂ analyser reading, corrected for varying flow if necessary.
- 3.2.1.3.2.3. The average NO₂ concentration is shall be calculated as follows:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} c_{NO_{2}} dt}{t_{2} - t_{1}}$$
 (2023)

where:

C_e is the concentration of NO₂ measured in the diluted exhaust, ppm.

3.2.1.3.2.4. Dilution air concentration of NO₂ is shall be determined from the dilution air bags. Correction is carried out according to paragraph_-3.2.1.1. of this Annex.

- 3.2.2. Determination of the HC mass emissions from compression-ignition engines
- 3.2.2.1. To calculate HC mass emission for compression-ignition engines, the average HC concentration is calculated as follows:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} c_{HC} \cdot dt}{t_{2} - t_{1}}$$
 (2124)

where:

 $\int_{t_1}^{t_2} C_{HC} dt$ is the integral of the recording of the heated FID over the test (t₁ to t₂);

 C_e is the concentration of HC measured in the diluted exhaust in ppm of C_i and is substituted for C_{HC} in all relevant equations.

- 3.2.2.1.1. Dilution air concentration of HC shall be determined from the dilution air bags. Correction shall be carried out according to paragraph 3.2.1.1. of this Annex.
- 3.2.3. Fuel consumption and CO₂ calculations [SMD571] for individual vehicles in an CO₂ interpolation vehicle [SMD572] family
- 3.2.3.1. Fuel consumption and SMD5731CO₂ emissions without using the interpolation method

The CO₂ value, as calculated in paragraph 3.2.1. above and FC, as calculated according to paragraph 6 of this Annex, shall be attributed to all individual vehicles in the interpolation family and the CO₂ interpolation method shall not be applicable. If the road load and emissions have been not been measured on test vehicle L in addition to test vehicle H, the value M_{CO₂}, as calculated in paragraph 3.2.1. above, shall be attributed to all individual vehicles in the CO₂ vehicle SMD574 family and the CO₂ interpolation method is not applicable.

3.2.3.2. Fuel consumption and [SMD575]CO₂ emissions using the interpolation method

The CO₂ emissions and the fuel consumption for each individual vehicle in the interpolation family may be calculated according to the CO₂ interpolation method outlined in paragraphs 3.2.3.2.1. to 3.2.3.2.5. inclusive. If the road load and emissions are measured on test vehicles L and H, the CO₂ emission for each individual vehicle in the CO₂ vehicle[SMD576] family may be calculated according to the CO₂ interpolation method outlined in the following paragraphs.

3.2.3.2.1. Determination of <u>fuel consumption and [SMD577]</u>CO₂ emissions<u>of</u> test vehicles L and H

The mass of CO_2 emissions, M_{CO_2} , for of test vehicles L and H shall be determined according to the calculations in paragraph 3.2.1. above for the individual cycle phases p of the applicable WLTC applicable for the class of the CO_2 vehicle [SMD579] family [SMD580] [SMD581] and are referred to as $M_{CO_2-L,p}$ and $M_{CO_2-H,p}$ respectively. Fuel consumption for individual cycle phases of the applicable WLTC shall be determined according to paragraph 6 of this Annex and are referred to as $FC_{L,p}$ and $FC_{H,p}$ respectively.

- 3.2.3.2.2. Road load calculation for an individual vehicle
- 3.2.3.2.2.1. SMD582 SMD583 Mass of an SMD584 SMD585 SMD586 the individual vehicle

The selected test masses of vehicles H and L TM_L and TM_H as determined in paragraph 4.2.1.3.1. of Annex 4 shall be used as input for the interpolation method. [SMD587][SMD588]

 $\underline{TM_{ind}}$, in kg, shall be the individual test mass of the vehicle according to paragraph $\underline{[XXX]SMD589]}$ [to be determined: "test mass of the vehicle"] of II. text of the global technical regulation. The mass of the optional equipment m_0 shall be calculated for the individual vehicle according to the following equation:

$$m_0 = \sum_{i=1}^{n} \Delta m_i$$
 (22) [SMD590]

where:

m_a is the difference in mass between the individual vehicle and TM_L;

Δm_t is the mass of an individual option i on the vehicle (Δm_t is positive for an option that adds mass with respect to TM_L and vice versa);

n is the number of options that are different between the individual vehicle and test vehicle L.

The value of m_{θ} for test vehicle H shall be the same as the difference between TM_{H} and TM_{L} .

The mass of the individual vehicle is calculated according to the following equation:

$$TM_{ind} = TM_L + m_{\alpha} \tag{23}$$

where TM_{ind} is the mass of the individual vehicle used as input for the CO₂ interpolation method.

If the same test mass $\frac{\text{was-is}}{\text{Is}}$ used for test vehicles L and H, the value of TM_{ind} shall be set to the mass of test vehicle H $\frac{\text{TM}_{\text{H}}}{\text{H}}$ for the interpolation method.

3.2.3.2.2.2. Rolling resistance of anthe individual vehicle [SMD591] [SMD592] [SMD593]

According to paragraph 4.2.2.1. of Annex 4, the The actual rolling resistance values for the selected tyres on test vehicle L, RR_L , and test vehicle H, RR_H , shall be used as input for the interpolation method. See Annex 4, paragraph 4.2.2.1.

If the tyres on the front and rear axles of vehicle L or H have different rolling resistance values, the weighted average of the rolling resistances shall be calculated using the following equation:

$$RR_{x_{[CL594][SMD595]}} = RR_{x,FA} * mp_{x,FA} + RR_{x,RA} * (1 - mp_{x,FA})$$
 (25)

where:

RR_{x,FA} is the rolling resistance of the front axle tyres, kg/tonne;

RR_{x,RA} is the rolling resistance of the rear axle tyres, kg/tonne;

mp_{x.FA} is the percentage of the vehicle mass on the front axle CL596];

x represents vehicle L, H or an individual vehicle.

For the tyres fitted to an individual vehicle, the value of the rolling resistance RR_{ind} shall be set to the class value of the applicable tyre rolling resistance class, according to Table A4/1of Annex 4.

If the tyres have different rolling resistance class values on the front and the rear axle, the weighted average shall be used, calculated with the equation above.

If the same tyres were fitted to test vehicles L and H, the value of RR_{ind}for the interpolation method shall be set to RR_H.

For the tyres fitted to the individual vehicle, the value of the rolling resistance RR_{ind} shall be set to the class value of the applicable tyre rolling resistance class, according to Table A4/1of Annex 4.

If the same tyres were fitted to test vehicles L and H, the value of RR_{ind} for the interpolation method shall be set to RR_{II}

3.2.3.2.2.3. [SMD597] Aerodynamic drag of anthe [SMD598] [SMD599] individual vehicle

The aerodynamic drag shall be measured for each of the drag—influencing options and body shapes in a at a certified [SMD600][SMD601]—wind tunnel fulfilling the requirements of paragraph 3.2. of Annex 4 verified by the responsible authority.

The responsible authority shall verify if the wind tunnel facility is qualified to accurately determine the $\Delta(C_d \times \Lambda_f)$ for options and/or body shapes that differ between test vehicle L and H. If the wind tunnel facility is not qualified, the $C_d \times \Lambda_f$ for vehicle H shall apply for the whole CO_2 vehicle family. The aerodynamic drag of options on the exterior of the individual vehicle shall be calculated according to the following equation:

Any aerodynamic differences, $\Delta(C_D \times A_f)$, between vehicles L, H and/or an individual vehicle shall be determined with an accuracy of 0.015 m².

 $\Delta(C_D \times A_f)$ may be calculated according to the following equation maintaining the accuracy of 0.015 m² also for the sum of options and body shapes:

$$\frac{\Delta[C_d \times A_f]_{ind}}{\Delta(C_D \times A_f)_{ind}} = \sum_{i=1}^n \Delta(C_D \times A_f)_i \frac{\Delta[C_d \times A_f]_i}{\Delta(C_d \times A_f)_i}$$
(2426)

where:

 C_{dD} is the aerodynamic drag coefficient; A_f is the frontal area of the vehicle, m^2 ;

n is the number of options on the vehicle that are different between an individual vehicle and test vehicle L.

 $\Delta(C_D \times A_f)_{ind} \underline{\Delta[C_d \times A_f]_{ind}} \qquad \text{is the difference in aerodynamic drag} \\ \text{between } \underline{anthe} \text{ individual vehicle and } \underline{the} \text{ test vehicle } L_7 \text{ due to} \\ \text{options on the vehicle that differ from those installed on } \underline{the} \\ \text{test vehicle } L_7 - m^2;$

 $\Delta(C_d \times A_f)_i \underline{A[C_d \times A_f]_i}$ is the <u>difference in aerodynamic drag difference due to by</u> an individual feature, ii. on the vehicle <u>and $(\Delta[C_d \times A_f]_i)$ </u> is positive for an option that adds aerodynamic drag with respect to test vehicle L and vice versa, -m²;

The sum of all $\Delta(C_D \times A_f)_i$ different between test vehicles L and H shall correspond to the total difference between test vehicles L and H and is referred to as $\Delta(C_D \times A_f)_{LH}$ [SMD602]

The increase or decrease of the aerodynamic drag expressed as $\Delta(C_D \times A_f)$ for all of the optional equipment and body shapes in the interpolation family which:

(a) has an influence on the aerodynamic drag of the vehicle, and

(b) is to be included in the interpolation,

shall be recorded.

The aerodynamic drag of vehicle H shall be applied to the whole interpolation family and $\Delta(C_D*A_f)_{LH}$, defined below, shall be set to zero, if:

(a) the wind tunnel facility is not able to accurately determine $\Delta(C_D * A_f)$;

(b) there are no drag influencing options between the test vehicles H and L that shall be included in the interpolation method.

 $\Delta(C_D*A_f)_{LH}$, m^2 , is the difference in aerodynamic drag of the test vehicle H compared to test vehicle L and shall be recorded [SMD603]

n is the number of options on the vehicle that are different between the individual and the test vehicle L.

The sum of all $\Delta[C_d \times \Lambda_f]_{\downarrow}$ between options installed on the test vehicles L and H shall correspond to the total difference between the $C_d \times \Lambda_f$ values for the test vehicles L and H, referred to as $\Delta[C_d \times \Lambda_f]_{L.H.}$

The sum of all $\Delta[C_d \times A_f]_1$, expressed as Δf_2 , between options installed on the test vehicles L and H shall correspond to the difference in f_2 between the test vehicles L and H.

If the same options on the vehicle were also installed on test vehicles L and H, the value of $\Delta[C_d \times A_f]_{ind}$ for the interpolation method shall be set to zero.

3.2.3.2.2.4. Calculation of road load for individual vehicles in the CO₂ interpolationvehicle family SMD604 SMD605 SMD606 SMD607

The road load coefficients f_0 , f_1 and f_2 (as defined in of Annex 4) for the [SMD608][SMD609]test vehicles H and L are referred to as $f_{0,H}$, $f_{1,H}$ and f_{2,H_2} and $f_{0,L}$, $f_{1,L}$ and f_{2,L_2} -respectively. An adjusted road load curve for the test vehicle L is defined as follows:

$$F_{L}(v) = f_{0,L}^* + f_{1,H} \times v + f_{2,L}^* \times v^2$$
 [SMD610] [SMD611] (2527)

Applying the least squares regression method in the range of the reference speed points SMD612 SMD613 SMD614 SMD615, adjusted road load coefficients $f_{0,L}^*$ and $f_{2,L}^*$ shall be determined for $F_L(v)$ with the linear coefficient $f_{1,L}^*$ set to $f_{1,H}$. The road load coefficients $f_{0,ind}$, $f_{1,ind}$ and $f_{2,ind}$ for anthe individual vehicle in the CO_2 interpolation vehicle [SMD616] family are calculated as follows:

$$f_{0,ind} = f_{0,H} - \Delta f_0 \times \frac{(TM_H \times RR_H - TM_{ind} \times RR_{ind})}{(TM_H \times RR_H - TM_L \times RR_L)}$$
(2628)

or, if $(TM_H \times RR_H - TM_L \times RR_L) = 0$, equation 29 [SMD617]below shall apply:

$$f_{0,ind} = f_{0,H} - \Delta f_0 \tag{2729}$$

$$f_{1,ind} = f_{1,H}$$
 (2830)

$$f_{2,ind} = f_{2,H} - \Delta f_2 \frac{(\Delta [C_d \times A_f]_{LH} - \Delta [C_d \times A_f]_{ind})}{(\Delta [C_d \times A_f]_{LH})}$$
(2931)

or, if $\Delta(C_d \times A_f)$ LH $\Delta(C_d \times A_f)$ LH = 0, equation 32[SMD618] below shall apply:

$$f_{2,ind} = f_{2,H} - \Delta f_2$$
 (3032)

where:

$$\Delta f_0 = f_{0,H} - f_{0,L}^* \tag{3433}$$

$$\Delta f_2 = f_{2H} - f_{2L}^* \tag{3234}$$

3.2.3.2.3.3.2.3.2.2.5. Calculation of cycle energy per phase [SMD619]

The cycle energy demand, $E_{k,p}$, and distance, $d_{c,p}$, per cycle phase, p_{\perp} applicable for individual vehicles in the CO_2 interpolation vehicle [SMD620] family shall be calculated according to the procedure in paragraph 5. of this Annex [SMD621], for the following sets k of road load coefficients and masses:

k=1:
$$f_0 = f_{0,L}^*$$
, $f_1 = f_{1,H}$, $f_2 = f_{2,L}^*$, $m = TM_L$ (3335)
(test vehicle L)

k=2:
$$f_0 = f_{0,H}^*$$
, $f_1 = f_{1,H}$, $f_2 = f_{2,H}^*$, $m = TM_H$ [SMD622][SMD623][SMD624][SMD625] (3436)

(test vehicle H)

k=3: $f_0 = f_{0,ind}$, $f_1 = f_{1,H}$, $f_2 = f_{2,ind}^*$, $m = TM_{ind}$ [SMD626][SMD627] [SMD628][SMD629][SMD630][SMD631][SMD632] (3-537)

(an SMD633 SMD634 individual vehicle in the CO₂ interpolation vehicle (SMD635) e family)

3.2.3.2.4.3.2.3.2.3.2.6[SMD636].[SMD637] Calculation of the CO₂ value for an individual vehicle <u>usingby</u> the CO₂ interpolation method <u>ISMD638</u>[SMD639]

For each cycle phase, p, of the WLTC applicable for individual vehicles in the CO_2 interpolation vehicle [SMD640]—family, the contribution to the total mass of CO_2 for an the individual vehicle shall be calculated as follows:

$$M_{\text{CO}_2-\text{ind},p} = M_{\text{CO}_2-\text{L},p} + \left(\frac{E_{3,p}-E_{1,p}}{E_{2,p}-E_{1,p}}|\text{SMD641}]\right) \times \left(M_{\text{CO}_2-\text{H},p} - M_{\text{CO}_2-\text{L},p}\right) \left(\frac{3638}{2}\right)$$

The terms E_{1,p_a} $E_{2,p}$ and $E_{3,p}$ are defined in paragraph 3.2.3.2.3. above. SMD642

The CO_2 mass emissions attributed to the an individual vehicle of the CO_2 interpolation vehicle [SMD643] family, M_{CO_2-ind} , shall be calculated by the following equation for all of the applicable cycle phases, p:

$$M_{\text{CO}_2-\text{ind}} = \frac{\sum_{p} M_{\text{CO}_2-\text{ind},p} \times d_{c,p}}{\sum_{p} d_{c,p}}$$
 (3739)

3.2.3.2.5. SMD644 SMD645 SMD646 SMD647 Calculation of the fuel consumption, FC, yalue for an individual vehicle using the energy interpolation method

For each cycle phase p of the WLTC applicable for individual vehicles in the CO₂ interpolation family, the contribution to the FC for an individual vehicle shall be calculated as follows:

$$_{\rm LFC_{ind,p}} = {\rm FC_{L,p}} + \left(\frac{E_{3,p} - E_{1,p}}{E_{2,p} - E_{1,p}}\right) \times \left({\rm FC_{H,p} - FC_{L,p}}\right)$$
 [SMD648]

The terms $E_{1,p}$, $E_{2,p}$ and $E_{3,p}$ are defined in paragraph 3.2.3.2.3. above. SMD649

The fuel consumption, FC_{ind} attributed to an individual vehicle of the CO₂ interpolation family, FC_{ind}, shall be calculated for all applicable cycle phases using the following equation SMD650]:

$$FC_{\text{ind}} = \frac{\sum_{p} FC_{\text{ind},p} \times d_{c,p}}{\sum_{p} d_{c,p}}$$
 [SMD651].

for all of the applicable cycle phases p[SMD652].

3.3.3.3 Mass of particulate emissions

3.3.1. Calculation of particulate mass [SMD653][SMD654] emissions using the double dilution method [SMD655][SMD657][SMD658][SMD659]

Particulate emission M_p (g/km) is calculated as follows:

$$M_{p} = \frac{(V_{mix} + V_{ep}) \times P_{e}}{V_{ep} \times d}$$
 (3840)

where exhaust gases are vented outside tunnel;

and:

$$M_{p} = \frac{v_{\text{mix}} \times P_{e}}{v_{ep} \times d}$$
 (3941)

where exhaust gases are returned to the tunnel;

where:

 V_{mix} is the volume of diluted exhaust gases (see paragraph 2. of this Annex), under standard conditions;

V_{ep} is the volume of diluted exhaust gas flowing through the particulate filter under standard conditions;

P_e is the <u>mass of particulate matter particulate mass</u>[SMD660] [SMD661] collected by one or more filters, mg;

d is the distance corresponding to the operating cycle, km.;

M_p is the particulate [SMD662]emission, g[SMD663]/km.

3.3.1.1. Where correction for the PM_particulate [SMD664]background level from the dilution system has been used, this shall be determined in accordance with paragraph_-1.2.1.3.1. of Annex_-6. In this case, PM_the_particulate_mass (mg[SMD665]/km[SMD666]) shall be calculated as follows:

$$M_{p} = \left\{ \frac{P_{e}}{V_{ep}} - \left[\frac{P_{a}}{V_{ap}} \times \left(1 - \frac{1}{DF} \right) \right] \right\} \times \frac{(V_{mix} + V_{ep})}{d}$$
 (4042)

in the case where exhaust gases are vented outside tunnel;

$$M_{p} = \left\{ \frac{P_{e}}{V_{ep}} - \left[\frac{P_{a}}{V_{ap}} \times \left(1 - \frac{1}{DF} \right) \right] \right\} \times \frac{(V_{mix})}{d}$$

$$(41\underline{43})$$

in the case where exhaust gases are returned to the tunnel;

where:

V_{ap} is the volume of tunnel air flowing through the background particulate filter under standard conditions;

P_a is the particulate mass of the dilution air, or the dilution tunnel background air, as determined by the one of the methods described in paragraph 1.2.1.3.1. of Annex 6; is the rolling average of the particulate mass collected from the dilution tunnel as specified in this gtr up to a maximum equivalent of 1mg/km at the same CVS and particulate sampling flow rates; SMD667 SMD668 SMD669 SMD670

DF is the dilution factor determined in paragraph -3.2.1.1.1. of this Annex.

Where application of a background correction results in a negative result, it particulate mass (in g/km), SMD671]the result SMD672]shall be considered to be zero m[SMD673]g/km, particulate mass.

3.3.2. Calculation of PMparticulate mass emissions [SMD674] [SMD675] using the double dilution method

$$V_{\rm ep} = V_{\rm set} - V_{\rm ssd} \tag{4244}$$

where:

V_{ep} is the volume of diluted exhaust gas flowing through the particulate filter under standard conditions;

V_{set} is the volume of the double diluted exhaust gas passing through the particulate collection filters under standard conditions SMD676;

V_{ssd} is the volume of the secondary dilution air <u>under standard conditions</u>.

Where the secondary diluted PM sample gas is not returned to the tunnel, the CVS volume shall be calculated as in single dilution, i.e.:

$$V_{\text{mix}} = V_{\text{mix indicated}} + V_{\text{ep}} \tag{4345}$$

where:

4.[SMD677] Determination of particle numbers

4.1. <u>The number of particle emissions</u> Number emission of particles shall be calculated by means of the following equation:

$$N = \frac{V \times k \times (\overline{C_s} \times \overline{f_r} - C_b \times \overline{f_{rb}}) \times 10^3}{d}$$
 (4446)

where:

N is the particle number emission, particles per kilometre;

V is the volume of the diluted exhaust gas in litres per test (after primary dilution only in the case of double dilution) and corrected to standard conditions (273.15 K (0 °C) SMD679 and 101.325 kPa);

- k is a calibration factor to correct the particle number counter measurements to the level of the reference instrument where this is not applied internally within the particle number counter. Where the calibration factor is applied internally within the particle number counter, the calibration factor shall be 1;
- is the corrected concentration of particles from the diluted exhaust gas expressed as -the average number of particles per cubic centimetre figure from the emissions test including the full duration of the drive cycle. If the volumetric mean concentration results, (\overline{C}) , from the particle number counter are not measured at standard conditions (273.15_-K (0 °C) [SMD680][SMD681] and 101.325 kPa), the concentrations shall be corrected to those conditions, (\overline{C}_{\bullet}) ;
- C_b is either the dilution air or the dilution tunnel background particle concentration, as permitted by the responsible authority, in particles per cubic centimeter, corrected for coincidence and to standard conditions (273.15 K (0 °C) SMD682 SMD683 and 101.325 kPa);
- $\overline{\mathbf{f}_{r}}$ is the mean particle concentration reduction factor of the volatile particle remover at the dilution setting used for the test;
- $f_{rb} f_{rb}$ is the mean particle concentration reduction factor of the volatile particle remover at the dilution setting used for the background measurement;
- d is the distance corresponding to the operating cycle, km

 \bar{C} shall be calculated from the following equation:

$$\bar{C} = \frac{\sum_{i=1}^{n} c_i}{n} \tag{4547}$$

where:

- C_i is a discrete measurement of particle concentration in the diluted gas exhaust from the particle counter; particles per cubic centimetre and corrected for coincidence;
- n is the total number of discrete particle concentration measurements made during the operating cycle and shall be calculated using the following equation:

$$n = Tt \times f \tag{4648}$$

where:

- **Tt** is the time duration of the operating cycle, s;
- f is the data logging frequency of the particle counter, Hz.
- Calculation of cycle energy demand

Unless otherwise specified, the calculation shall be based B[SMD684]asis of the calculation is theon the target speed trace given in discrete time sample points_t, between t_{start} and t_{end}. In case of the class 2 and class 3 cycles, t_{start} = 0 s and t_{end} = 1800 s. For a specific cycle phase, t_{start} and t_{end} shall be taken from Annex 1. [SMD685]

For the calculation, each time sample point is shall be interpreted as a time period. Unless otherwise specified, Tthe duration Δt of these periods shall be 1 second depends on the sampling frequency (1 s for 1 Hz, 0.5 s for 2 Hz or 0.1 s for 10 Hz). [SMD686]

The total energy demand E for the whole cycle or a specific cycle phase shall be calculated by summing E_i over the corresponding cycle time between t_{start} and t_{end} according to the following equation:

$$E = \sum_{t_{start}}^{t_{end}} E_{i}$$
 (49)

where:

$$E_i = F_i \times d_i \qquad \text{if } F_i > 0 \tag{47a50}$$

$$E_i = 0 if F_i \le 0 (47b\underline{51})$$

and:

t_{start} is the time at which the applicable cycle or phase starts, s;

t_{end} is the time at which the applicable cycle or phase ends, s; [SMD687]

E_i is the energy demand during time period (i-1) to (i), Ws;

F_i is the driving force during time period (i-1) to (i), N;

d_i is the distance travelled during time period (i-1) to (i), m.

$$F_{i} = f_{0} + f_{1} \times \left(\frac{v_{i} + v_{i-1}}{2}\right) + f_{2} \times \frac{(v_{i} + v_{i-1})^{2}}{4} + (1.03 \times TM) \times a_{i}$$
 (4852)

where:

F_i is the driving force during time period (i-1) to (i), N;

v_i is the target velocity at time t_i km/h;

TM is the test mass, kg;

a_i is the acceleration during time period (i-1) to (i), m/s²;

 f_0 , f_1 , f_2 are the road load coefficients for the test vehicle under consideration (TM_L, TM_Hor TM_{ind}) in N, N/km/h and in N/(km/h)² respectively.

$$d_{i} = \frac{(v_{i} + v_{i-1})}{2 \times 3.6} \times (t_{i} - t_{i-1})$$
(4953)

where:

d_i is the distance travelled in time period (i-1) to (i), m;

v_i is the target velocity at time t_i, km/h;

t_i is time, s.

$$a_{i} = \frac{v_{i} - v_{i-1}}{3.6 \times (t_{i} - t_{i-1})} \tag{5054}$$

where:

a_i is the acceleration during time period (i-1) to (i), m/s²;

v_i is the target velocity at time t_i, km/h;

t_i is time, s.

6. Calculation of fuel consumption [SMD688] [SMD689]

- 6.1. The fuel characteristics required for the calculation of fuel consumption values shall be taken from Annex 3 in this gtrRegulation.
- 6.2. The fuel consumption values shall be calculated from the emissions of hydrocarbons, carbon monoxide, and carbon dioxide determined from the measurement results using the provisions defined in this <u>gtrRegulation</u>.
- 6.2.1. The general equation in paragraph 6.12 SMD690 using H/C and O/C ratios shall be used for the calculation of fuel consumption.
- 6.3. For a vehicle with a positive ignition engine fuelled with petrol (E0)

$$FC = \left(\frac{0.11550.1154}{\rho}\right) \times * \left[(0.866 \times * HC) + (0.429 \times * C0) + (0.273 \times * C0_2) \right]$$
(55a)

6.4. For a vehicle with a positive ignition engine fuelled with petrol (E5)

$$FC = \left(\frac{0.118}{\rho}\right) \times + \left[(0.848 \times + HC) + (0.429 \times + CO) + (0.273 \times + CO_2) \right]$$
(55b)

6.5. For a vehicle with a positive ignition engine fuelled with petrol (E10)

FC =
$$\left(\frac{0.1206}{\rho}\right) \times \left[\left(0.8290.830 \times \text{HC}\right) + \left(0.429 \times \text{CO}\right) + \left(0.273 \times \text{CO}_2\right)\right]$$
 (556)

6.6. For a vehicle with a positive ignition engine fuelled with LPG

$$FC_{norm} = \left(\frac{0.1212}{0.538}\right) \times * \left[(0.825 \times *HC) + (0.429 \times *CO) + (0.273 \times *CO_2) \right]$$

6.6.1. If the composition of the fuel used for the test differs from the composition that is assumed for the calculation of the normalised consumption, on the manufacturer's request a correction factor, cf, may be applied, as follows:

$$FC_{\text{norm}} = \left(\frac{0.1212}{0.538}\right) \times \text{-cf} \times \text{-} [(0.825 \times \text{-HC}) + (0.429 \times \text{-CO}) + (0.273 \times \text{-CO}_2)]$$

(55e)

The correction factor, cf, which may be applied, is determined as follows

$$\text{Cef} = 0.825 + 0.0693 \times n_{\text{actual}}$$
(55f)

where:

n_{actual} is the actual H/C ratio of the fuel used.

6.7. For a vehicle with a positive ignition engine fuelled with NG/biomethane

$$FC_{\text{norm}} = \left(\frac{0.1336}{0.654}\right) \times \left[(0.749 \times \text{HC}) + (0.429 \times \text{CO}) + (0.273 \times \text{CO}_2) \right]$$
(55g)

6.8. For a vehicle with a compression engine fuelled with diesel (B0)

$$FC = \left(\frac{0.11560.1155}{\rho}\right) \times * \left[(0.8650.866 \times *HC) + (0.429 \times *C0) + (0.273 \times *CO_2) \right]$$
(55h)

6.9. For a vehicle with a compression engine fuelled with diesel (B5)

$$FC = \left(\frac{0.11630.116}{\rho}\right) \times * \left[(0.8600.861 \times * HC) + (0.429 \times * C0) + (0.273 \times * C0_2) \right]$$
(55i)

6.10. For a vehicle with a compression engine fuelled with diesel (B7)

$$FC = \left(\frac{0.11659.116}{\rho}\right) \times + \left[\left(0.8580.859 \times + HC\right) + \left(0.429 \times + C0\right) + \left(0.273 \times + C0_2\right)\right] \tag{55j}$$

6.11. For a vehicle with a positive ignition engine fuelled with ethanol (E85)

$$FC = \left(\frac{0.17430.1742}{\rho}\right) \times * [(0.574 \times *HC) + (0.429 \times *C0) + (0.273 \times *CO_2)]$$
 (55k)

where for all equations in paragraph 6:

FC is fuel consumption in 1/100 km (or m³ per km in the case of natural gas); [SMD692][SMD693]

HC are the measured emissions of hydrocarbons, g/km;

CO are the measured emissions of carbon monoxide, g/km;

CO₂—are the measured emissions of carbon dioxide, g/km;

p is the density of the test fuel.

6.12. SMD694 SMD695 SMD696 Fuel consumption for any test fuel may be calculated using the following equation:

$$FC = \frac{{}^{MW_C} + {}^{H}_{C} \times {}^{MW_H} + {}^{O}_{C} \times {}^{MW_O}}{{}^{MW_C} \times {}^{O}_{fuel} \times {}^{10}} \times \left(\frac{{}^{MW_C}}{{}^{MW_C} + {}^{H}_{C} \times {}^{MW_H} + {}^{O}_{C} \times {}^{MW_O}} \times HC + \frac{{}^{MW_C}}{{}^{MW_{CO}}} \times CO + \frac{{}^{MW_C}}{{}^{MW_{CO}}} \times CO_2 \right)$$
(56)

6.13. SMD697 SMD698 Fuel consumption for vehicles fuelled by gaseous hydrogen:

_FC =
$$0.024 \times \frac{V}{d} \times \left(\frac{1}{Z_1} \times \frac{P_1}{T_1} - \frac{1}{Z_2} \times \frac{P_2}{T_2}\right)$$
____(57)

With approval of the responsible authority and for vehicles fuelled either with gaseous or liquid hydrogen, the manufacturer may choose to calculate fuel consumption using either the equation below or a method using a standard protocol such as SAE J2572.

$FC = 0.1 \times$	$(0.1119 \times H_2)$	$0 + H_2$	[SMD699]	[SMD700]	(58)

The compressibility factor, Z, shall be obtained from the following table:

		<u>T (K)</u>	_	_	_	_	_	_	_	_	_
		<u>5</u>	<u>100</u>	<u>200</u>	<u>300</u>	<u>400</u>	<u>500</u>	<u>600</u>	<u>700</u>	<u>800</u>	<u>900</u>
p (bar)	<u>33</u>	0.859	1.051	1.885	2.648	3.365	4.051	<u>4.712</u>	<u>5.352</u>	5.973	6.576
_	<u>53</u>	<u>0.965</u>	0.922	<u>1.416</u>	1.891	2.338	<u>2.765</u>	<u>3.174</u>	<u>3.57</u>	<u>3.954</u>	<u>4.329</u>
_	<u>73</u>	<u>0.989</u>	<u>0.991</u>	<u>1.278</u>	<u>1.604</u>	<u>1.923</u>	<u>2.229</u>	<u>2.525</u>	<u>2.810</u>	<u>3.088</u>	<u>3.358</u>
_	<u>93</u>	<u>0.997</u>	1.042	<u>1.233</u>	<u>1.470</u>	<u>1.711</u>	<u>1.947</u>	<u>2.177</u>	<u>2.400</u>	<u>2.617</u>	<u>2.829</u>
-	<u>113</u>	<u>1.000</u>	<u>1.066</u>	<u>1.213</u>	<u>1.395</u>	<u>1.586</u>	<u>1.776</u>	<u>1.963</u>	2.146	2.324	<u>2.498</u>
-	<u>133</u>	<u>1.002</u>	<u>1.076</u>	<u>1.199</u>	<u>1.347</u>	<u>1.504</u>	<u>1.662</u>	<u>1.819</u>	<u>1.973</u>	<u>2.124</u>	<u>2.271</u>
_	<u>153</u>	<u>1.003</u>	<u>1.079</u>	<u>1.187</u>	<u>1.312</u>	<u>1.445</u>	<u>1.580</u>	<u>1.715</u>	<u>1.848</u>	<u>1.979</u>	<u>2.107</u>
-	<u>173</u>	<u>1.003</u>	<u>1.079</u>	<u>1.176</u>	<u>1.285</u>	<u>1.401</u>	<u>1.518</u>	<u>1.636</u>	<u>1.753</u>	1.868	<u>1.981</u>
-	<u>193</u>	<u>1.003</u>	<u>1.077</u>	<u>1.165</u>	<u>1.263</u>	<u>1.365</u>	<u>1.469</u>	<u>1.574</u>	<u>1.678</u>	<u>1.781</u>	<u>1.882</u>
_	<u>213</u>	<u>1.003</u>	<u>1.071</u>	<u>1.147</u>	<u>1.228</u>	<u>1.311</u>	<u>1.396</u>	<u>1.482</u>	<u>1.567</u>	<u>1.652</u>	<u>1.735</u>
-	<u>233</u>	<u>1.004</u>	<u>1.071</u>	<u>1.148</u>	<u>1.228</u>	<u>1.312</u>	<u>1.397</u>	<u>1.482</u>	<u>1.568</u>	<u>1.652</u>	<u>1.736</u>
_	<u>248</u>	<u>1.003</u>	1.069	<u>1.141</u>	<u>1.217</u>	<u>1.296</u>	<u>1.375</u>	<u>1.455</u>	<u>1.535</u>	<u>1.614</u>	<u>1.693</u>
_	<u>263</u>	<u>1.003</u>	<u>1.066</u>	<u>1.136</u>	<u>1.207</u>	<u>1.281</u>	<u>1.356</u>	<u>1.431</u>	<u>1.506</u>	<u>1.581</u>	<u>1.655</u>
-	<u>278</u>	<u>1.003</u>	<u>1.064</u>	<u>1.130</u>	<u>1.198</u>	<u>1.268</u>	<u>1.339</u>	<u>1.409</u>	<u>1.480</u>	<u>1.551</u>	<u>1.621</u>
_	<u>293</u>	<u>1.003</u>	1.062	<u>1.125</u>	<u>1.190</u>	<u>1.256</u>	<u>1.323</u>	<u>1.390</u>	<u>1.457</u>	<u>1.524</u>	<u>1.590</u>
-	<u>308</u>	<u>1.003</u>	<u>1.060</u>	<u>1.120</u>	<u>1.182</u>	<u>1.245</u>	<u>1.308</u>	<u>1.372</u>	<u>1.436</u>	<u>1.499</u>	<u>1.562</u>
_	<u>323</u>	<u>1.003</u>	<u>1.057</u>	<u>1.116</u>	<u>1.175</u>	<u>1.235</u>	<u>1.295</u>	<u>1.356</u>	<u>1.417</u>	<u>1.477</u>	<u>1.537</u>
_	<u>338</u>	1.003	1.055	<u>1.111</u>	<u>1.168</u>	1.225	1.283	1.341	1.399	<u>1.457</u>	<u>1.514</u>
_	<u>353</u>	1.003	<u>1.054</u>	<u>1.107</u>	<u>1.162</u>	<u>1.217</u>	<u>1.272</u>	<u>1.327</u>	<u>1.383</u>	<u>1.438</u>	<u>1.493</u>

For all equations in paragraph 6:

FC is the fuel consumption of a specific fuel, 1/100 km (or m³ per 100 km in the case of natural gas or kg/100 km in the case of hydrogen);

H/C is the hydrogen to carbon ratio of a specific fuel $C_xH_yO_z$;

O/C is the oxygen to carbon ratio of a specific fuel $C_XH_YO_Z$;

MW_C is the molar weight of carbon (12.011 g/mol);

MW_H is the molar weight of hydrogen (1.008 g/mol);

MW_O is the molar weight of oxygen (15.999 g/mol);

 ρ_{fuel} is the test fuel density, kg/l. For gaseous fuels, fuel density at 15 °C;

HC are the measured emissions of hydrocarbon, g/km;

CO are the measured emissions of carbon monoxide, g/km;

CO₂ are the measured emissions of carbon dioxide, g/km;

H₂O are the measured emissions of water, g/km;

H₂ are the measured emissions of hydrogen, g/km;

- p₁ is the gas pressure in the fuel tank before the operating cycle, Pa;
- p₂ is the gas pressure in the fuel tank after the operating cycle, Pa;
- $\underline{T_1}$ is the gas temperature in the fuel tank before the operating cycle, K;
- $\underline{T_2}$ is the gas temperature in the fuel tank after the operating cycle, K;
- Z_1 is the compressibility factor of the gaseous fuel at p_1 and T_1 ;
- Z_2 is the compressibility factor of the gaseous fuel at p_2 and T_2 ;
- V is the interior volume of the gaseous fuel tank, m³.

Annex_-8

Pure and hybrid electric vehicles

1. General requirements

In the case of testing NOVC-HEV and OVC-HEV vehicles, Appendix_-2 -to this Annex replaces Appendix_-2 of Annex_-6.

1.1. Energy balance

The energy balance shall be the sum of the ΔE_{REESS} of all rechargeable electric energy storage systems (REESS), i.e. the sum of the RCB values multiplied by the respective nominal V_{REESS} for each REESS.

1.2. Electric energy consumption and range testing

Parameters, units and accuracy of measurements shall be as in Table A8/1.

Table A8/1

Parameters, units Units and accuracy Accuracy of measurements Measurements

Parameter	Units	Accuracy	Resolution
Electrical energy (1)	Wh	± 1 per cent	0.001 Wh ⁽²⁾
Electrical current	A	\pm 0.3 per cent FSD or \pm 1 per cent of reading ^(3,4)	0.01 A

⁽¹⁾ Equipment: static meter for active energy.

1.3. Emission and fuel consumption testing

Parameters, units and accuracy of measurements shall be the same as those required for conventional combustion engine-powered vehicles as found <u>inof</u> Annex 5. (test equipment and calibrations).

1.4. Measurement units and presentation of results

The accuracy of measurement units and the presentation of the results shall follow the indications given in Table A8/2.

AC watt-hour meter, Class 1 according to IEC 62053-21 or equivalent.

⁽³⁾ Whichever is greater.

⁽⁴⁾ Current integration frequency 10 Hz or more.

Table A8/2

Accuracy of measurement Measurement HUnits and Presentation of the FResults

Parameter	Units	Communication of test result
AER, AERcity	km	Rounded to nearest whole number
EAER	km	Rounded to nearest whole number
R_{CDA}	km	Rounded to nearest whole number
R_{CDC}	km	Rounded to nearest whole number
Distance	km Rounded to nearest whole number	
		for calculation purposes: 0.1 km
Electric energy consumption	Wh/km	Rounded to nearest whole number
NEC	Wh	Rounded to first decimal place
NEC ratio	per cent	Rounded to first decimal place
E _{AC} recharge <u>E energy from</u> the grid	Wh	Rounded to nearest whole number
FC correction factor	1/100 km/(Wh/km)	Rounded to 4 significant digits
CO ₂ correction factor	g/km/(Wh/km)	Rounded to 4 significant digits
Utility factor		Rounded to 3 decimal places

- 1.5. Type 1 test cycles to be driven according to Table A8/3.
- 1.5.1. All OVC-HEVs, NOVC-HEVs and PEVs with and without driver-selectable operating modes shall be classified as Class 3 vehicles.
- 1.5.1.1. OVC-HEV and PEV
- 1.5.1.1.1. WLTC test
- 1.5.1.1.1.1. Class 3a vehicles shall drive a cycle consisting of a low phase (Low₃), a medium phase (Medium₃₋₁), a high phase (High₃₋₁) and an extra high phase (Extra High₃).
- 1.5.1.1.1.2. Class 3b vehicles shall drive a cycle consisting of a low phase (Low₃), a medium phase (Medium₃₋₂), a high phase (High₃₋₂) and an extra high phase (Extra High₃).
- 1.5.1.1.1.3. At the option of the Contracting Party, the Extra High₃ phase may be excluded.
- 1.5.1.1.2. WLTC city test
- 1.5.1.1.2.1. Class 3a vehicles shall drive a cycle consisting of a low phase (Low₃) and a medium phase (Medium₃₋₁)
- 1.5.1.1.2.2. Class 3b vehicles shall drive a cycle consisting of a low phase (Low₃) and a medium phase (Medium₃₋₂)
- 1.5.1.2. NOVC-HEV
- 1.5.1.2.1. WLTC test

- 1.5.1.2.1.1. Class 3a vehicles shall drive a cycle consisting of a low phase (Low₃), a medium phase (Medium₃₋₁), a high phase (High₃₋₁) and an extra high phase (Extra High₃).
- 1.5.1.2.1.2. Class 3b vehicles shall drive a cycle consisting of a low phase (Low₃), a medium phase (Medium₃₋₂), a high phase (High₃₋₂) and an extra high phase (Extra High₃).
- 1.5.1.2.1.3. At the option of the Contracting Party, the Extra High₃ phase may be excluded.

Table A8/3

Test matrix Matrix

		WL	WLTP	
		Criteria Emissions, FC, CO ₂ , AER, EAER, R _{CDC} , R _{CDA} , E _{AC}	Criteria Emissions, FC, CO ₂	AERcity, E _{AC} city
		Charge-depleting	Charge-sustaining	Charge-depleting
OVC-HEV	Class 3a	Low ₃ + Medium ₃₋₁ + High ₃₋₁ + (Extra High ₃)	Low ₃ + Medium ₃₋₁ + High ₃₋₁ + (Extra High ₃)	Low ₃ + Medium ₃₋₁
	Class 3b	Low ₃ + Medium ₃₋₂ + High ₃₋₂ + (Extra High ₃)	Low ₃ + Medium ₃₋₂ + High ₃₋₂ + (Extra High ₃)	Low ₃ + Medium ₃₋₂
NOVC-HEV	Class 3a		Low ₃ + Medium ₃₋₁ + High ₃₋₁ + (Extra High ₃)	
	Class 3b		Low ₃ + Medium ₃₋₂ + High ₃₋₂ + (Extra High ₃)	
PEV	Class 3a	Low ₃ + Medium ₃₋₁ + High ₃₋₁ + (Extra High ₃)		Low ₃ + Medium ₃₋₁
	Class 3b	Low ₃ + Medium ₃₋₂ + High ₃₋₂ + (Extra High ₃)		Low ₃ + Medium ₃₋₂

- 1.6. OVC-HEVs. NOVC-HEVs and PEVs with manual transmissions shall be driven according to the manufacturer's instructions, as incorporated in the manufacturer's handbook of production vehicles and indicated by a technical gear shift instrument. [SMD701][SMD703]
- 2. REESS Preparation
- 2.1. For all OVC-HEVs, NOVC-HEVs, and PEVs with and without driver-selectable operating modes, the following shall apply:
 - (a) Without prejudice to the requirements of paragraph 1.2.3.3. of Annex 6, the vehicles tested to this Annex must have been driven at least 300 km with those batteries installed in the test vehicle;
 - (b) If the batteries are operated above the ambient temperature, the operator shall follow the procedure recommended by the <u>vehicle ear</u>

manufacturer in order to keep the temperature of the REESS in its normal operating range. The manufacturer shall provide evidence manufacturer's agent shall SMD7041 be in a position to demonstrate that the thermal management system of the REESS is neither disabled nor reduced.

- 3. Test procedure
- 3.1. General requirements
- 3.1.1. For all OVC-HEVs, NOVC-HEVs, and PEVs with and without driver-selectable operating modes, the following shall apply where applicable:
- 3.1.1.1. Vehicles shall be conditioned, soaked and tested according to the test procedures applicable to vehicles powered solely by a combustion engine described in Annex 6 to this gtr unless modified by this Annex.
- 3.1.1.2. If the vehicles cannot follow the speed trace, the acceleration control shall be fully activated until the required speed trace is reached again. Power to mass calculations and classification methods shall not apply to these vehicle types.
- 3.1.1.3. The vehicle shall be started by the means provided for normal use to the driver.
- 3.1.1.4. Exhaust emission sampling and electricity measuring shall begin for each test cycle before or at the initiation of the vehicle start up procedure and end <u>aton</u> the conclusion of each test cycle.
- 3.1.1.5. Emissions compounds shall be sampled and analysed for each individual WLTC phase when the combustion engine starts consuming fuel.
- 3.1.2. Forced cooling as per paragraph_1.2.7.2. of Annex 6 shall apply only for the charge-sustaining test and for the testing of NOVC-HEVs.
- 3.2. OVC-HEV, with and without driver-selectable operating modes
- 3.2.1. Vehicles shall be tested under charge-depleting. (CD) and charge-sustaining. (CS) conditions according to the cycles described in paragraph 1.5.1.1.1. of this Annex.
- 3.2.2. Vehicles may be tested according to four possible test sequences:
- 3.2.2.1. Option 1: charge-depleting test with a subsequent charge-sustaining test (CD + CS test).
- 3.2.2.2. Option 2: charge-sustaining test with a subsequent charge-depleting test (CS + CD test).
- 3.2.2.3. Option 3: charge-depleting test with no subsequent charge-sustaining test (CD test).
- 3.2.2.4. Option 4: charge-sustaining test with no subsequent charge-depleting test (CS test).

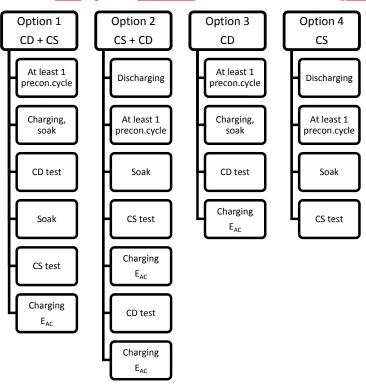


Figure A8/1

Possible test Test sequences Sequences in case of OVC-HEV testing Testing

- 3.2.3. The driver selectable operating mode switch shall be set according to the test conditions.
- 3.2.4. Charge depleting (CD) test with no subsequent charge sustaining (CS) test (option 3)
- 3.2.4.1. Preconditioning

The vehicle shall be prepared according to the procedures in Appendix 4, paragraph 2.2. of this Annex.

- 3.2.4.2. Test conditions
- 3.2.4.2.1. The test shall be carried out with a fully charged REESS according the charging requirements as described in paragraph 2.2.5. of Appendix 4 to this Annex.
- 3.2.4.2.2. Operation mode selection
- 3.2.4.2.2.1. The charge depleting CD test shall be performed in the highest electric energy consumption mode that best matches the driving cycle by using the most electric energy consuming mode that the driving cycle. If the vehicle cannot follow the trace, other installed propulsion systems shall be used to allow the vehicle to best follow the cycle. [SMD705][SMD706]
- 3.2.4.2.2.2. Dedicated driver-selectable modes such as "mountain mode" or "maintenance mode" which are not intended for normal daily operation but only for special limited purposes shall not be considered for eharge-depletingCD condition testing.

- 3.2.4.3. Type 1 test procedure
- 3.2.4.3.1. The charge-depletingCD test procedure shall consist of a number of consecutive cycles, each followed by a soak period until charge-sustainingCS operation is achieved.
- 3.2.4.3.2. During soaking between individual WLTCs, the key ignition [SMD707] switch shall be in the "OFFoff" position, and the REESS shall not be recharged from an external electric energy source. The RCB instrumentation shall not be turned off between test cycle phases. In the case of ampere-hour meter measurement, the integration shall remain active throughout the entire test until the test is concluded.

Restarting after soak, the vehicle shall be operated in the required driverselectable operation mode.

- 3.2.4.3.3. In deviation from paragraph 5.3.1. of Annex 5 and without prejudice to paragraph <u>-5.3.1.2.5.3.1.3.</u>, analysers may be calibrated and zero checked before and after the <u>charge depletingCD</u> test.
- 3.2.4.4. End of the charge depleting CD test

The end of the eharge depleting CD test is considered to have been reached at the end of WLTC n (defined as the transition cycle) when the break-off criterion eriteria during cycle n + 1 is reached for the first time.

- 3.2.4.4.1. For vehicles without charge-sustainingCS capability on the complete WLTC, end of test is reached by an indication on a standard on-board instrument panel to stop the vehicle, or when the vehicle deviates from the prescribed driving tolerance for-four-4 seconds or more. The acceleration controller shall be deactivated. The vehicle shall be braked to a standstill within 60 sixty seconds.
- 3.2.4.5. Break-off criterion criteria
- 3.2.4.5.1. The break-off <u>criterioneriteria</u> for the <u>charge-depletingCD</u> test is reached when the relative net energy change, NEC, as shown in the equation below is less than 4 per -cent.

NEC (%) =
$$\left(\frac{\text{RCB} \times \text{nominal REESS voltage}}{\text{test vehicle cycle energy demand, test vehicle}} \times 100\right) < 4\%$$
 (1)

where:

NEC is the net energy change, _-per_-cent;

RCB is the REESS charge balance, -Ah.;

<u>N</u>nominal REESS voltage is the voltage of an electrochemical system according to DIN EN 60050-482.

3.2.4.6. REESS charging and measuring electric energy consumption

The vehicle shall be connected to the mains within 120 minutes after the conclusion of the charge-depletingCD Type 1 test. The energy measurement equipment, placed before the vehicle charger, shall measure the charge energy, E_{AC}, delivered from the mains, as well as its duration. Electric energy measurement can be stopped when the state of charge after the CD_test is at least equal to the state of charge measured before the CD test. The state of charge can be determined by on-board or external instruments.

- 3.2.4.7. Each individual full WLTC within the charge depleting CD test shall fulfil the applicable exhaust emission limits according to paragraph 1.1.1.2. of Annex 6. SMD708 SMD709
- 3.2.5. CS test with no subsequent CD test (option 4)
- 3.2.5.1. Preconditioning

The vehicle shall be prepared according to the procedures in paragraph 2.1. of Appendix 4 to this Annex.

- 3.2.5.2. Test conditions
- 3.2.5.2.1. Tests shall be carried out with the vehicle operated in eharge-sustainingCS operation condition in which the energy stored in the REESS may fluctuate but, on average, is maintained at a charging neutral balance level while the vehicle is driven.
- 3.2.5.2.2. For vehicles equipped with a driver-selectable operating mode, the charge-sustainingCS test shall be performed in the charging balance neutral hybrid mode that best matches the target curve.
- 3.2.5.2.3. The profile of the state of charge of the REESS during different stages of the Type-1 test in CD and CS mode respectively is given in Appendices 1a and 1b.
- 3.2.5.2.4. Upon request of the manufacturer and with approval of the responsible authority, the manufacturer may set the start state of charge of the traction REESS for the charge-sustainingCS test.
- 3.2.5.3. Type-1 test procedure
- 3.2.5.3.1. If required by paragraph 4.2.1.3. of this Annex, CO₂, emissions and fuel consumption results shall be corrected according to the RCB correction as described in Appendix 2 of this Annex.
- 3.2.5.3.2. The <u>charge sustainingCS</u> test shall fulfil the applicable exhaust emission limits according to paragraph 1.1.1.2. of Annex 6.
- 3.2.6. CD test with a subsequent CS test (option 1)
- 3.2.6.1. The procedures for the CD test from paragraph 3.2.4.1. up to and including paragraph 3.2.4.5. inclusive of this Annex shall be followed.
- 3.2.6.2. Subsequently, the procedures for the CS test from paragraphs_-3.2.5.1. up to and including paragraph 3.2.5.3. inclusive- (except paragraph_-3.2.5.2.4.3.2.5.2.5.) in this Annex shall be followed.
- 3.2.6.3. REESS charging and measuring electric energy consumption

The vehicle shall be connected to the mains within 120 minutes after the conclusion of the charge sustaining CS Type_-1 test. The energy measurement equipment, placed before the vehicle charger, shall measure the charge energy, E, delivered from the mains, as well as its duration. Electric energy measurement may be stopped when the state of charge after the CS test is at least equal to the state of charge measured before the CD test. The state of charge shall be determined by on-board or external instruments.

- 3.2.7. CS test with a subsequent CD test (option 2)
- 3.2.7.1. The procedures for the CS test from paragraphs_-3.2.5.1. to paragraph_3.2.5.3. inclusive, and paragraph 3.2.6.3. in this Annex shall be followed.

3.2.7.2. Subsequently, the procedures for the CD test from paragraphs 3.2.4.3. to paragraph 3.2.4.7. inclusive of this Annex shall be followed. 3.2.8. Cycle energy demand 3.2.8.1. Cycle energy demand of the test vehicle shall be calculated according to paragraph 5. of Annex 7. 3.2.9. Electric range determination 3.2.9.1. The charge depleting CD test procedure as described in paragraph 3.2.4. of this Annex shall apply to electric range measurements. 3.2.9.2. All-electric range, (AER, AERcity) 3.2.9.2.1. The total distance travelled over the test cycles from the beginning of the charge depleting CD test to the point in time during the test when the combustion engine starts to consume fuel shall be measured. 3.2.9.2.2. At the option of the Contracting Party, the determination of AERcity may be excluded. 3.2.9.3. Equivalent all-electric range. (EAER) 3.2.9.3.1. The range shall be calculated according to paragraph 4.4.1.2. below. 3.2.9.4. Charge-depleting cycle range (R_{CDC}) 3.2.9.4.1. The distance from the beginning of the charge depleting CD test to the end of the last cycle prior to the cycle or cycles satisfying the break-off criteria shall be measured. This shall include the distance travelled during the transition cycle where the vehicle operates in both depleting and sustaining modes. H the charge depleting test possesses a transition range, the R_{CHC} shall include those transition cycles or cycles. [SMD710][SMD711] 3.2.9.5. Actual charge-depleting range (R_{CDA}) 3.2.9.5.1. The range shall be calculated according to paragraph 4.4.1.4. below. 3.3. NOVC-HEV, with and without driver-selectable operating modes Vehicles shall be tested under charge-sustaining (CS) conditions according to 3.3.1. the cycles described in paragraph 1.5.1.2.1. of this Annex. 3.3.2. Vehicle and REESS Conditioning 3.3.2.1. Alternatively, at the request of the manufacturer, the level of the state of charge of the traction REESS for the charge sustaining CS test may be set according to manufacturer's recommendation in order to achieve a charge balance neutral charge sustaining CS test. 3.3.3. Type 1 Test 3.3.3.1. If required by paragraph 4.2.2. of this Annex, CO₂ emissions and fuel consumption results shall be corrected according to the RCB correction described in Appendix 2 to this Annex. 3.4. PEV, with and without driver-selectable operating mode 3.4.1. Vehicles shall be tested under charge depleting (CD) conditions according to

the cycles described in paragraph 1.5.1.1. of this Annex.

- 3.4.2. The total distance travelled over the test cycles from the beginning of the charge-depletingCD test until the break-off criterioneriteria is reached shall be recorded.
- 3.4.3. Breaks for the driver and/or operator shall be permitted only between test cycles as described in Table A8/4.

Table A8/4 **Breaks for the driver Driver** and/or test Test oOperator

Distance driven (km)	Maximum total break time (min)		
Up to 100	10		
Up to 150	20		
Up to 200	30		
Up to 300	60		
More than 300	Shall be based on the manufacturer's recommendation		

Note: during a break, the propulsion system switch shall be in the "OFF" position.

- 3.4.4. Testing
- 3.4.4.1. If the vehicle is equipped with a driver-selectable operating mode, the eharge-depletingCD test shall be performed in the highest electric energy consumption mode that best matches the speed trace.
- 3.4.4.2. The measurement of all-electric range AER and electric energy consumption shall be performed during the same test.
- 3.4.4.3. All-electric range test
- 3.4.4.3.1. The test method shall include the following steps:
 - (a) Initial charging of the traction REESS;
 - (b) Driving consecutive WLTCs until the break-off criterion [SMD712] criteria- is reached and measuring AER;
 - (c) Recharging the traction REESS and measuring the electric energy consumption.
- 3.4.4.3.1.1. The all-electric range test shall be carried out with a fully charged traction REESS according to the charging requirements as described in paragraph 3. of Appendix 4 to this Annex.
- 3.4.4.3.1.2. WLTCs shall be driven and the all-electric range (AER) distance shall be measured.
- 3.4.4.3.1.3. The end of the test occurs when the break-off <u>criterion</u> is reached.

The break-off <u>eriteria criterion</u> shall have been reached when the vehicle deviates from the prescribed driving tolerance for <u>4four</u> seconds or more. The acceleration controller shall be deactivated. The vehicle shall be braked to a standstill within 60 <u>sixty</u> seconds.

3.4.4.3.1.4. The vehicle shall be connected to the mains within 120 minutes after the conclusion of the all-electric range. AER determination. The energy measurement equipment, placed before the vehicle charger, shall measure the charge energy, E_{AC} , delivered from the mains, as well as its duration. Electric energy measurement may be stopped when the state of charge after the range

test is at least equal to the state of charge measured before the range test. The state of charge shall be determined by on-board or external instruments.

- 3.4.4.4. All-electric range city. (AERcity), test
- 3.4.4.4.1. The test method includes the following steps:
 - (a) Initial charging of the traction REESS;
 - (b) Driving consecutive WLTC city cycles until the break-off eriteria criterion is reached and measuring AERcity;
 - (c) Recharging the traction REESS and measuring electric energy
- 3.4.4.4.1.1. The all-electric range city test shall be carried out with a fully charged traction REESS according to the charging requirements as described in paragraph 3. of Appendix 4 of this Annex. The initial charging procedure of the traction REESS shall start with a normal charging and the end of charge criteria shall be as defined in paragraph 3.4.4.3.1.5. above and in Appendix 4 of this Annex. [SMD713] [SMD714] SMD715]
- 3.4.4.4.1.2. City cycles shall be driven and the all electric range city (AERcity) distance shall be measured.
- 3.4.4.4.1.3. The end of the test occurs when the break-off <u>criteria criterion</u> is reached according to paragraph 3.4.4.3.1.3. above.
- 4. Calculations
- 4.1. Emission compound calculations

Exhaust gases shall be analysed according to Annex 6. All equations shall apply to WLTC tests.

- 4.1.1. OVC-HEV with and without operating mode switch
- 4.1.1.1. Charge depleting mode emissions [SMD717]

The level of the emission compounds at charge depleting, $M_{i,CD}$, shall be calculated as follows:

$$M_{i,CD} = \frac{\sum_{j=1}^{k} (UF_{j} * M_{i,CD,j})}{\sum_{j=1}^{k} UF_{j}}$$

where:

M_{i,cD,j} is the mass of the emissions compound measured during the jth phase, g/km;

i is the emissions compound;

UF_i is the fractional utility factor of the jth phase;

is the index number of the phases up to the end of the transition evelen:

k is the number of phases driven until the end of transition cycle

- 4.1.1.4.1.1.2. Charge-sustaining mode emissions
- <u>4.1.1.1.4.1.1.2.1.</u> The charging balance correction (RCB) calculation is not required for the determination of emissions compounds.

4.1.1.2.4.1.1.3. Weighted emissions compounds

The weighted emissions compounds, M_{i,weighted}, from the eharge-depletingCD and eharge sustainingCS test results shall be calculated using the equation below:

$$M_{i,\text{weighted}} = \sum_{j=1}^{k} (UF_j \times M_{i,CD,j}) + (1 - \sum_{j=1}^{k} UF_j) \times M_{i,CS}$$
 (2)

where:

M_{i,weighted} is the utility factor-weighted exhaust emissions of each

measured emission compound, g/km;

i is the emissions compound;

UF_j is the fractional utility factor of the jth phase;

M_{i,CD,i} are the compound mass emissions measured during the jth

charge-depletingCD phase, g/km;

M_{i,CS} are the compound mass emissions for the charge sustaining CS

test according to paragraph 3.2.5., g/km;

j is the index number of the phases up to the end of the transition

cycle n;

k is the number of phases driven until the end of transition cycle

n.

4.1.2. NOVC-HEV with and without driver-selectable operating modes

4.1.2.1. Exhaust emissions shall be calculated as required for conventional vehicles according to Annex 7.

4.1.2.2. The charging balance correction (RCB) calculation is not required for the determination of emissions compounds.

4.2. CO_2 and fuel consumption calculations

Exhaust gases shall be analysed according to Annex 6.

4.2.1. OVC-HEV with and without an operating mode switch

All equations shall apply to the WLTC tests.

4.2.1.1. Weighted charge-depleting CO₂ Eemissions [SMD718][SMD719][SMD721]

The CO₂ values at charge-depleting, CO_{2,CD}, -shall be calculated as follows:

$$CO_{2,CD} = \sum_{j=1}^{k} (UF_j \times CO_{2,CD,j}) / \sum_{j=1}^{k} UF_j$$
 (3)

where:

 ${\rm CO}_{2,CD}$ is the utility factor-adjusted mass of ${\rm CO}_2$ emissions during

charge depletingCD mode, g/km;

CO_{2,CD,j} are the CO₂ emissions measured during the jth charge-

depletingCD phase, g/km;

UF_i is the SMD722]the driving cycle and phase-specific utility factor

according to Appendix 5 to this Annex;

j is the index number of each phase up to the end of the

transition cycle n;

k is the number of phases driven up to the end of transition cycle n.

4.2.1.2. Weighted charge-depleting fuel consumption SMD723 SMD724 SMD726

The fuel consumption values, FC_{CD} , —at <u>charge depletingCD</u> shall be calculated as follows:

$$FC_{CD} = \sum_{i=1}^{k} (UF_i \times FC_{CD,i}) / \sum_{i=1}^{k} UF_i$$
 (4)

where:

FC_{CD} is the utility factor-adjusted fuel consumption charge depletingCD mode, 1/100 km;

FC_{CD,j} is the fuel consumption measured during the jth charge-depletionCD phase, 1/100 km;

UF_j is the driving cycle and phase-specific utility factor according to Appendix 5 to this Annex;

j is the index number of each phase up to the end of the transition cycle n;

k is the number of phases driven up to the end of transition cycle

- 4.2.1.3. Charge-sustaining fuel consumption and CO₂ emissions
- 4.2.1.3.1. Test result correction as a function of REESS charging balance

The corrected values $CO_{2,CS,corrected}$ and $FC_{CS,corrected}$ shall correspond to a zero charging balance (RCB = 0), and shall be determined according to Appendix 2 to this Annex.

- 4.2.1.3.2. The electricity balance, measured using the procedure specified in Appendix 3 to this Annex, shall be is used as a measure of the difference in the vehicle REESS's energy content at the end of the cycle compared to the beginning of the cycle. The electricity balance shall is to be determined for the WLTC driven.
- 4.2.1.3.3. The test results shall be the uncorrected measured values of CO_{2,CS} and FC_{CS} if any of the following cases apply: in case any of the following applies [SMD727] [SMD728]:
 - (a) The manufacturer can prove that there is no relation between the energy balance and CO₂ emissions/fuel consumption;
 - (b) ΔE_{REESS} as calculated from the test result corresponds to REESS charging,
 - (c) ΔE_{REESS} as calculated from the test result corresponds to REESS discharging.

ΔE_{REESS}, expressed as a percentage of the energy content of the fuel consumed over the cycle, <u>shall be is</u>-calculated <u>usingin</u> the equation below:

$$\Delta E_{REESS} = \frac{0.0036 \times RCB \times U_{REESS}}{E_{Fuel}} \times 100$$
 (5)

where:

 ΔE_{REESS} is the change in the REESS energy content, per cent;

U_{REESS} is the nominal REESS voltage, V;

RCB is REESS charging balance over the whole cycle, Ah;

E_{Fuel} is the energy content of the consumed fuel,

MJWh [SMD729].

ΔE_{REESS} is lower than <u>or equal to</u> the RCB correction <u>eriteria criteria</u>, according to the equation below and Table A8/5:

 $\Delta E_{REESS} \le RCB$ correction $\frac{criteria}{criterion}$

Table A8/5

RCB correction Correction eCriteria

Cycle	WLTC	WLTC
	(Low + Medium + High)	(Low + Medium + High + Extra _High)
RCB correction eriteria criterion (%)	1	0.5

4.2.1.4. Weighted CO₂ emissions

The weighted CO₂ emissions from the charge-depletingCD and charge-sustainingCS test results shall be calculated using the equation below:

$$CO_{2,\text{weighted}} = \sum_{j=1}^{k} (UF_j \times CO_{2,CD,j}) + (1 - \sum_{j=1}^{k} UF_j) \times CO_{2,CS}$$
 (6)

where:

CO_{2,weighted} are the utility factor-weighted CO₂ emissions, g/km;

UF_i is the fractional utility factor of the jth phase;

CO_{2,CD,j} are the CO₂ emissions measured during the jth charge-

depletingCD phase, g/km;

CO_{2,CS} are the CO₂ emissions for the charge sustaining CS test

according to paragraph 4.2.1.3. above, g/km;

j is the index number of each phase up to the end of the

transition cycle n;

k is the number of phases driven up to the end of transition cycle

n.

4.2.1.5. Weighted fuel consumption

The weighted fuel consumption from the charge depleting CD and charge-sustaining CS test results shall be calculated using the equation below:

$$FC_{\text{weighted}} = \sum_{j=1}^{k} (UF_j \times FC_{CD,j}) + (1 - \sum_{j=1}^{k} UF_j) \times FC_{CS}$$
(7)

where:

FCweighted is the utility factor-weighted fuel consumption, 1/100 km;

UF_i is the fractional utility factor of the jth phase;

$FC_{CD,j}$	is the fuel consumption measured during the j th charge-depleting <u>CD</u> phase, I/100 km;
FC _{CS}	is the fuel consumption measured during the charge-sustaining CS test according to paragraph 4.2.1.3. above, 1/100 km;
j	is the index number of each phase up to the end of the transition cycle n;
k	is the number of phases driven up to the end of transition cycle \mathbf{n} .

- 4.2.2. NOVC-HEV with and without driver-selectable operating modes
- 4.2.2.1. Exhaust gases shall be analysed according to Annex 6.
- 4.2.2.2. Charge sustainingCS fuel consumption and CO₂ emissions shall be calculated according to paragraph 4.2.1.3. of this Annex.
- 4.2.2.3. Test result correction as a function of REESS charging balance

The corrected values $CO_{2,CS,corrected}$ and $FC_{CS,corrected}$ shall correspond to a zero energy balance (RCB = 0), and shall be determined according to Appendix 2 to this Annex.

- 4.2.2.3.1. The electricity balance, measured using the procedure specified in Appendix_3 to this Annex, <u>shall beis</u> used as a measure of the difference in the vehicle <u>REESS'REESS's</u> energy content at the end of the cycle compared to the beginning of the cycle. The electricity balance <u>shall is to</u> be determined for the WLTC driven.
- 4.2.2.3.2. The test results shall be the uncorrected measured values of CO_{2,CS} and FC_{CS} in case any of the following applies:
 - (a) The manufacturer can prove that there is no relation between the energy balance and fuel consumption;
 - (b) ΔE_{REESS} as calculated from the test result corresponds to REESS charging;
 - (c) ΔE_{REESS} as calculated from the test result corresponds to REESS discharging.

ΔE_{REESS}, expressed as a percentage of the energy content of the fuel consumed over the cycle, <u>shall be is</u>-calculated <u>usingin</u> the equation below:

$$\Delta E_{REESS} = \frac{0.0036 \times \sum_{i=1}^{Z} (RCB_i \times U_{REESSi})}{E_{fuel}} \times 100$$
 (8)

where:

U_{REESSi} is the nominal REESS voltage for ith REESS, V;

RCB_i is the charging balance over the whole cycle for the ith

REESS, Ah;

 E_{fuel} is the energy content of the consumed fuel, MJ-:

i index of REESS; [SMD730][SMD731]

z number of installed REESS. [SMD732][SMD733]

ΔE_{REESS} is <u>less than or equal to smaller than</u> the RCB correction eriteriacriteria, according to the following equation and Table A8/6 :[SMD734]

 $\Delta E_{REESS} \leq RCB$ correction criteriacriterion

Table A8/6

RCB correction-Correction criteria Criteria

Cycle	WLTC	WLTC
	(Low + Medium + High)	(Low + Medium + High + Extra High)
RCB correction eriteria criterion (%)	1	0.5

- 4.2.2.3.3. Where RCB corrections of CO2 and fuel consumption measurement values are required, the procedure described in Appendix 2 to this Annex shall be
- 4.3. Electric energy consumption calculations
- 4.3.1. **OVC-HEV**
- Utility factor-weighted total AC electric energy consumption including 4.3.1.1. charging losses shall be calculated using the following equations:

$$EC_{\text{weighted}} = \sum_{j=1}^{k} (UF_j \times EC_{CD,j})$$

$$EC_{CD,j} = \frac{RCB_j}{\frac{Dd_j * \sum_{j=1}^{k} RCB_j}{Dd_j * \sum_{j=1}^{k} RCB_j}} \times E_{AC}$$
(10)

where:

the utility factor-weighted total EC weighted is energy consumption, Wh/km;

 UF_i is the driving cycle and phase-specific utility factor according to Appendix 5 to this Annex;

is the calculated fraction of E_{AC} used in the jth phase during the $EC_{CD,i}$ charge depletingCD test, Wh/km;

is the measured charge balance of the traction REESS of the jth RCB_i phase during the charge depleting CD test, Ah;

is the distance driven in the jth phase during the charge- $\frac{D}{d_i}$ depletingCD test,—km;

is the measured recharged electric energy from the mains, Wh; E_{AC}

j is the index number of each phase up to the end of transition cycle n;

is the number of phases driven up to the end of transition cycle

k

- 4.3.1.2. Electric energy consumption including charging losses
- 4.3.1.2.1. Recharged electric energy, E, in Wh and charging time measurements shall be recorded.
- 4.3.1.2.2. Electric energy consumption EC is defined by the equation:

 $EC = E_{AC}/EAER$ (11)

where:

EC is the electric energy consumption, Wh/km;

E_{AC} is the recharged electric energy from the mains, Wh;

EAER is the equivalent all-electric range according to paragraph-4.4.1.2.4.4.1.3. below, km.

4.3.1.3. Charge depletingCD AC electric energy consumption, EC_{CD}, —including charging losses

$$EC_{CD} = \frac{EC_{weighted}}{\sum_{j=1}^{k} UF_{j}}$$
 (12)

where:

is the recharged electric energy from the grid including charging losses, Wh; [SMD735]

EC_{weighted} is the electric energy consumption, Wh/km;

EC_{CD} is the recharged electric energy from the grid including charging losses, Wh;

UF_j is the driving cycle and phase-specific utility factor according

to Appendix 5 to this Annex;

j is the index number of each phase up to the end of transition

cycle n;

k is the number of phases driven up to the end of transition cycle

n.

- 4.3.2. Pure electric vehicle (PEV)
- 4.3.2.1. Recharged electric energy E in Wh and charging time measurements shall be recorded.
- 4.3.2.2. The electric energy consumption EC including charging losses is defined by the equation:

$$EC = E_{AC}/AER$$
 (13)

where:

is the electric energy consumption, Wh/km;

 E_{AC} is the recharged electric energy from the mains, Wh;

AER is the all-electric range as defined in paragraph 4.4.2.1. of this

Annex. km. [SMD736][SMD737]

- 4.4. Electric Range
- 4.4.1. OVC-HEV
- 4.4.1.1. All-electric range, AER, and all-electric range city, AERcity

The distance driven over consecutive test cycles according to paragraph 1.5.1.1. using only the REESS until the combustion engine starts consuming

fuel for the first time shall be measured and be rounded to the nearest whole number.

4.4.1.2. Equivalent all-electric range, EAER

4.4.1.2.1. EAER shall be calculated as follows:

$$EAER = \left(\frac{CO_{2,CS} - CO_{2,CDavg}}{CO_{2,CS}}\right) \times R_{CDC}$$
 (14)

where:

$$CO_{2,CD,avg} = \frac{\sum_{j=1}^{k} CO_{2,CD,j}}{\sum_{i=1}^{k} \frac{Dd_{j}}{D}}$$
(15)

and:

EAER is the equivalent all-electric range EAER, km;

CO_{2,CS} are the CO₂ emissions during the eharge sustaining CS test, -g/km;

CO_{2,CD,j} are the CO₂ emissions in the jth phase during the charge-depletingCD test, g;

Ddj is the distance driven in the jth phase during the charge-depletingCD test, km;

R_{CDC} is the charge-depletingCD cycle range, km;

j is the index number of each phase up to the end of the transition cycle n;

k is the number of phases driven up to the end of the transition cycle n. cyclen.

4.4.1.3. Charge-depleting cycle range (R_{CDC})

The distance from the beginning of the eharge-depletingCD test to the end of the last cycle prior to the cycle or cycles satisfying the break-off eriterion shall be measured. This shall include the distance travelled during the transition cycle where the vehicle operates in both depleting and sustaining modes. If the eharge-depletingCD test possesses a transition range, the R_{cdc} shall include those transition cycles or cycles.

4.4.1.4. Actual charge-depleting cycle range (R_{CDA})

$$R_{CDA} = \sum_{j=1}^{n-1} \frac{\mathbf{D}d_{j,cycle}}{\mathbf{D}d_{j,cycle}} + \left(\frac{\mathbf{CO}_{2,CS} - \mathbf{CO}_{2,n,cycle}}{\mathbf{CO}_{2,CS} - \mathbf{CO}_{2,CD,average,n-1}}\right) \times \frac{\mathbf{D}d_{n}}{\mathbf{D}d_{n}}$$
(16)

where:

R_{CDA} is the actual charge depleting CD range, km;

CO_{2,CS} are the CO₂ emissions during the eharge sustaining CS

test, g/km;

 $CO_{2,n,cycle}$ are the CO_2 emissions over the n^{th} drive cycle in $\frac{\text{charge-}}{\text{depleting}CD}$ operating condition, g/km;

CO_{2,CD,average,n-1} are the average CO₂ emissions in charge-depletingCD operating condition until the n-1th drive cycle, g/km;

 $\mathbf{Dd}_{\mathbf{j},\mathbf{cvcle}}$ is the test distance travelled during \mathbf{j}^{th} drive cycle, km;

Ddn is the test distance travelled during the nth drive cycle in charge depleting OD operating condition, km;

is the index number of each whole cycle up to the end of

the transition cycle n;

n is the number of whole cycles driven including the

transition cycle n.

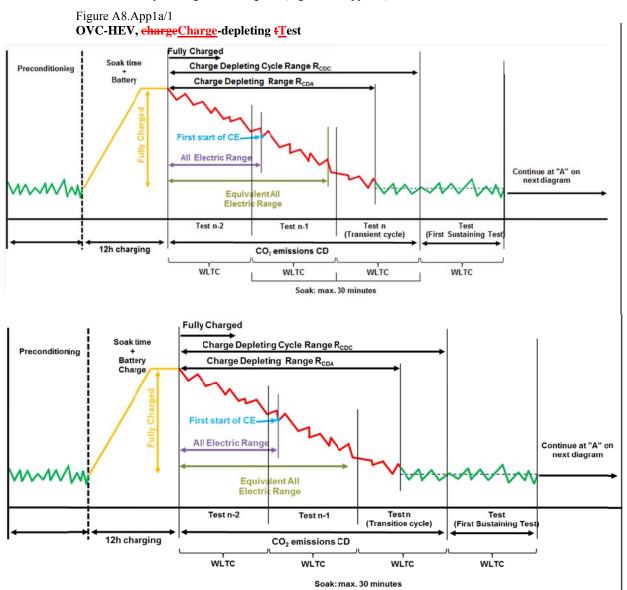
4.4.2. PEV

4.4.2.1. All-electric range, AER

j

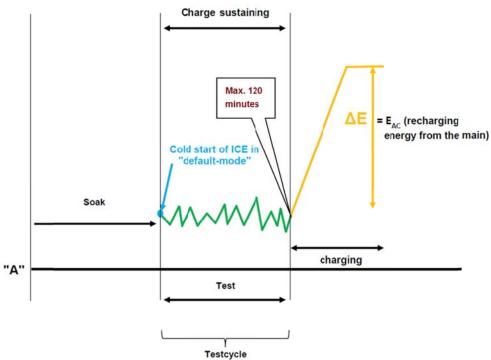
The distance driven over consecutive WLTCs until the break-off criterion according to paragraph 3.4.4.3.1.3. above is reached shall be measured and be rounded to the nearest whole number—according to paragraph 3.4.2.4.1.3. above.

4.4.2.2. All-electric city range, AERcity

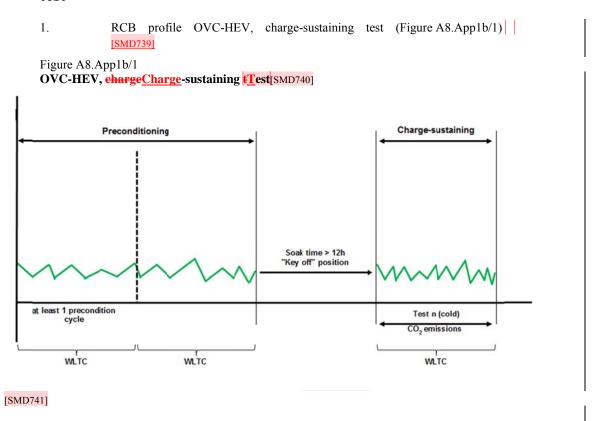

The distance driven over consecutive WLTC city cycles until the break-off eriteria criterion according to paragraph 3.4.4.3.1.3. above is reached shall be measured and be rounded to the nearest whole number.

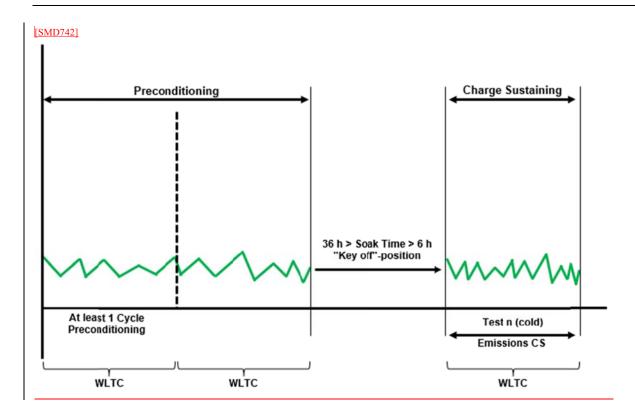
[RESERVED : Combined approach]

Annex 8 - Appendix 1a[SMD738]


RCB profile OVC-HEV, charge-depleting and charge-sustaining tests

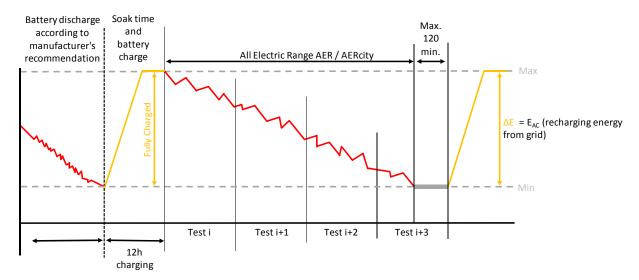
1. RCB profile OVC-HEV, charge-depleting test (Figure A8.App1a/1) followed by a charge-sustaining test (Figure A8.App1a/2)


2. RCB profile OVC-HEV, charge-sustaining test (Figure A8.App1a/2) preceded by a charge-depleting test (Figure A8.App1a/1)



Annex 8 - Appendix 1b

RCB profile, OVC-HEV and NOVC-HEV charge-sustaining test



Annex 8 - Appendix 1c

RCB profile, PEV, electric range and electric energy consumption test

1. RCB profile, PEV, electric range and electric energy consumption test (Figure A8.App1c/1)

Figure A8.App1c/1 **PEV**, electric FRange and Electric energy eConsumption FTest

Annex 8 - Appendix 2

REESS charge balance (RCB) correction

- This Appendix_describes the test procedure for RCB compensation of CO₂ and fuel consumption measurement results when testing NOVC-HEV and OVC-HEV vehicles.
- 1.1. Separate CO₂ emission and fuel consumption correction coefficients shall be calculated separately for each phase of the WLTC and corrected to zero over each WLTC phase.
- 2. The fuel consumption correction coefficients, (K_{fuel}), shall be defined as follows and might be supplied by the manufacturer:
- 2.1. The fuel consumption correction coefficient The (K_{fuel}) coefficient shall be determined from a set of n measurements performed by the manufacturer. This set shall contain at least one measurement with $E_{REESSi} \leq 0$ and at least one with $E_{REESSi} > 0$ over the complete test cycle.

If the latter condition cannot be realised on the driving cycle used in this test, the responsible authority shall evaluate the statistical significance of the extrapolation necessary to determine the fuel consumption value at $\Delta E_{REESS} = 0$.

2.1.1. The fuel consumption correction coefficients (K_{fuel}) coefficients for the individual phases as well as for the complete test cycle are defined as:

$$K_{\text{fuel}} = \frac{(n \times \sum \mathbb{E}_{\text{REESSi}[\text{SMD743}]} \times \text{FC}_{i} - \sum \mathbb{E}_{\text{REESSi}} \times \sum \text{FC}_{i})}{n \times \sum \mathbb{E}_{\text{REESSi}}^{2} - (\sum \mathbb{E}_{\text{REESSi}})^{2}}$$

<u>(1)</u>

where:

K_{fuel} are the fuel consumption correction coefficients,

1/100 km/Wh/km;

FC_i are the fuel consumptions measured during the ith test,

1/100 km;

E_{REESSi} are the electricity balances measured during the ith test,

Wh/km;

n is the number of measurements.

The fuel consumption correction coefficient shall be rounded to four significant figures. The statistical significance of the fuel consumption correction coefficient <u>is-shall</u> to be evaluated by the responsible authority.

- 2.2. The fuel consumption correction coefficient shall be determined for the fuel consumption values measured over <u>the WLTC</u>. This coefficient can be applied for each individual WLTC phase correction.
- 2.2.1. Without prejudice to the requirements of paragraph 2.1 of this Aappendix, at the manufacturer's request, separate fuel consumption correction coefficients for each individual WLTC phase may be developed. 2.3. Fuel consumption at zero REESS energy balance (FC_{tr})

2.3. Fuel consumption at zero REESS energy balance (FC₀)

2.3.1. The fuel consumption FC_0 at $\Delta E_{REESS} = 0$ shall be determined by the following equation:

$$FC_0 = FC - K_{\text{fuel}} \times \Delta E_{\text{REESS}}$$
 (2)

where:

FC₀ is the fuel consumption at $\Delta E_{REESS} = 0$, 1/100 km;

FC is the fuel consumption measured during the test, 1/100 km;

 ΔE_{REESS} is the electricity balance measured during test, Wh/km.

- 2.3.2. Fuel consumption at zero REESS energy balance shall be calculated separately for each phase of the WLTC and corrected to zero over each WLTC phase.
- 2.3.3. Fuel consumption at zero REESS energy balance shall[SMD744][SMD745] also be calculated for the complete WLTC and corrected to zero.
- 3. CO_2 emission correction coefficient, (K_{CO_2}) , shall be defined as follows and may be supplied by the manufacturer
- 3.1. The $\frac{CO_2$ -emission correction coefficient (K_{CO_2})coefficient shall be determined from a set of n measurements performed by the manufacturer. This set shall contain at least one measurement with $E_{REESSi} \leq 0$ and at least one with $E_{REESSi} > 0$ over the complete test cycle.

If the latter condition cannot be realised on the driving cycle used in this test, the responsible authority shall evaluate the statistical significance of the extrapolation necessary to determine the fuel consumption value at $\Delta E_{REESS} = 0$.

3.1.1. The CO_2 emission correction coefficient (K_{CO_2}) coefficient is defined as:

$$K_{CO_2} = \frac{(n \times \sum E_{REESS} \times M_i - \sum E_{REESSi} \times \sum M_i)}{n \times \sum E_{REESS}^2 - (\sum E_{REESSi})^2}$$
(3)

where:

K_{CO₂} are SMD746 SMD747 is the CO₂ emissions correction coefficient, g/km/Wh/km;

M_i are the CO₂ emissions measured during the ith test, g/km;

 E_{REESSi} is the electricity balance during the i^{th} test, Wh/km;

n is the number of measurements.

- 3.1.2. The CO_2 emission correction coefficient shall be rounded to four significant figures. The statistical significance of the CO_2 emission correction coefficient is to be judged by the responsible authority.
- 3.1.3. The CO₂ emission correction coefficient shall be determined for the CO₂ emission values measured over the WLTC. This coefficient may be applied for each individual WLTC phase correction.
- 3.1.3.1 Without prejudice to the requirements of paragraph 2.1 of this Aappendix, at the manufacturer's request, separate CO₂ emission correction coefficients for each individual WLTC phase may be developed.

- 3.1.4. CO₂ emissions at zero REESS energy balance shall <u>also</u> be also calculated for complete WLTC and corrected to zero.
- 3.2. CO_2 emission at zero REESS energy balance (M_0)
- 3.2.1. The CO_2 emission M_0 at $\Delta E_{REESS} = 0$ shall be determined by the following equation:

$$M_0 = M[SMD748] - K_{CO_2} \times \Delta E_{REESSi}$$

<u>(4)</u>

where:

M₀ are the CO₂ emissions at zero REESS energy balance, g/km;

 K_{CO_2} are is [SMD749][SMD750]the CO_2 emissions correction

coefficient, g/km/Wh/km;

 ΔE_{REESSi} is the electricity balance measured during test, Wh/km.

Annex 8 - Appendix 3

Measuring the electricity balance of NOVC-HEV and OVC-HEV batteries

- 1. Introduction
- 1.1. This Appendix_defines the method and required instrumentation to measure the electricity balance of OVC-HEVs and NOVC-HEVs.
- 2. Measurement equipment and instrumentation
- 2.1. During the tests described in paragraph 3. of this Annex, the REESS current can be measured using a current transducer of the clamp-on or closed type. The current transducer (i.e. a current sensor without data acquisition equipment) shall have a minimum accuracy specified in paragraph 2.1.1. of Appendix 2 to Annex 6.
- 2.1.1. Alternatively to 2.1 above, the RCB determination method described in <u>paragraph 2.2. of Appendix 2 to Annex 6, Appendix 2, paragraph 2.2.</u> shall be applicable for all vehicle REESSs.
- 2.1.2. The current transducer shall be fitted on one of the cables directly connected to the REESS. In order to easily measure REESS current using external measuring equipment, manufacturers should preferably integrate appropriate, safe and accessible connection points in the vehicle. If that is not feasible, the manufacturer is obliged to support the responsible authority by providing the means to connect a current transducer to the wires connected to the REESS in the above described manner.
- 2.1.3. Output of the current transducer shall be sampled with a minimum sample frequency of 5 Hz. The measured current shall be integrated over time, yielding the measured value of RCB, expressed in ampere-hours (Ah).
- 2.2. A list of the instrumentation (manufacturer, model no., serial no.) used by the manufacturer to determine the following shall be provided to the responsible authority:
 - (a) When the minimum state of charge of the REESS has been reached during the test procedure defined in paragraph 3. of this Annex;
 - (b) The correction factors K_{fuel} and K_{CO_2} (as defined in Appendix 2 to this Annex);
 - (c) <u>The last calibration dates of the instruments (where applicable)</u>. -shall be provided to the responsible technical authority.
- 3. Measurement procedure
- 3.1. Measurement of the REESS current shall start at the same time as the test starts and shall end immediately after the vehicle has driven the complete driving cycle.
- 3.2. The RCB values of each phase shall be recorded.

Annex 8 - Appendix 4

Preconditioning of PEVs and OVC-HEVs

- 1. This Appendix_describes the test procedure for REESS and combustion engine preconditioning in preparation for:
 - (a) Electric range, charge-depletingCD and charge sustainingCS measurements when testing OVC-HEV; and
 - (b) Electric range measurements as well as electric energy consumption measurements when testing PEV vehicles.
- 2. OVC-HEV combustion engine and REESS preconditioning

When testing in charge-depletingCD condition, the charge-depletingCD condition, the charge-depletingCD test may be driven independently of one another. In that case, the vehicle shall be prepared as prescribed in paragraph 2.1.1. below before the charge-depletingCD test or the charge-depletingCD test starts.

- 2.1. OVC-HEV combustion engine and REESS preconditioning when the test procedure starts with a charge sustainingCS test
- 2.1.1. For preconditioning of the combustion engine, the OVC-HEV shall be driven over at least one WLTC. The manufacturer shall guarantee that the vehicle operates in a eharge-sustainingCS condition.
- 2.1.2. When testing an OVC-HEV with driver-selectable operation mode, the preconditioning cycles shall be performed in the same operation condition as the eharge-sustainingCS test as described in paragraph 3.2.5. of this Annex.
- 2.1.3. During the preconditioning cycle in paragraph 2.1.2. above, the charging balance of the traction—[SMD751]REESS shall be recorded. The preconditioning shall be stopped at the end of the cycle when the break-off criterion criteria is fulfilled according to paragraph 3.2.4.5. of this Annex.
- 2.1.4. Alternatively, at the request of the manufacturer, the state of charge of the REESS <u>before preconditioning</u> for the charge sustaining test can[SMD752][SMD753] be set according to the manufacturer's recommendation in order to <u>fulfill</u> the <u>break-off criterionachieve a charge balance neutral charge sustaining test</u>[SMD754].

In such a case, an additional ICE preconditioning procedure, such as that-as applicable to conventional vehicles as described in paragraph 1.2.6. of Annex 6₃-may be applied.

- 2.1.5. Soaking of the vehicle shall be performed according to paragraph 1.2.7. of Annex 6. Forced cooling down shall not be applied to vehicles preconditioned for the charge depleting test [SMD755].
- 2.2. OVC-HEV combustion engine and REESS preconditioning when the test procedure starts with a charge depleting CD test
- 2.2.1. For preconditioning of the combustion engine, the OVC-HEV shall be driven over at least one WLTC. The manufacturer shall guarantee that the vehicle operates in a charge-sustainingCS condition.

- 2.2.2... When testing an OVC-HEV with driver-selectable operation mode, the preconditioning cycles shall be performed in the same operation condition as the eharge-sustainingCS test as described in paragraph 3.2.5. of this Annex.
- 2.2.3.- Soaking of the vehicle shall be performed according to paragraph 1.2.7. of Annex 6. Forced cooling down shall not be applied to vehicles preconditioned for the test.
- 2.2.4. During soak, the electrical energy storage device shall be charged, using the normal charging procedure as defined in paragraph 2.2.5. below.
- 2.2.5. Application of a normal charge
- 2.2.5.1. The electrical energy storage device shall be charged:
 - (a) With the on-board charger if fitted; or
 - (b) With an external charger recommended by the manufacturer using the charging pattern prescribed for normal charging;
 - (c) <u>In an ambient temperature as specified in comprised according to paragraph 1.2.2.2.2.</u> of Annex 6.

This procedure excludes all types of special charges that could be automatically or manually initiated, e.g. equalization charges or servicing charges. The manufacturer shall declare that during the test, a special charge procedure has not occurred. [SMD756]

2.2.5.2. End of charge criteriacriterion

The end of charge <u>criteria criterion</u> is reached when a fully charged REESS is detected by the on-board or external instruments.

- PEV REESS conditioning
- 3.1. Initial charging of the REESS

Charging the REESS consists of discharging the REESS and applying a normal charge.

3.1.1. Discharging the REESS

<u>The Ddischarge</u> test procedure shall be performed according to the manufacturer's recommendation. The manufacturer <u>shallwil [SMD757]</u> guarantee that the REESS is as fully depleted as is possible by the discharge test procedure.

3.1.2. Application of a normal charge

The REESS shall be charged:

- (a) With the on-board charger if fitted; or
- (b) With an external charger recommended by the manufacturer using the charging pattern prescribed for normal charging;
- (c) In an ambient temperature <u>as specified in emprised according to paragraph 1.2.2.2.2.</u> of Annex 6.

This procedure excludes all types of special charges that could be automatically or manually initiated, e.g. equalization charges or servicing charges. The manufacturer shall declare that a special charge procedure has not occurred during the test, a special charge procedure has not occurred. [SMD758]

3.1.3. End of charge <u>criteriacriterion</u>

The end of charge <u>criteria criterion</u> is reached when a fully charged REESS is detected by the on-board or external instruments.

Annex 8 - Appendix 5 [SMD759]

Utility factor (UF) for OVC-HEVs

- 1._ Utility Factors (UF) are ratios based on drivingdriver statistics and the ranges achieved in charge depletingCD mode and charge sustainingCS modes for OVC-HEVs and are used for weighting emissions, CO₂ emissions and fuel consumptions.
- 2. Each Contracting Party may develop its own UFs.
- 3. Utility factors shall be calculated according to the following equation: [SMD760]

where:

c_x are utility factor equation constants from Table A8.App.5;

x is the R_{CDC} travelled, km or miles;

	<u>EC</u>	<u>JAPAN</u>	US (fleet)	US (individual)
Norm_dist	800 km	400 km	399.9 miles	400 miles
<u>C1</u>	<u>26.25</u>	<u>11.9</u>	<u>10.52</u>	<u>13.1</u>
<u>C2</u>	<u>-38.94</u>	<u>-32.5</u>	<u>-7.282</u>	<u>-18.7</u>
<u>C3</u>	<u>-631.05</u>	<u>89.5</u>	<u>-26.37</u>	<u>5.22</u>
<u>C4</u>	<u>5964.83</u>	<u>-134</u>	<u>79.08</u>	<u>8.15</u>
<u>C5</u>	<u>-25095</u>	<u>98.9</u>	<u>-77.36</u>	<u>3.53</u>
<u>C6</u>	60380.2	<u>-29.1</u>	<u>26.07</u>	<u>-1.34</u>
<u>C7</u>	<u>-87517</u>	<u>NA</u>	<u>NA</u>	<u>-4.01</u>
<u>C8</u>	<u>75513.8</u>	<u>NA</u>	<u>NA</u>	<u>-3.9</u>
<u>C9</u>	<u>-35749</u>	<u>NA</u>	<u>NA</u>	<u>-1.15</u>
<u>C10</u>	<u>7154.94</u>	<u>NA</u>	<u>NA</u>	3.88

[RESERVED:

Annex 8 - Appendix 6

Determining the range of PEVs on a per-phase basis]

[RESERVED:

Annex 9

Determination of system equivalence]