Transmitted by Chair of the Development of the Test Procedure (DTP) sub-group of the Worldwide harmonized Light vehicles Test Procedure (WLTP) informal working group Informal document No. GRPE-66-02 (66th GRPE, 3-7 June 2013, agenda item 3(a))

| TABLE OF CONTENTS |                                                                                                    |      |  |  |
|-------------------|----------------------------------------------------------------------------------------------------|------|--|--|
| Section           | Title                                                                                              | Page |  |  |
| В                 | TEXT OF THE REGULATION                                                                             |      |  |  |
| 1.                | Purpose                                                                                            | 3    |  |  |
| 2.                | Scope                                                                                              | 3    |  |  |
| 3.                | Definitions                                                                                        | 4    |  |  |
| 4.                | Symbols and Abbreviations                                                                          | 14   |  |  |
| 5.                | General and Performance Requirements                                                               | 25   |  |  |
| ANNEXES           |                                                                                                    |      |  |  |
| Annex 1           | Drive cycles                                                                                       | 27   |  |  |
| Annex 2           | Gear Selection and Shift Point Determination for Vehicles Equipped with                            | 77   |  |  |
|                   | Manual Transmissions                                                                               |      |  |  |
| Annex 3           | Reference Fuels                                                                                    | 81   |  |  |
| Annex 4           | Road and Dynamometer Load                                                                          | 82   |  |  |
| Appendix I        | Calculation of road load for the dynamometer test                                                  | 103  |  |  |
| Appendix II       | Adjustment of chassis dynamometer load setting                                                     | 106  |  |  |
| Annex 5           | Test Equipment and Calibrations                                                                    | 107  |  |  |
| Annex 6           | Test Procedure and Test Conditions                                                                 | 153  |  |  |
| Annex 7           | Calculations                                                                                       | 174  |  |  |
| Annex 8           | Vehicles with Complete or Partial Electric Propulsion                                              | 183  |  |  |
| Appendix 1a       | RCB Profile OVC-HEV, charge-depleting followed by charge-sustaining test                           | 198  |  |  |
| Appendix 1b       | RCB Profile, OVC-HEV, charge-sustaining test                                                       | 199  |  |  |
| Appendix 1c       | RCB Profile, PEV, electric range and electric energy consumption test                              | 200  |  |  |
| Appendix II       | REESS Charge Balance (RCB) Compensation                                                            | 201  |  |  |
| Appendix III      | Method for Measuring the Electricity Balance of Traction Batteries of NOVC-HEVS and OVC-HEVS       | 203  |  |  |
| Appendix IV       | Conditioning for PEV and OVC-HEV Testing                                                           | 205  |  |  |
| Appendix V        | Standardized Methodology for Determination of a Global Harmonized Utility Factor (Uf) for OVC-HEVS | 208  |  |  |
| Appendix VIa      | OVC-HEV CO2 Calculation Example                                                                    | 210  |  |  |
| Appendix VIb      | OVC-HEV Fuel Consumption Calculation Example                                                       | 210  |  |  |
| Appendix VII      | Determination of Cycle Energy Demand of the Vehicle                                                | 211  |  |  |
| Annex 9           | Determination of System Equivalence                                                                | 212  |  |  |

Introductory notes:

- 1. Spelling: The *Concise Oxford English Dictionary*, twelfth edition, is the current authority for spelling in the United Nations.
- 2. Decimal points: Thousands are separated by a comma, decimal places are indicated by a point. Example: 12,345.67 Nm.

3. Square brackets indicate text or numerical values which are currently being developed or have yet to be approved by various working groups including the Vehicle Propulsion Sytem Definitions (VPSD) group. Additional details to the bracketed items can be found in the file "WLTP-2013-020 Consolidated Draft GTR 20.05.2013" available on the CIRCABC site.

## **B. TEXT OF REGULATION**

## **B.1. PURPOSE**

[This regulation aims at providing a world-wide harmonised method to determine the levels of gaseous and particulate emissions, fuel or energy consumption, and electric range from light-duty vehicles under different conditions in a repeatable and reproducible manner designed to be representative of real world vehicle operation. The results will provide the basis for the regulation of these vehicles within regional type approval and certification procedures.]

## **B. TEXT OF REGULATION**

## **B.2. SCOPE/APPLICATION**

[This regulation applies to the measurement of the emission of gaseous and particulate species, fuel and/or energy consumption and electric range from vehicles of categories 1-2 and 2, having a maximum mass not exceeding 3 500 kg and from all vehicles of category 1-1.]

#### **B.3. DEFINITIONS**

## **EQUIPMENT**

"<u>Accuracy</u>" means the difference between a measured value and a reference value, traceable to a national standard and describes the correctness of a result; See Figure 2;

"<u>Calibration</u>" means the process of setting a measurement system's response so that its output agrees with a range of reference signals. Contrast with "verification";

"Calibration gas" means a purified gas mixture used to calibrate gas analysers;

"Delay time" means the difference in time between the change of the component to be measured at the reference point and a system response of 10 per cent of the final reading  $(t_{10})$  with the sampling probe being defined as the reference point. For gaseous components, this is the transport time of the measured component from the sampling probe to the detector. See Figure 1;

"<u>Dew point</u>" means a measure of humidity stated as the equilibrium temperature in °C or K at which water condenses under a given pressure from moist air with a given absolute humidity;

"<u>Double dilution method</u>" means the process of separating a part of the diluted exhaust flow and mixing it with an appropriate amount of dilution air prior to the particulate sampling filter:

"Full-flow exhaust dilution system" means the continuous dilution of the total vehicle exhaust with ambient air in a controlled manner using a constant volume sampler;

"Single dilution method" means the process of mixing the total exhaust flow with dilution air prior to separating a fraction of the diluted exhaust stream for analysis;

"<u>Linearisation</u>" means the application of a range of concentrations or materials to establish a mathematical relationship between concentration and system response;

"Non-methane hydrocarbons (NMHC)" means the sum of all hydrocarbon species excluding methane;

"Non-oxygenated hydrocarbons (HC)" means compounds that consist of hydrogen and carbon only;

"Non-methane, non-ethanol organic gases (NMNEOG)" means NMHC minus ethanol plus formaldehyde plus acetaldehyde;

"ppm" means parts per million on a volume basis;

"<u>Precision</u>" means the degree to which repeated measurements under unchanged conditions show the same results (Figure 2). In this GTR, precision requirements always refer to one standard deviation.

"Reference value" means a value traceable to a national standard. See Figure 2;

"Response time" means the difference in time between the change of the component to be measured at the reference point and a system response of 90 per cent of the final reading  $(t_{90})$  with the sampling probe being defined as the reference point, whereby the change of the measured component is at least 60 per cent full scale (FS) and takes place in less than 0.1 second. The system response time consists of the delay time to the system and of the rise time of the system. See Figure 1;

"Rise time" means the difference in time the 10 per cent and 90 per cent response of the final reading  $(t_{90} - t_{10})$ . See Figure 1;

"Set point" means the target value which a control system aims to reach;

"Span" means to adjust an instrument so that it gives a proper response to a calibration standard that represents between 75 per cent and 100 per cent of the maximum value in the instrument range or expected range of use;

"Span gas" means a purified gas mixture used to span gas analysers;

"<u>Total hydrocarbons (THC)</u>" means all hydrocarbon compounds measurable by a flame ionisation detector (FID);

"Transformation time" means the difference in time between the change of the component to be measured at the reference point and a system response of 50 per cent of the final reading ( $t_{50}$ ) with the sampling probe being defined as the reference point. See Figure 1;

"<u>Verification</u>" means to evaluate whether or not a measurement system's outputs agrees with a range of applied reference signals to within one or more predetermined thresholds for acceptance;

"Zero gas" means a gas containing no analyte which is used to set a zero response on an analyser;

["to zero" means to adjust an instrument so it gives a zero response to a zero calibration standard];

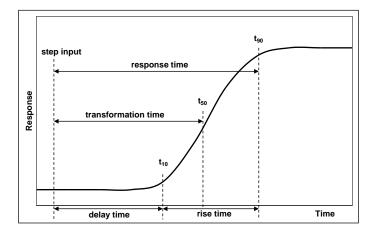



Figure 1: Definitions of system response

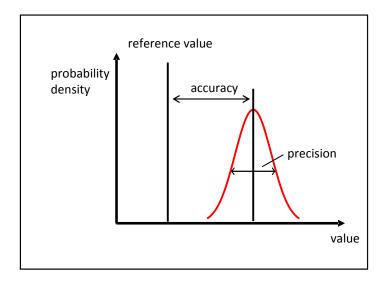



Figure 2: Definition of accuracy, precision and reference value

#### ROAD AND DYNAMOMETER LOAD

"Aerodynamic drag" means the force that opposes a vehicle's forward motion through air;

"Aerodynamic stagnation point" means the point on the surface of a vehicle where wind velocity is equal to zero;

## ["Best case test vehicle"];

"Chassis dynamometer load setting" means the load to be set on the power absorption unit of the chassis dynamometer;

"Chassis dynamometer using coefficient control" means a chassis dynamometer whose power absorption characteristics are determined by coefficients of a road-load approximation polynomial of second order:

"Chassis dynamometer using polygonal control" means a chassis dynamometer whose power absorption characteristics are determined by load values at several speed points;

"<u>Dynamometer operation mode</u>" means the mode in which the vehicle must be set for proper and representative testing on a chassis dynamometer;

## ["Highest aerodynamic drag vehicle"];

"On-board anemometry" means measurement of wind speed and direction with an anemometer installed on the test vehicle;

"Reference atmospheric conditions" with regards to road load measurements means the atmospheric conditions to which these measurement results are corrected:

- (a) atmospheric pressure:  $p_0 = 100$  kPa, unless otherwise specified by regulations;
- (b) atmospheric temperature:  $T_0 = 293$  K, unless otherwise specified by regulations;

- (c) dry air density:  $\rho_0 = 1{,}189 \text{ kg/m}^3$ , unless otherwise specified by regulations;
- (d) wind speed: 0 m/s;

["Reference speed" means the vehicle speed at which a chassis dynamometer load is verified. Reference speeds may be continuous speed points covering the complete cycle speed range];

"Road load" means the opposition to the movement of a vehicle. It is the total resistance if using the coastdown method or the running resistance if using the torque meter method;

"Rolling resistance" means the forces in the drivetrain and tyres opposing the motion of a vehicle;

"Running resistance" means the torque resisting the forward motion of a vehicle, measured by torque meters installed at the driven wheels of a vehicle;

"Simulated road load" means the road load calculated from measured coastdown data;

"Speed range" means the range of speed between the maximum speed of the WLTC cycle for the class of test vehicle plus 10 km/h and minimum reference speed of 15 km/h over which the coastdown test is conducted;

"Stationary anemometry" means measurement of wind speed and direction with an anemometer at a location and height above road level alongside the test road where the most representative wind conditions will be experienced;

"Target road load" means the road load to be reproduced on the chassis dynamometer;

"<u>Total resistance</u>" means the total force resisting movement of a vehicle, including the frictional forces in the drive-train;

["Vehicle coastdown mode" means a special mode of operation, for example by decoupling drivetrain components from the wheels mechanically and/or electrically, enabling an accurate and repeatable road load determination and an accurate dynamometer setting];

"Wind correction" means correction of the effect of wind on road load based on input of the stationary or on-board anemometry.

["Worst case test vehicle" means the vehicle chosen for road load determination with the worst-case combination of road load-relevant characteristics such as mass, aerodynamic drag and rolling resistance];

["Best case test vehicle" means the vehicle chosen for road load determination with the best case for at least one of the road load relevant characteristics];

["Reference mass (RM)" means the unladen mass (UM) of a vehicle plus (a) 100 kg and (b) a variable mass];

["Test mass high ( $TM_H$ )" means the highest mass of a test vehicle for road load and emissions determination];

["Test mass low (TM<sub>L</sub>)"];

## ["<u>Unladen mass</u>"];

## ["Maximum laden mass (LM)"]

## VEHICLES WITH COMPLETE OR PARTIAL ELECTRIC PROPULSION

"<u>All-electric range (AER)</u>" in the case of OVC-HEV means the total distance travelled from the beginning of the charge-depleting test over a number of complete WLTC cycles to the point in time during the test when the combustion engine starts to consume fuel;

"<u>All-electric range (AER)</u>" in the case of PEV means the total distance travelled from the beginning of the charge-depleting test over a number of WLTC cycles until the break-off criteria is reached;

## ["Charge-depleting actual range (R<sub>cda</sub>)"]

"Charge-depleting cycle range  $(R_{cdc})$ " means the distance from the beginning of the charge-depleting test to the end of the last cycle prior to the cycle or cycles satisfying the break-off criteria, including the transient cycle where the vehicle may have operated in both depleting and sustaining modes;

"<u>Charge-depleting (CD) operation condition</u>" means an operating condition in which the energy stored in the REESS may fluctuate but, on average, decreases while the vehicle is driven until transition to charge-sustaining operation;

"Charge-depleting (CD) break-off criteria" is determined based on absolute or relative net energy change;

"<u>Charge-sustaining (CS) operation condition</u>" means an operating condition in which the energy stored in the REESS may fluctuate but, on average, is maintained at a neutral charging balance level while the vehicle is driven;

["<u>Electric machine (EM)</u>" means an energy converter transforming electric energy into mechanical energy or vice versa];

["Rechargeable electric energy storage system (REESS)" means a system storing electric energy];

"Electrified vehicle (EV)" means a vehicle with a powertrain containing at least one electric machine as an energy converter;

["Energy converter" means the part of the powertrain converting one form of energy into a different one];

["Energy storage system" means the part of the powertrain onboard of the vehicle that can store chemical, electrical or mechanical energy and which can be refilled or recharged externally and/or internally];

"Equivalent all-electric range (EAER)" means that portion of the total charge-depleting actual range ( $R_{CDA}$ ) attributable to the use of electricity from the REESS over the charge-depleting range test;

["<u>First sustaining cycle n+1</u>" means the cycle in a series of whole cycles in charge-depleting operating condition in which the RCB break-off criteria is detected for the first time];

["Fuel cell" means an energy converter transforming chemical energy into electrical energy or viuce versa;]

["Fuel cell electric vehicle (FCEV)" means a vehicle propelled solely by a fuel cell power-train;]

["<u>Fuel cell hybrid electric vehicle (FCHEV)</u>" means a vehicle propelled by a fuel cell power-train and a hybrid electric powertrain;]

["Fuel cell vehicle (FCV)" means a vehicle with a powertrain containing exclusively fuel cell(s) and electric machine(s) as energy converter;]

"Hybrid mode" means an operation mode in which all installed fuel consuming engines and electric motors shall run when required;

"Highest electric energy consuming hybrid mode" means the hybrid mode with the highest electric energy consumption of all driver-selectable hybrid modes;

"<u>Highest fuel consuming mode</u>" means the mode with the highest fuel consumption of all driver-selectable modes;

["<u>Hybrid electric vehicle (HEV)</u>" means a hybrid vehicle (HV) with a powertrain containing at least one electric machine as energy converter];

["Hybrid vehicle (HV)" means a vehicle with a powertrain containing at least two different types of energy converters and two different types of energy storage systems];

"Net energy change" means the ratio of the REESS energy change, Wh, divided by the cycle energy demand of the test vehicle, Wh;

"Not off-vehicle charging (NOVC)" means that the REESS cannot be charged externally, also known as "not externally chargeable";

"NOVC-HEV" means a not off-vehicle chargeable hybrid electric vehicle;

"Off-vehicle charging (OVC)" means that the REESS can be charged externally, also known as "externally chargeable";

"OVC-HEV" means an off-vehicle charging hybrid electric vehicle;

"<u>Pure electric mode</u>" means operation by an electric machine only using electric energy from a REESS without fuel being consumed under any condition;

"<u>Pure electric vehicle (PEV)</u>" means a vehicle with a powertrain where all energy converters are electric machines and all storage systems are rechargeable electric energy storage systems (REESSs);

["Recharged energy (EAC)" means the AC electric energy which is recharged from the grid at the mains socket. In case of DC-charged vehicles, the electrical energy shall be measured between the AC-DC converter and the grid];

"REESS charge balance (RCB)" means the charge balance of the REESS measured in Ah;

"<u>REESS correction criteria</u>" means the RCB value (Ah) which determines if and when correction of the CO<sub>2</sub> and/or fuel consumption value in CS operation condition is necessary;

["<u>Transient cycle n</u>" means the cycle prior to the first sustaining cycle n+1 in a series of whole cycles in charge-depleting operating condition];

["<u>First sustaining cycle n+1</u>" is the cycle in a series of whole cycles in charge-depleting operating condition in which the RCB break-off criteria is detected for the first time];

"<u>Utility factor</u>" means the weighting of the CO<sub>2</sub> emissions and fuel consumption between the charge-depleting condition (CD) and the charge-sustaining condition (CS);

#### **POWERTRAIN**

["<u>Bi-fuel gas(eous) vehicle</u>" means a bi-fuel vehicle that can run on petrol and also on either LPG, NG/biomethane or hydrogen];

["<u>Bi-fuel vehicle</u>" means a vehicle with a powertrain containing two separate fuel storage systems and a fuel delivery system transporting [forwarding] and that can run part-time on two different fuels and is designed to run on only one fuel at a time];

["<u>Bi-Fuel vehicle</u>" means a vehicle (a) with a powertrain containing two separate fuel storage systems, each having a dedicated delivery system, and (b) which can run part-time on two different fuels but on only one fuel at a time];

["[Internal] <u>Combustion engine ([I]CE)</u>" means an energy converter with intermittent or continuous oxidation of combustible material];

["<u>Compression ignition engine</u>" means an engine which uses the latent heat built up by compressing air inside a combustion chamber as the means for igniting fuel];

["Compression ignition engine" means an engine in which combustion is initiated by heat produced from compression of the air in the cylinder or combustion space];

"<u>Drivetrain</u>" means the connected elements of the powertrain, downstream of the final energy converter;

["<u>Dual-fuel vehicle</u>" means a vehicle containing a fuel delivery system blending two different fuels taken from two separated fuel storage systems, where the consumed amount of one of the fuels relative to the other one may vary depending on operation];

["Flex-fuel vehicle" means a vehicle with one fuel storage system containing a blended fuel];

["Fuel storage system" means a refillable chemical energy storage system on board of the vehicle];

["<u>Gaseous fuel system"</u> means a system composed of gaseous fuel storage, fuel delivery, metering and control components fitted to an engine in order to allow the engine to run on LPG, CNG or hydrogen as a mono-fuel, bi-fuel or multi-fuel application];

["Mono-fuel gaseous vehicle" means a mono-fuel vehicle that runs primarily on LPG, NG/biomethane, or hydrogen but may also have a petrol system for emergency purposes or for starting only, where the petrol tank does not contain more than [15] litres of petrol];

["Mono-fuel vehicle" means a vehicle that is designed to run primarily on one type of fuel];

"<u>Powertrain</u>" means the total combination in a vehicle, of energy storage system(s), energy converter(s) and [drivetrain]/[power-transmission system](s) for the purpose of vehicle propulsion, including peripherals and excluding ancillaries;

["[Internal] combustion engine ([I]CE) vehicle" means a vehicle equipped with a powertrain containing exclusively of at least one [I]CE as energy converter];

["<u>Semi-automatic transmission</u>" means a transmission which is shifted by hand but requires no manual operation of the clutch];

#### **GENERAL**

"Ambient condition test" means the measurement of the vehicle's cold start exhaust emissions and fuel economy at a initial test cell temperature of 296  $\pm$  3 K (296 +/- 5 deg K during the test) and at a humidity of 5.5  $\leq$  H  $\leq$  12.2 g H2O / kg dry air.

["<u>Ancillary devices</u>" are additional equipment which consume energy from the vehicle but are not required for vehicle operation];

"<u>Catalytic converter</u>" or "<u>catalyst</u>" means an emission pollution control device which converts products of combustion in the exhaust of an engine to other substances by way of catalysed chemical reactions;

"Cycle energy demand" means the calculated positive energy required by the vehicle to drive the prescribed cycle;

["Predominant mode" means a single mode which is always selected when the vehicle is switched on regardless of the operating mode selected when the vehicle was previously shut down. The default mode must not be able to be redefined];

"Exhaust aftertreatment device or system" means any emission-reducing device or system that is installed downstream of the engine;

"Fuel consumption" means the amount of fuel consumed during a test;

["Green house gas (GHG) emissions" means gases emitted from the propulsion that contribute to the greenhouse effect by absorbing infrared radiation produced by solar warming of the Earth's surface];

- ["Mode" means a distinct driver-selectable condition which could affect emissions, and fuel and energy consumption];
- ["<u>Positive ignition engine</u>" means an engine in which combustion is initiated by a localised high temperature in the cylinder produced by energy supplied from a source external to the cylinder];
- "Reference conditions" with regards to calculating the mass of emissions means the conditions upon which gas densities are based, namely 101.325 kPa and 273.15 K;
- "<u>Tailpipe emissions</u>" or "<u>exhaust emissions</u>" means the emission of gaseous and solid species at the tailpipe of the vehicle;
- "<u>Gaseous emissions species</u>" means all compounds emitted in gaseous form from the vehicle exhaust as required to be measured by this regulation;
- "<u>Useful life</u>" means the relevant period of distance and/or time over which compliance with the relevant gaseous and particulate emission limits has to be assured;

## PM/PN

- "Buoyancy correction" means correction of the PM mass measurement to account for the effect of filter buoyancy in air;
- "Particle number (PN)" means the total number of solid particles emitted from the vehicle exhaust and as specified in this regulation;
- "<u>Particulate aftertreatment device</u>" means an exhaust aftertreatment system designed to reduce emissions of particulate matter (PM) and particle number (PN);
- "Particulate matter (PM)" means any material that is collected on the filter media from diluted vehicle exhaust as specified in this regulation;

## **CYCLE**

- "Class 1 vehicles" means vehicles having a power to unladen mass ratio of  $\leq 22$  W/kg;
- "Class 2 vehicles" means vehicles having a power to unladen mass ratio of > 22 but  $\le 34$  W/kg;
- "Class 3 vehicles" means vehicles having a power to unladen mass ratio of > 34 W/kg;
- "<u>WLTC city cycle</u>" means the combination of the low and medium phases, depending on the class of vehicle;
- "Rated engine power (P<sub>rated</sub>)" means engine power in kW as specified in Regulation No. 85;
- "Maximum speed  $(v_{max})$ " means the maximum speed of a vehicle as declared by the manufacturer according to Regulation No. 68 and not that which may be artificially restricted;

"Rated engine speed" means the range of rotational speed at which an engine develops maximum power;

## **PROCEDURE**

## ["Continuous regeneration"];

" $\underline{\text{deNO}_x \text{ system}}$ " means an exhaust aftertreatment system, such as passive and active lean  $NO_x$  catalysts,  $NO_x$  adsorbers and selective catalytic reduction (SCR) systems, designed to reduce emissions of oxides of nitrogen ( $NO_x$ ) (e.g.);

"<u>Driver-selectable operating mode</u>" mean any mode of operation which can be selected by the driver of the vehicle;

["<u>Multi-mode</u>" means that more than one operating mode can be selected by the driver or automatically set];

## ["Multiplicative factor"];

9

["Additive factor"];

"<u>Periodic regeneration</u>" means the regeneration of an exhaust aftertreatment device that does not occur during every WLTP test cycle, but requires a regeneration process in less than 4,000 km of normal vehicle operation.

## B.4.: SYMBOLS

# 1.1. General symbols

| Symbol                                             | Unit                  | Term                                                                                                                                                       | Subject         |
|----------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| V <sub>max</sub>                                   | km/h                  | maximum velocity                                                                                                                                           |                 |
| $P_{mr}$                                           | W/kg                  | power to unladen mass ratio                                                                                                                                | cycle           |
| P <sub>rated</sub>                                 | kW                    | maximum rated engine power as declared by the manufacturer                                                                                                 | cycle           |
| S                                                  | min <sup>-1</sup>     | rated engine speed at which an engine develops its maximum power                                                                                           | cycle           |
| n <sub>idle</sub>                                  | min <sup>-1</sup>     | idling speed                                                                                                                                               | cycle           |
| n <sub>min_drive</sub>                             | min <sup>-1</sup>     | minimum engine speed for short trips                                                                                                                       | cycle           |
| ng <sub>max</sub>                                  |                       | number of forward gears                                                                                                                                    | cycle           |
| ndv <sub>i</sub>                                   |                       | ratio determined by dividing n in min <sup>-1</sup> by v in km/h for                                                                                       | cycle           |
|                                                    |                       | each gear i, $i = 1$ to $ng_{max}$                                                                                                                         |                 |
| m <sub>t</sub>                                     | kg                    | test mass of the vehicle                                                                                                                                   | cycle           |
| $f_0, f_1, f_2$                                    |                       | $f_0$ , $f_1$ , $f_2$ , driving resistance coefficients                                                                                                    | cycle           |
| $P_{\text{wot}}(n_{\text{norm}})/P_{\text{rated}}$ |                       | full load power curve, normalised to rated power and (rat-                                                                                                 | cycle           |
|                                                    |                       | ed engine speed – idling speed).                                                                                                                           |                 |
| P <sub>required,j</sub>                            | kW                    | power required at time j seconds                                                                                                                           | cycle           |
| $f_0$                                              |                       | road load coefficient in N                                                                                                                                 | cycle           |
| $f_1$                                              | N/(km/h)              | is the road load parameter dependent on velocity                                                                                                           | cycle           |
| $f_2$                                              | N/(km/h) <sup>2</sup> | is the road load parameter based on the square of velocity                                                                                                 | cycle           |
| $\overline{v_{j}}$                                 | km/h                  | vehicle velocity at second j                                                                                                                               | cycle           |
| $a_j$                                              | m/s²                  | vehicle acceleration at time j seconds                                                                                                                     | cycle           |
| $m_t$                                              | kg                    | vehicle test mass                                                                                                                                          | cycle           |
| kr                                                 |                       | a factor taking the inertial resistances of the drivetrain during acceleration into account and set to 1.1                                                 | cycle           |
| n <sub>min</sub>                                   |                       | minimum gear to be used                                                                                                                                    | cycle; conflict |
|                                                    |                       |                                                                                                                                                            | with n for rpm  |
| n <sub>max</sub>                                   |                       | maximum gear to be used                                                                                                                                    | cycle           |
| $P_{norm\_}$                                       |                       | percentage of rated power available at n <sub>norm_i, j</sub> at full load condition from the normalised full load power curve                             | cycle           |
| SM                                                 |                       | safety margin accounting for the difference between sta-<br>tionary full load condition power curve and the power<br>available during transient conditions | cycle           |
| $\Delta P_{t}$                                     | kPa                   | tyre pressure adjustment                                                                                                                                   | road load       |
| $T_{soak}$                                         | K                     | tyre soaking temperature                                                                                                                                   | road load       |
| $T_{amb}$                                          | K                     | test ambient temperature                                                                                                                                   | road load       |
| p                                                  |                       | statistical accuracy                                                                                                                                       | road load       |
| n                                                  |                       | number of pairs of measurements                                                                                                                            | road load       |
| $\Delta T_i$                                       | S                     | mean coastdown time at speed v <sub>j</sub>                                                                                                                | road load       |
| $\Delta T_{ji}$                                    | S                     | harmonised average coastdown time of the i <sup>th</sup> pair of measurements at speed v <sub>i</sub>                                                      | road load       |
| $\Delta T_{jai}$ , $\Delta T_{jbi}$                | S                     | coastdown times of the $i^{th}$ measurement at speed $V_j$ in each direction, respectively                                                                 | road load       |
| σ                                                  |                       | standard deviation                                                                                                                                         | road load       |
| t                                                  |                       | coefficient                                                                                                                                                | road load       |
| $F_{ja}, F_{jb}$                                   | N                     | total vehicle resistance at velocity v <sub>i</sub> in directions a and b                                                                                  | road load       |
| <u>- ja, - jo</u><br>m                             | kg                    | average of the test vehicle masses at the beginning and end                                                                                                | road load       |

| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit                                             | Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subject                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | of road load determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| $m_r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kg                                               | equivalent effective mass of all the wheels and vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | road load                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | components rotating with the wheels during coastdown on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | the road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| $\Delta t_{ja}' \Delta t_{jb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                | mean coastdown times in directions a and b, respectively,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | road load                 |
| in in its angle in |                                                  | corresponding to velocity v <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| F <sub>a</sub> , F <sub>b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                | total vehicle resistances in each direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | road load                 |
| $f_{0a}, f_{0b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                | constant terms in each direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | road load                 |
| 10a, 10b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,                                               | constant terms in each direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Touc Touc                 |
| $f_{1a}, f_{1b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N·h/km                                           | first-order term coefficients of vehicle velocity in each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | road load                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| $f_{2a}, f_{2b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N \cdot (h/km)^2$                               | second-order term coefficients of the vehicle velocity in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | road load                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | each direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | km/h                                             | vehicle velocity average total resistance F <sub>avg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | road load                 |
| F <sub>avg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                | average total resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | road load                 |
| $f_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | average of coefficients $f_{0a}$ and $f_{0b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | road load                 |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | normal CD                 |
| $f_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | average of coefficients f <sub>1a</sub> and f <sub>1b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | road load                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | normal CD                 |
| $f_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | average of coefficients f <sub>2a</sub> andf <sub>2b</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | road load                 |
| • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | la mana di salamana di salaman | normal CD                 |
| $\Delta t_{ m j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                | harmonised average of alternate coastdown time measurements at velocity v <sub>i</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | road load                 |
| Fj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N                                                | average total resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | road load                 |
| $\Delta t_{ja}$ , $\Delta t_{jb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                | coastdown times at speed $V_i$ in each direction, respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | road load                 |
| m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg                                               | test vehicle mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | road load ane-            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118                                              | test vemere mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mometer                   |
| m <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kg                                               | equivalent effective mass of all the wheels and vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | road load ane-            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | components rotating with the wheels during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mometer                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | coastdown on the road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| dv/dt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | km/h/s                                           | acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | road load ane-            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                | first and an apafficient of machanical duag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mometer                   |
| $a_{\text{mech}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IN                                               | first order coefficient of mechanical drag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | road load ane-<br>mometer |
| $b_{\mathrm{mech}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/(km/h)                                         | second order coefficient of mechanical drag, N/(km/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | road load ane-            |
| - meen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - " (                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mometer                   |
| C <sub>mech</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N/(km/h)^2$                                     | third order coefficient of mechanical drag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | road load ane-            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mometer                   |
| $\mathbf{v}_{\mathbf{r}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | km/h                                             | relative wind velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | road load ane-            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mometer                   |
| ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg/m <sup>3</sup>                                | air density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | road load ane-            |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $m^2$                                            | projected frontal area of a vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mometer road load ane-    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111                                              | projected frontal area of a venicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mometer                   |
| $a_i (i = 0 \text{ to } 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | degrees <sup>-n</sup>                            | aerodynamic drag coefficient as a function of yaw angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | road load ane-            |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mometer                   |
| $a_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | coefficient for aerodynamic drag as a function of yaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | road load ane-            |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del> | angle;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mometer                   |
| θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | degrees                                          | yaw-angle apparent wind relative to the direction of vehi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | road load ane-            |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                | cle travel total resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mometer<br>road load ane- |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                               | total resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mometer                   |
| $v_{ m jm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | km/h                                             | mean velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | road load torque          |
| ببنر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | meter                     |
| $C_{jm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N⋅m                                              | mean torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | road load torque          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | meter                     |

| Symbol                                | Unit                  | Term                                                                                                                     | Subject                   |
|---------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|
| V <sub>ji</sub>                       | km/h                  | vehicle velocity of the i <sup>th</sup> data set                                                                         | road load torque<br>meter |
| k                                     |                       | number of data sets                                                                                                      | road load torque<br>meter |
| C <sub>ji</sub>                       | Nm                    | torque of the i <sup>th</sup> data set                                                                                   | road load torque<br>meter |
| $C_{js}$                              | Nm                    | compensation term for speed drift                                                                                        | road load torque<br>meter |
| r <sub>j</sub> or r' <sub>j</sub>     | m                     | dynamic tyre radius                                                                                                      | road load torque<br>meter |
| N                                     | s <sup>-1</sup>       | rotational frequency of the driven tyre                                                                                  | road load torque<br>meter |
| $\alpha_{\rm j}$                      | m/s <sup>2</sup>      | mean acceleration                                                                                                        | road load torque<br>meter |
| $t_{i}$                               | S                     | time at which the i <sup>th</sup> data set was sampled                                                                   | road load torque<br>meter |
| C <sub>j</sub>                        | Nm                    | running resistance at velocity vj                                                                                        | road load torque<br>meter |
| $C_{jmi}$                             | Nm                    | average torque of the i <sup>th</sup> pair of data sets at velocity v <sub>j</sub>                                       | road load torque<br>meter |
| C <sub>jmai</sub> , C <sub>jmbi</sub> | Nm                    | mean torques of the $i^{th}$ data sets at velocity $v_j$                                                                 | road load torque<br>meter |
| S                                     | Nm                    | standard deviation                                                                                                       | road load torque<br>meter |
| V <sub>jmi</sub> ,                    | V <sub>jmi</sub> ,    | average velocity                                                                                                         | road load torque<br>meter |
| V <sub>jmai</sub> , V <sub>jmbi</sub> | km/h                  | mean speeds of the i <sup>th</sup> pair of data sets at velocity v <sub>j</sub> for each direction, a and b respectively | road load torque<br>meter |
| $C_a$ , $C_b$                         | Nm                    | running resistances in each direction                                                                                    | road load torque<br>meter |
| c <sub>0a</sub> , c <sub>0b</sub>     | Nm                    | constant terms in each direction                                                                                         | road load torque<br>meter |
| $c_{1a}$ , $c_{1b}$                   | Nm(h/km)              | coefficients of the first-order term in each direction                                                                   | road load torque<br>meter |
| $c_{2a}$ , $c_{2b}$                   | Nm(h/km) <sup>2</sup> | coefficients of the second-order term in each direction                                                                  | road load torque<br>meter |
| C*                                    | Nm                    | corrected total running resistance                                                                                       | road load torque<br>meter |
| $K_2$                                 |                       | correction factor for air resistance                                                                                     | road load                 |
| T                                     | K                     | mean atmospheric temperature                                                                                             | road load                 |
| ρ                                     | kPa                   | mean atmospheric pressure                                                                                                | road load                 |
| $K_0$                                 | K-1                   | correction factor for rolling resistance                                                                                 | road load                 |
| $\mathbf{w}_1$                        | N                     | wind correction resistance                                                                                               | road load                 |
| $V_{\mathrm{W}}$                      | m/s                   | average wind velocity alongside the test road during the coastdown test                                                  | road load                 |
| W <sub>2</sub>                        | N                     | wind correction resistance (torque-meter method)                                                                         | road load                 |
| F*                                    | N                     | corrected total resistance determined by the conventional coastdown                                                      | road load                 |
| $F_d$                                 | N                     | chassis dynamometer setting load                                                                                         | dyno load set-<br>ting    |
| V                                     | km/h.                 | speed of the chassis dynamometer roller                                                                                  | dyno load set-<br>ting    |
| $F_{tj}$                              | N                     | target road load at reference speed v <sub>i</sub>                                                                       | dyno CD                   |
| V <sub>j</sub>                        | km/h                  | j <sup>th</sup> reference speed                                                                                          | dyno CD                   |
| ε <sub>i</sub>                        | per cent              | error of the simulated road load                                                                                         | dyno CD                   |
| $A_d, B_d, C_d,$                      |                       | arbitrary initial dynamometer coefficients                                                                               | initial setting           |
| u, u, u,                              |                       | , , , , , , , , , , , , , , , , , , , ,                                                                                  | torque meter              |

| Symbol                        | Unit               | Term                                                                                                                          | Subject                                                                 |
|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| $a_t, b_t, c_t$               |                    | target torque coefficients                                                                                                    | initial setting<br>torque meter                                         |
| $F_{mj}$                      | N                  | measured road load for each reference speed vj, in newtons                                                                    | CD, calculation of simulated road load                                  |
| $m_d$                         | kg                 | equivalent inertia-mass of the chassis dynamometer                                                                            | CD, calculation of simulated road load                                  |
| m' <sub>r</sub>               | kg                 | equivalent effective mass of drive wheels and vehicle components rotating with the wheels during coastdown on the dynamometer | CD, calculation of simulated road load                                  |
| $\Delta T_{\rm j}$            | S                  | coastdown time corresponding to speed $\boldsymbol{v}_j$                                                                      | CD, calculation of simulated road load                                  |
| $V_{\rm ji}$                  | km/h               | vehicle speed of the i <sup>th</sup> data set                                                                                 | Calculation of<br>simulated road<br>load, torque<br>meter               |
| $C_{ji}$                      | Nm                 | torque of the i <sup>th</sup> data set                                                                                        | Calculation of<br>simulated road<br>load, torque<br>meter               |
| $C_{jc}$                      | Nm                 | compensation term for the speed drift                                                                                         | Calculation of<br>simulated road<br>load, torque<br>meter               |
| $F_{dj}$ *                    | N                  | new chassis dynamometer setting load                                                                                          | Adjustment of chassis dyna-<br>mometer load setting, CD method          |
| F <sub>j</sub>                | N                  | adjustment road load                                                                                                          | Adjustment of chassis dyna-<br>mometer load setting, CD method          |
| $F_{sj}$                      | N                  | simulated road load at reference speed $V_{\rm j}$ ,                                                                          | Adjustment of chassis dynamometer load setting, CD method               |
| $F_{ij}$                      | N                  | target road load at reference speed $V_{\rm j}$ ,                                                                             | Adjustment of<br>chassis dyna-<br>mometer load<br>setting, CD<br>method |
| $A_d^*$ , $B_d^*$ and $C_d^*$ | coeffi-<br>cients. | new chassis dynamometer setting coefficients                                                                                  | Adjustment of<br>chassis dyna-<br>mometer load<br>setting, CD<br>method |
| F* <sub>dj</sub>              | N                  | new chassis dynamometer setting load                                                                                          | Adjustment of chassis dyna-<br>mometer load setting using torque method |
| $f_{\rm ej}$                  | N                  | adjustment road load                                                                                                          | Adjustment of chassis dyna-mometer load                                 |

| Symbol                        | Unit                   | Term                                                        | Subject         |
|-------------------------------|------------------------|-------------------------------------------------------------|-----------------|
|                               |                        |                                                             | setting using   |
|                               |                        |                                                             | torque method   |
| $f_{si}$                      | N                      | simulated road load at reference speed v <sub>i</sub>       | Adjustment of   |
| ·                             |                        |                                                             | chassis dyna-   |
|                               |                        |                                                             | mometer load    |
|                               |                        |                                                             | setting using   |
|                               |                        |                                                             | torque method   |
| $f_{tj}$                      | N                      | target road load at reference speed v <sub>j</sub>          | Adjustment of   |
|                               |                        |                                                             | chassis dyna-   |
|                               |                        |                                                             | mometer load    |
|                               |                        |                                                             | setting using   |
|                               |                        |                                                             | torque method   |
| $A_d^*$ , $B_d^*$ and $C_d^*$ | coeffi-                | new chassis dynamometer setting coefficients                | Adjustment of   |
|                               | cients                 |                                                             | chassis dyna-   |
|                               |                        |                                                             | mometer load    |
|                               |                        |                                                             | setting using   |
|                               |                        |                                                             | torque method   |
|                               | 2                      |                                                             |                 |
| $V_0$                         | m <sup>3</sup> /rev    | PDP CVS pump flow rate at T <sub>p</sub> and P <sub>p</sub> | PDP CVS         |
| $Q_s$                         | m <sup>3</sup> /min    | PDP CVS air flow at 101.325 kPa and 273.15 K                | PDP CVS         |
| $T_p$                         | K                      | PDP CVS pump inlet temperature                              | PDP CVS         |
| $P_p$                         | kPa                    | PDP CVSabsolute pump inlet pressure                         | PDP CVS         |
| N                             | min <sup>-1</sup>      | PDP CVS pump revolutions                                    | inconsistency   |
| $\mathbf{x}_0$                |                        | PDP pump speed correlation function                         | PDP CVS         |
| $\Delta P_p$                  | kPa                    | pressure differential from pump inlet to pump outlet        | PDP CVS         |
| P <sub>e</sub>                | kPa                    | absolute outlet pressure                                    | PDP CVS         |
| D <sub>0</sub> , M, A and B   |                        | the slope-intercept constants describing the linear least-  | PDP CVS         |
|                               |                        | square fit to generate PDP calibration equations            |                 |
| $Q_s$                         | m <sup>3</sup> /min    | CFV CVSflow                                                 | CFV CVS         |
| $T_{\rm v}$                   | K                      | temperature at the venturi inlet                            | CFV CVS         |
| $P_{v}$                       | kPa                    | absolute pressure at the venturi inlet                      | CFV CVS         |
| $K_v$                         | coefficient            | calibration coefficient for each test point                 | CFV CVS         |
| $C_d$                         | coefficient            | discharge coefficient of an SSV CVS                         | SSV CVS         |
| Q <sub>SSV</sub>              | $m^3/s$                | airflow rate at standard conditions (101.3 kPa, 273 K)      | SSV CVS         |
| T                             | K                      | temperature at the venturi inlet                            | SSV CVS         |
| dV                            | m                      | diameter of the SSV throat                                  | SSV CVS         |
| $r_p$                         | ratio                  | ratio of SSV throat to inlet absolute static pressure       | SSV CVS         |
| r <sub>D</sub>                | ratio                  | ratio of the SSV throat diameter to the inlet pipe inner    | SSV CVS         |
| -                             |                        | diameter                                                    |                 |
| Re                            |                        | Reynolds number                                             | SSV CVS         |
| μ                             | kg/ms                  | absolute or dynamic viscosity of the gas                    | SSV CVS         |
| b                             | kg/ms K <sup>0.5</sup> | an empirical constant                                       | SSV CVS         |
| S                             | K                      | an empirical constant                                       | SSV CVS         |
| $\frac{z}{Q_s}$               | m <sup>3</sup> /min    | flow-rate in m <sup>3</sup> /min at 273.2 K and 101.33 kPa  | UFM CVS         |
| Qreference                    | m³/min                 | flow rate in m³/min at 273.2 K and 101.33 kPa of the cali-  | UFM CVS         |
| $K_{v}$                       | coefficient            | bration flow meter $K_v = \text{calibration coefficient}$   | UFM CVS         |
| v                             | Cocincion              | 22y Candidation Controller                                  | 3111275         |
| $V_{\rm ep}$                  |                        | volume of diluted exhaust gas flowing through particular    | double dilution |
| -r                            |                        | filter under standard conditions                            |                 |
| V <sub>set</sub>              |                        | volume of the double diluted exhaust gas passing through    | double dilution |
| SUL                           |                        | the particulate collection filters                          |                 |
| $V_{ m ssd}$                  |                        | volume of secondary air                                     | double dilution |
| m <sub>uncor</sub>            | mg                     | uncorrected particulate sample mass                         | buoyancy cor-   |
| uiicoi                        | 5                      |                                                             |                 |

| Symbol                      | Unit              | Term                                                                                                                           | Subject                  |
|-----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $\rho_a$                    | kg/m <sup>3</sup> | air density                                                                                                                    | buoyancy cor-<br>rection |
| $\rho_{\rm w}$              | kg/m <sup>3</sup> | density of balance calibration weight                                                                                          | buoyancy cor-<br>rection |
| $\rho_{\rm f}$              | kg/m <sup>3</sup> | density of the particulate sampling filter                                                                                     | buoyancy cor-<br>rection |
| $p_b$                       | kPa               | total atmospheric pressure                                                                                                     | buoyancy cor-            |
| Ta                          | K                 | air temperature in the balance environment                                                                                     | buoyancy correction      |
| $N_{in}(d_i)$               |                   | upstream particle number concentration for particles of diameter d <sub>i</sub>                                                | PN                       |
| $N_{out}(d_i)$              |                   | downstream particle number concentration for particles of diameter d <sub>i</sub>                                              | PN                       |
| $d_i$                       |                   | particle electrical mobility diameter                                                                                          | PN                       |
| M'sij                       | g/km              | mass emissions of species (i) over a cycle (or equivalent                                                                      | Single regenera-         |
| ±v± sij                     | 5/ 1111           | engine test bench cycle) without regeneration                                                                                  | tion                     |
| M' <sub>rij</sub>           | g/km              | mass emissions of species (i) in g/km over one cycle (or                                                                       | Single regenera-         |
| rij                         | 8/1111            | equivalent engine test bench cycle) during regeneration                                                                        | tion                     |
| $M_{\rm si}$                | g/km              | mean mass emission of species (i) in without regeneration                                                                      | Single regenera-         |
| $M_{ri}$                    | g/km              | mean mass emission of species (i) during regeneration                                                                          | Single regenera-         |
| $\mathbf{M}_{\mathrm{pi}}$  | g/km              | mean mass emission of species (i)                                                                                              | Single regenera-         |
| d                           |                   | number of operating cycles required for regeneration                                                                           | Single regenera-         |
| D                           |                   | number of operating cycles between two cycles where regenerative phases occur                                                  | Single regenera-         |
| $M_{\rm si}$                | g/km              | mean mass of all events (j) of species (i) without regeneration                                                                | Multiple regeneration    |
| $M_{ri}$                    | g/km              | mean mass emission of all events (j) of species (i) during regeneration                                                        | Multiple regeneration    |
| $\mathbf{M}_{\mathrm{pi}}$  | g/km              | mean mass emission of all events (j) of species (i)                                                                            | Multiple regeneration    |
| $M_{sij}$                   | g/km              | mean mass emission of event (j) of species (i) without regeneration                                                            | Multiple regeneration    |
| $\mathbf{M}_{\mathrm{rij}}$ | g/km              | mean mass emission of event (j) of species (i) during regeneration                                                             | Multiple regeneration    |
| $M'_{sij,k} \\$             | g/km              | mass emissions of event (j) of species (i) over one cycle without regeneration; k test points                                  | Multiple regeneration    |
| $M'_{\mathrm{rij},k}$       | g/km              | mass emissions of event (j) of species (i) over one cycle during regeneration; k test points                                   | Multiple regeneration    |
| n <sub>j</sub>              |                   | number of test points of event (j) at which emissions measurements are made between two cycles where regenerative phases occur | Multiple regeneration    |
| $d_j$                       |                   | number of operating cycles of event (j) required for regeneration                                                              | Multiple regeneration    |
| $D_{j}$                     |                   | number of operating cycles of event (j) between two cycles where regenerative phases occur                                     | Multiple regeneration    |
| V                           | l/test            | uncorrected diluted gas volume per test                                                                                        | PDP air, gas volume      |
| $P_{B}$                     | kPa               | test room barometric pressure                                                                                                  | PDP air, gas volume      |
| $\mathbf{P}_1$              | kPa               | vacuum at the inlet to the positive displacement pump                                                                          | PDP air, gas             |
| Т                           | K                 | relative to the ambient barometric pressure                                                                                    | volume                   |
| $T_p$                       | V                 | average temperature of the diluted exhaust gas entering the positive displacement pump during the test                         | PDP air, gas<br>volume   |

| Symbol                | Unit                             | Term                                                                                                | Subject                    |
|-----------------------|----------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|
| $M_{\rm i}$           | g/km                             | the mass emission of emissions species (i)                                                          | mass emissions             |
| $V_{mix}$             |                                  | volume of the diluted exhaust gas corrected to standard conditions (273.15 K and 101.325 kPa)       | mass emissions             |
| $Q_{\rm i}$           | g/l                              | density of emissions species (i) at standard conditions (273.15 K and 101.325 kPa)                  | mass emissions             |
| KH                    |                                  | humidity correction factor                                                                          | mass emissions             |
| $C_{i}$               |                                  | concentration of emissions species (i) corrected by the amount of species (i) in dilution air       | mass emissions             |
| d                     | km                               | distance travelled over the cycle or phase                                                          | mass emissions             |
| Ce                    | ppm                              | measured concentration of species (i) in diluted gas                                                | mass emissions             |
| $C_d$                 | ppm                              | concentration of gaseous species (i) in dilution air                                                | mass emissions             |
| DF                    |                                  | dilution factor                                                                                     | mass emissions             |
| $C_{CO2}$             | per cent<br>volume               | concentration of CO <sub>2</sub> in diluted exhaust gas                                             | mass emissions             |
| $C_{HC}$              | ppm car-<br>bon equiv-<br>alent  | concentration of HC in diluted exhaust gas                                                          | mass emissions             |
| C <sub>CO</sub>       | ppm                              | concentration of CO in diluted exhaust gas                                                          | mass emissions             |
| $C_{e}$               |                                  | flow-weighted average concentration                                                                 | flow-weighted emissions    |
| q <sub>vCVS</sub> (i) |                                  | CVS flow rate at time $t = i \times \Delta t$                                                       | flow-weighted emissions    |
| $C_{(i)}$             |                                  | concentration at time $t = i \times \Delta t$                                                       | flow-weighted emissions    |
| Δt                    | s                                | sampling interval                                                                                   | flow-weighted emissions    |
| V                     |                                  | CVS volume                                                                                          | flow-weighted emissions    |
| H <sub>a</sub>        | g/H <sub>2</sub> O/kg<br>dry air | absolute humidity                                                                                   | KH                         |
| R <sub>a</sub>        | per cent                         | relative humidity of ambient air                                                                    | KH                         |
| $P_d$                 | kPa                              | saturation vapour pressure at ambient temperature                                                   | KH                         |
| $P_B$                 | kPa                              | atmospheric pressure in test cell                                                                   | KH                         |
| $M_{\text{CO2,i}}$    | g/km                             | CO <sub>2</sub> mass emissions for vehicle i in the vehicle family                                  | CO <sub>2</sub> regression |
| M <sub>CO2,L</sub>    | g/km                             | CO <sub>2</sub> mass emissions for vehicle i at TM <sub>L,actual</sub>                              | CO <sub>2</sub> regression |
| $OM_i$                | kg                               | mass of optional equipment installed on vehicle i                                                   | CO <sub>2</sub> regression |
| $\Delta M_{CO2}$      | g/km                             | $\Delta M_{CO2}$ is the difference in mass $CO_2$ emissions at $TM_{H,}$ actual and $TM_{L,actual}$ | CO <sub>2</sub> regression |
| ΔΤΜ                   | kg                               | mass difference between $TM_{H,actual}$ and $TM_{L,actual}$                                         | CO <sub>2</sub> regression |
| P <sub>e</sub>        |                                  | particulate mass collected by one or more filters                                                   | PM                         |
| M <sub>p</sub>        | g/km                             | particulate mass emissions                                                                          | PM                         |
| V <sub>ap</sub>       | ??                               | volume of tunnel air flowing through the background particulate filter under standard conditions    | PM                         |
| Pa                    |                                  | particulate mass collected by background filter                                                     | PM                         |
| N                     | parti-<br>cles/km                | particle number emission                                                                            | PN                         |
| V                     | l/test                           | diluted exhaust gas volume corrected to standard conditions                                         | PN                         |
| k                     | factor                           | particle number calibration factor                                                                  | PN                         |
| $\overline{C_{s}}$    | [??]                             | corrected concentration of particles from diluted exhaust gas                                       | PN                         |
| $C_b$                 | [??]                             | dilution air or dilution tunnel background particle concen-                                         | PN                         |

| Symbol                          | Unit                          | Term                                                                                        | Subject                                  |
|---------------------------------|-------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|
|                                 |                               | tration                                                                                     |                                          |
| $\overline{f_r}$                | [??]                          | mean particle concentration reduction factor                                                | PN                                       |
| $f_{rb}$                        | [??]                          | mean particle concentration reduction factor for back-<br>ground air                        | PN                                       |
| d                               | km                            | cycle distance travelled                                                                    | PN                                       |
| d<br>C <sub>i</sub>             | particles/<br>cm <sup>3</sup> | discrete particle concentration measurement in diluted exhaust                              | PN                                       |
| n                               | - C111                        | number of discrete particle concentration measurements                                      | PN                                       |
| f                               | Hz                            | data logging frequency of particle counter                                                  | PN                                       |
|                                 |                               |                                                                                             |                                          |
| $M_{i,\mathrm{CD,j}}$           | mg/km                         | mass of the emissions species measured during the j <sup>th</sup> phase                     | OVC CD emissions                         |
| UF                              |                               | fractional utility factor                                                                   |                                          |
|                                 |                               |                                                                                             |                                          |
| $M_{i,weighted}$                | mg/km                         | utility factor-weighted exhaust emissions of each measured emission species                 | OVC CD, CS<br>emissions                  |
| $M_{i,CD,j}$                    | mg/km                         | mass species emissions measured during the j <sup>th</sup> charge-                          | OVC CD emis-                             |
| 3.6                             |                               | depleting phase                                                                             | sions                                    |
| $M_{i,CS}$                      | mg/km                         | mass species emissions for a charge-sustaining test                                         | OVC CS emissions                         |
| $\mathrm{CO}_{2,\mathrm{CD}}$   | g/km                          | utility factor-adjusted mass of CO <sub>2</sub> emissions during charge-depleting mode      | OVC CO <sub>2</sub>                      |
| $\mathrm{CO}_{2,\mathrm{CD,j}}$ | g/km                          | CO <sub>2</sub> emissions measured during the j <sup>th</sup> charge-depleting phase, g/km  |                                          |
| $FC_{CD}$                       | 1/100 km                      | utility factor-adjusted fuel consumption charge-depleting mode                              | OVC fuel cons.<br>CD mode                |
| $FC_{CD,j}$                     | 1/100 km                      | fuel consumption measured during the j <sup>th</sup> charge-depletion phase, 1/100 km       | OVC fuel cons.<br>CD mode                |
| $\Delta E_{REESS}$              | MJ                            | change in the electrical REESS energy content                                               | OVC CS fuel cons.                        |
| V <sub>REESS</sub>              | V                             | nominal REESS voltage                                                                       | OVC CS fuel cons.                        |
| RCB                             | Ah                            | REESS charging balance over a whole cycle                                                   | OVC CS fuel                              |
| E <sub>Fuel</sub>               | MJ                            | energy content of the consumed fuel                                                         | OVC CS fuel                              |
| CO <sub>2,weighted</sub>        | g/km                          | utility factor-weighted CO <sub>2</sub> emissions                                           | weighted CD and CS CO2                   |
| CO <sub>2,CD,j</sub>            | g/km                          | CO <sub>2</sub> emissions measured during the j <sup>th</sup> charge-depleting              | weighted CD<br>and CS CO2                |
| CO <sub>2,CS</sub>              | g/km                          | phase CO <sub>2</sub> emissions for the charge-sustaining test                              | weighted CD                              |
| $FC_{weighted}$                 | 1/100 km                      | utility factor-weighted fuel consumption, 1/100 km                                          | and CS CO2<br>weighted CD<br>and CS fuel |
| $FC_{CD,j}$                     | 1/100 km                      | fuel consumption measured during the j <sup>th</sup> charge-depleting phase                 | cons. weighted CD and CS fuel cons.      |
| FC <sub>CS</sub>                | 1/100 km                      | fuel consumption measured during the charge-sustaining test                                 | weighted CD<br>and CS fuel<br>cons.      |
| $C_{	ext{weighted}}$            | Wh/km                         | utility factor-weighted total energy consumption                                            | OVC elect.<br>energy                     |
| $C_{\mathrm{CD,j}}$             | Wh                            | calculated fraction of $E_{AC}$ used in the $j^{th}$ phase during the charge-depleting test | OVC elect.<br>energy                     |
| RCB <sub>i</sub>                | Ah                            | measured charge balance of the j <sup>th</sup> phase during the                             | OVC elect.                               |

| Symbol                         | Unit     | Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subject                     |
|--------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                |          | charge-depleting test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | energy                      |
| D <sub>i</sub>                 | km       | distance driven in the j <sup>th</sup> phase during the charge-depleting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OVC elect.                  |
| 3                              |          | test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | energy                      |
| E <sub>AC</sub>                | Wh       | measured recharged electric energy from the grid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVC elect.                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | energy                      |
| C                              | Wh/km    | electric energy consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OVC elect.                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | energy                      |
| $R_{cdc}$                      | km       | charge-depleting cycle range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OVC                         |
|                                |          | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elect.range                 |
| $CO_{2,n,cycle}$               | g/km     | CO <sub>2</sub> emissions over the n <sup>th</sup> drive cycle in charge-depleting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OVC CD cycle                |
|                                |          | operating condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | range                       |
| CO <sub>2,CD,average,n-1</sub> | g/km     | average CO <sub>2</sub> emissions in charge-depleting operating con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OVC CD cycle                |
|                                |          | dition until the n-1 <sup>th</sup> drive cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | range                       |
| $D_{j,cycle}$                  | km       | test distance travelled during j <sup>th</sup> drive cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OVC CD cycle                |
|                                | _        | the state of the s | range                       |
| $D_n$                          | km       | test distance travelled during the n <sup>th</sup> drive cycle in charge-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OVC CD cycle                |
|                                |          | depleting operating condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | range                       |
| $\Delta SOC_n$                 | per cent | change of state of charge during the n <sup>th</sup> drive cycle under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OVC CD cycle                |
| +GOG                           |          | charge-depleting conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | range                       |
| $\Delta SOC_{n-1}$             | per cent | change of state of charge during the n-1 <sup>th</sup> drive cycle under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OVC CD cycle                |
| 17                             | 1/100    | charge-depleting conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | range                       |
| $K_{\text{fuel}}$              | 1/100    | fuel consumption correction coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCB charge                  |
|                                | km/Ah    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| FCi                            | 1/100 km | fuel consumption measured during ith manufacturer's test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCB charge                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| Qi                             | Ah       | electricity balance measured during i <sup>th</sup> manufacturer's test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCB charge                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| $FC_0$                         | 1/100 km | fuel consumption at $\Delta E_{\text{batt}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RCB charge                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| FC                             | 1/100 km | fuel consumption measured during the test, 1/100 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RCB charge                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| FC'                            | km/l     | fuel consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RCB charge                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| $K_{CO2}$                      | g/km/Ah  | CO <sub>2</sub> emissions correction coefficient, g/km/Ah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RCB charge                  |
|                                |          | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | compensation                |
| $M_{\rm i}$                    | g/km     | CO <sub>2</sub> emissions measured during i <sup>th</sup> manufacturer's test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RCB charge                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | compensation                |
| $\mathbf{M}_0$                 | g/km     | CO <sub>2</sub> emissions at zero REESS energy balance, g/km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO <sub>2</sub> emission at |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zero REESS                  |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | energy balance              |
|                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(M_0)$                     |

# 1.2. Chemical symbols and abbreviations

| $C_1$                            | Carbon 1 equivalent hydrocarbon |
|----------------------------------|---------------------------------|
| CH <sub>4</sub>                  | Methane                         |
| $C_2H_6$                         | Ethane                          |
| НСНО                             | Formaldehyde                    |
| CH <sub>3</sub> CHO              | Acetaldehyde                    |
| C <sub>2</sub> H <sub>5</sub> OH | Ethanol                         |
| $C_3H_8$                         | Propane                         |
| CO                               | Carbon monoxide                 |
| $CO_2$                           | Carbon dioxide                  |
| DOP                              | Di-octylphtalate                |

| THC    | Total hydrocarbons (All compounds measurable by an FID) |
|--------|---------------------------------------------------------|
| NMNEOG | Non-methane, non-ethanol organic gases                  |
| $H_2O$ | Water                                                   |
| NMHC   | Non-methane hydrocarbons                                |
| $NO_x$ | Oxides of nitrogen                                      |
| NO     | Nitric oxide                                            |
| $NO_2$ | Nitrogen dioxide                                        |
| $N_2O$ | Nitrous oxide                                           |

## 1.3. General abbreviations

| CFV                     | Critical flow venturi                                                                  |
|-------------------------|----------------------------------------------------------------------------------------|
| CLD, CLA                | Chemiluminescent detector/analyser                                                     |
| CVS                     | Constant Volume Sampling                                                               |
| deNO <sub>x</sub>       | 1 0                                                                                    |
| ECD                     | NO <sub>x</sub> aftertreatment system                                                  |
| ECD                     | Electron capture detector  Evaporation tube                                            |
|                         |                                                                                        |
| Extra High <sub>2</sub> | WLTC cycle extra high speed phase for class 2 vehicles                                 |
| Extra High <sub>3</sub> | WLTC cycle extra high speed phase for class 3 vehicles Flame ionization detector       |
| FID                     |                                                                                        |
| FTIR<br>GC              | Fourier tansform infrared analyser                                                     |
|                         | Gas chromatograph                                                                      |
| HEPA                    | High efficiency particulate air (filter)                                               |
| HFID                    | Heated flame ionization detector                                                       |
| High <sub>2</sub>       | WLTC cycle high speed phase for class 2 vehicles                                       |
| High <sub>3-1</sub>     | WLTC cycle high speed phase for class 3 vehicles with $v_{max} \le 120$ km/h           |
| High <sub>3-2</sub>     | WLTC cycle high speed phase for class 3 vehicles with $v_{max} > 120$                  |
|                         | km/h                                                                                   |
| LoD                     | Limit of detection                                                                     |
| LoQ                     | Limit of quantification                                                                |
| Low <sub>1</sub>        | WLTC cycle low speed phase for class 1 vehicles                                        |
| Low <sub>2</sub>        | WLTC cycle low speed phase for class 2 vehicles                                        |
| Low <sub>3</sub>        | WLTC cycle low speed phase for class 3 vehicles                                        |
| Medium <sub>1</sub>     | WLTC cycle medium speed phase for class 1 vehicles                                     |
| Medium <sub>2</sub>     | WLTC cycle medium speed phase for class 2 vehicles                                     |
| Medium <sub>3-1</sub>   | WLTC cycle medium speed phase for class 3 vehicles with $v_{max} \le 120 \text{ km/h}$ |
| Medium <sub>3-2</sub>   | WLTC cycle medium speed phase for class 3 vehicles with $v_{max} > 120 \text{ km/h}$   |
| LPG                     | Liquefied petroleum gas                                                                |
| NDIR                    | Non-dispersive infrared (analyser)                                                     |
| NMC                     | Non-methane cutter                                                                     |
| PAO                     | Poly-alpha-olefin                                                                      |
| PCF                     | Particle pre-classifier                                                                |
| PDP                     | Positive displacement pump                                                             |
| Percent FS              | Per cent of full scale                                                                 |
| PM                      | Particulate matter                                                                     |
| PN                      | Partical number                                                                        |
| PNC                     | Particle number counter                                                                |
| PND <sub>1</sub>        | First particle number dilution device                                                  |
| PND <sub>2</sub>        | Second particle number dilution device                                                 |
| PTS                     | Particle transfer system                                                               |
| PTT                     | Particle transfer tube                                                                 |
| QCL-IR                  | Infra-red quantum cascade laser                                                        |
| R <sub>cda</sub>        | Charge-depleting actual range                                                          |
| SSV                     | Subsonic venturi                                                                       |
| USFM                    | Ultra-Sonic flow meter                                                                 |
| VPR                     | Volatile particle remover                                                              |
|                         | 1 · · · · · · · · · · · · · · · · · · ·                                                |

## **B.5.: GENERAL REQUIREMENTS**

## 1. General requirements

- 1.1. The vehicle and its components liable to affect the emissions of gaseous and particulate species shall be so designed, constructed and assembled as to enable the vehicle in normal use and under normal conditions of use such as humidity, rain, snow, heat, cold, sand, dirt, vibrations, wear, etc. to comply with the provisions of this GTR during its useful life.
- 1.1.1. This will include the security of all hoses, joints and connections used within the emission control systems.
- 1.2. The test vehicle shall be representative in terms of its emissions-related components and functionality of the intended production series to be covered by the approval. The manufacturer and the responsible authority shall agree which vehicle test model is representative.
- 1.3. Vehicle testing condition
- 1.3.1. The type and amount of lubricants and coolant for emissions testing shall be as specified for normal vehicle operation by the manufacturer.
- 1.3.2. The type of fuel for emissions testing shall be as specified in Annex 3 of this GTR.
- 1.3.3. All emissions controlling systems shall be in working order.
- 1.3.4. The use of any defeat device is prohibited.
- 1.3.5. The engine shall be designed to avoid crankcase emissions.
- 1.3.6. The tyres used for emissions testing shall be as defined in §1.2.4.6. of Annex 6 of this GTR.

## 1.4. Petrol tank inlet orifices

- 1.4.1. Subject to paragraph 1.4.2., the inlet orifice of the petrol or ethanol tank shall be so designed as to prevent the tank from being filled from a fuel pump delivery nozzle which has an external diameter of 23.6 mm or greater.
- 1.4.2. Paragraph 1.4.1. shall not apply to a vehicle in respect of which both of the following conditions are satisfied:
- 1.4.2.1. The vehicle is so designed and constructed that no device designed to control the emission of gaseous and particulate species shall be adversely affected by leaded petrol, and; 1.4.2.2. The vehicle is conspicuously, legibly and indelibly marked with the symbol for unleaded petrol, specified in ISO 2575:2010 "Road vehicles -- Symbols for controls, indicators and tell-tales", in a position immediately visible to a person filling the petrol tank. Additional markings are permitted.
- 1.5. Provisions for electronic system security
- 1.5.1. Any vehicle with an emission control computer shall include features to deter modification, except as authorised by the manufacturer. The manufacturer shall authorise modifications if these modifications are necessary for the diagnosis, servicing, inspection, retrofitting or repair of the vehicle. Any reprogrammable computer codes or operating parameters shall be resistant to tampering and afford a level of protection at least as good as the provisions in ISO 15031-7 (March 15, 2001) [provided that the security exchange is conducted using the protocols and diagnostic connector as prescribed in paragraph 6.5. of Annex 11, Appendix 1]. Any removable calibration memory chips shall be potted, encased in a sealed container or

protected by electronic algorithms and shall not be changeable without the use of specialised tools and procedures.

- 1.5.2. Computer-coded engine operating parameters shall not be changeable without the use of specialised tools and procedures (e. g. soldered or potted computer components or sealed (or soldered) comp enclosures).
- 1.5.3. Manufacturers may seek approval from the responsible authority for an exemption to one of these requirements for those vehicles which are unlikely to require protection. The criteria that the responsible authority will evaluate in considering an exemption will include, but are not limited to, the current availability of performance chips, the high-performance capability of the vehicle and the projected sales volume of the vehicle.
- 1.5.4. Manufacturers using programmable computer code systems shall deter unauthorised reprogramming. Manufacturers shall include enhanced tamper protection strategies and write-protect features requiring electronic access to an off-site computer maintained by the manufacturer. Methods giving an adequate level of tamper protection will be approved by the responsible authority.

## PERFORMANCE REQUIREMENTS

## 2. Performance Requirements

#### 2.1 Limit values

When implementing the test procedure contained in this GTR as part of their national legislation, Contracting Parties to the 1998 Agreement are encouraged to use limit values which represent at least the same level of severity as their existing regulations; pending the development of harmonized limit values, by the Executive Committee (AC.3) of the 1998 Agreement, for inclusion in the GTR at a later date.

2.2. Emission of gaseous species and particulate matter

The emissions of gaseous species and particulate matter from light-duty vehicles shall be determined using:

- (a) the WLTP-DHC test cycles as described in Annex 1;
- (b) the gear selection and shift point determination as described in Annex 2;
- (c) the appropriate fuel as prescribed in Annex 3;
- (d) the road and dynamometer load determined as described in Annex 4;
- (e) the test equipment as described in Annex 5;
- (f) the test procedure as described in Annexes 6 and 8;
- (g) the method of calculation as described in Annexes 7 and 8.

#### **ANNEX 1: DRIVE CYCLES**

## 1. General requirements

- 1.1. The cycle to be driven is dependent on the test vehicle's rated power to unladen mass ratio, W/kg, and its maximum velocity,  $v_{max}$ .
- 1.2. Unladen mass is defined in B.3. Definitions.
- $1.3.\ v_{max}$  is the maximum speed of the vehicle in km/h as declared by the manufacturer according to Regulation No. 68 and not that which may be artificially restricted.
- 2. Vehicle classifications
- 2.1. Class 1 vehicles have a power to unladen mass ratio ( $P_{mr}$ ) of  $\leq 22$  W/kg.
- 2.2. Class 2 vehicles have a power to unladen mass ratio of > 22 but  $\le 34$  W/kg.
- 2.2. Class 3 vehicles have a power to unladen mass ratio of > 34 W/kg.
- 3. Test Cycles
- 3.1. Class 1 vehicles
- 3.1.1. The cycle for class 1 vehicles consists of a low phase (Low<sub>1</sub>) and a medium phase (Medium<sub>1</sub>).
- 3.1.2. The Low<sub>1</sub> phase is described in Figure 1 and Table 1.
- 3.1.3. The Medium<sub>1</sub> phase is described in Figure 2 and Table 2.

#### 3.2. Class 2 vehicles

- 3.2.1. The cycle for class 2 vehicles consists of a low phase (Low<sub>2</sub>), a medium phase (Medium<sub>2</sub>), a high phase (High<sub>2</sub>) and an extra high phase (Extra High<sub>2</sub>).
- 3.2.2. The Low<sub>2</sub> phase is described in Figure 3 and Table 3.
- 3.2.3. The Medium<sub>2</sub> phase is described in Figure 4 and Table 4.
- 3.2.4. The High<sub>2</sub> phase is described in Figure 5 and Table 5.
- 3.2.5. The Extra High<sub>2</sub> phase is described in Figure 6 and Table 6.

#### 3.3. Class 3 vehicles

Class 3 vehicles are divided into 2 subclasses according to their maximum speed  $v_{max}$ .

- 3.3.1. Class 3 vehicles with  $v_{max} \le 120 \text{ km/h}$
- 3.3.1.1. The cycle for class 3 vehicles with  $v_{max} \le 120$  km/h consists of a low phase (Low<sub>3</sub>), a medium phase (Medium<sub>3-1</sub>), a high phase (High<sub>3-1</sub>) and an extra high phase (Extra High<sub>3</sub>).
- 3.3.1.2. The Low<sub>3</sub> phase is described in Figure 7 and Table 7.
- 3.3.1.3. The Medium<sub>3-1</sub> phase is described in Figure 8 and Table 8.
- 3.3.1.4. The High<sub>3-1</sub> phase is described in Figure 10 and Table 10.
- 3.3.1.5. The Extra High<sub>3</sub> phase is described in Figure 12 and Table 12.

- 3.3.2. Class 3 vehicles with  $v_{max} > 120 \text{ km/h}$
- 3.3.2.1. The cycle for class 3 vehicles with  $v_{max} > 120$  km/h consist of a low phase (Low<sub>3</sub>) phase, a medium phase (Medium<sub>3-2</sub>), a high phase (High<sub>3-2</sub>) and an extra high phase (Extra High<sub>3</sub>).
- 3.3.2.2. The Low<sub>3</sub> phase is described in Figure 7 and Table 7.
- 3.3.2.3. The Medium<sub>3-2</sub> phase is described in Figure 9 and Table 9.
- 3.3.2.4. The High<sub>3-2</sub> phase is described in Figure 11 and Table 11.
- 3.3.2.5. The Extra High<sub>3</sub> phase is described in Figure 12 and Table 12.
- 3.4. Duration of all phases
- 3.4.1. All low speed phases last 589 seconds.
- 3.4.2. All medium speed phases last 433 seconds.
- 3.4.3. All high speed phases last 455 seconds.
- 3.4.4. All extra high speed phases last 323 seconds.

## 4. WLTC Class 1 vehicles

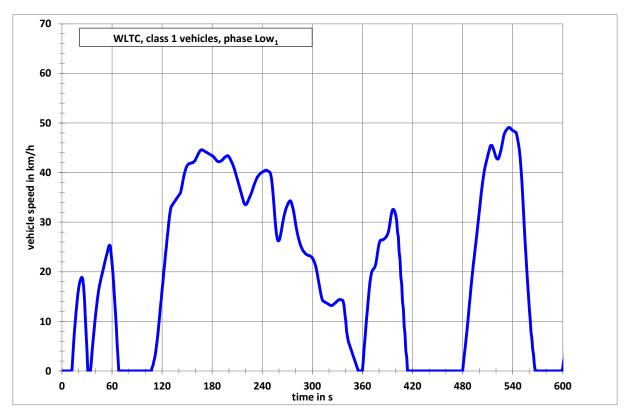



Figure 1: WLTC, Class 1 vehicles, phase L<sub>1</sub>

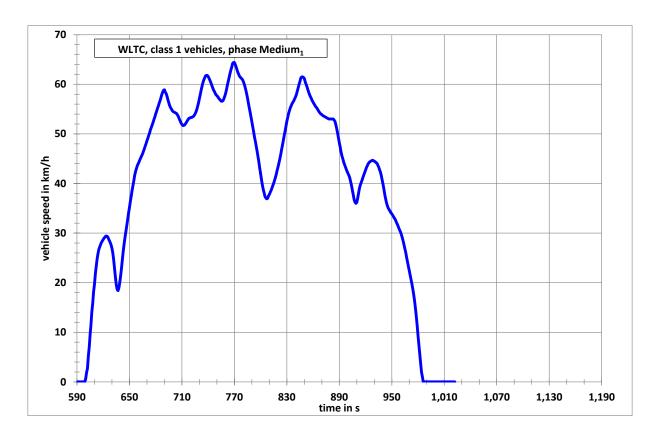



Figure 2: WLTC, Class 1 vehicles, phase Medium<sub>1</sub>

Table 1: WLTC, Class 1 vehicles, phase Low<sub>1</sub>

| Time in s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      | WLTC class 1 ve | hicles, phase Low <sub>1</sub> |           |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-----------------|--------------------------------|-----------|--------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time in s |      |                 |                                | Time in s | speed in km/h      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |                 | opoca,                         |           | opoda III IIII III |
| 2         0.0         62         17.3         122         20.0           3         0.0         63         14.7         123         21.8           4         0.0         64         12.1         124         22.4           5         0.0         65         9.5         125         25.1           6         0.0         66         6.6         126         26.8           7         0.0         67         4.1         127         28.5           8         0.0         68         0.0         129         31.4           10         0.0         69         0.0         129         31.4           10         0.0         70         0.0         130         32.5           11         0.0         71         0.0         131         33.2           13         3.1         73         0.0         133         33.4           13         3.1         73         0.0         133         33.2           14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         135         32.1           16                                                                                                                                                                                                                                                                                                                                                            |           |      | 61              | 19.9                           | 121       | 18.4               |
| 3         0.0         63         14.7         123         21.8           4         0.0         66         9.5         125         25.1           6         0.0         66         9.5         125         25.1           6         0.0         66         6.6         126         26.8           7         0.0         67         4.1         127         28.5           8         0.0         68         0.0         128         30.0           9         0.0         69         0.0         129         31.4           10         0.0         70         0.0         130         32.5           111         0.0         71         0.0         131         33.2           12         0.2         72         0.0         132         33.4           14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         135         32.1           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         31.9           17                                                                                                                                                                                                                                                                                                                                                            |           |      |                 |                                |           |                    |
| 4         0.0         664         12.1         124         23.4           5         0.0         65         9.5         125         25.1           6         0.0         66         6.6         126         26.8           7         0.0         67         4.1         127         28.5           8         0.0         68         0.0         128         30.0           9         0.0         69         0.0         129         31.4           10         0.0         77         0.0         130         32.5           11         0.0         71         0.0         131         33.2           12         0.2         72         0.0         132         33.4           13         3.1         73         0.0         132         33.4           15         8.0         75         0.0         134         32.4           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         1319           17         12.0         77         0.0         137         31.9           18                                                                                                                                                                                                                                                                                                                                                          |           |      |                 |                                |           |                    |
| 5         0.0         65         9.5         125         25.1           6         0.0         66         6.6         126         26.8           7         0.0         67         4.1         127         28.5           8         0.0         68         0.0         128         30.0           9         0.0         69         0.0         129         31.4           10         0.0         70         0.0         130         32.5           11         0.0         71         0.0         131         33.2           12         0.2         72         0.0         132         33.4           13         3.1         73         0.0         133         33.0           14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19                                                                                                                                                                                                                                                                                                                                                          |           |      |                 |                                |           |                    |
| 6         0.0         66         6.6         126         228.8           7         0.0         67         4.1         127         28.5           8         0.0         68         0.0         128         30.0           9         0.0         69         0.0         129         31.4           10         0.0         70         0.0         130         32.5           11         0.0         71         0.0         131         33.2           12         0.2         72         0.0         132         33.4           13         3.1         73         0.0         133         33.0           14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         319           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           20         16.7         80         0.0         140         33.7           21                                                                                                                                                                                                                                                                                                                                                        |           |      |                 |                                |           |                    |
| 7         0.0         677         4.1         127         28.5           8         0.0         688         0.0         128         30.0           9         0.0         69         0.0         129         31.4           10         0.0         70         0.0         130         32.5           11         0.0         71         0.0         131         33.2           12         0.2         72         0.0         132         33.4           13         3.1         73         0.0         134         32.4           15         8.0         75         0.0         134         32.4           15         8.0         75         0.0         136         31.9           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         138         32.2           20         16.7         80         0.0         140         33.7           21<                                                                                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 8         0.0         68         0.0         128         30.0           9         0.0         69         0.0         129         31.4           10         0.0         70         0.0         130         32.5           111         0.0         71         0.0         131         33.2           11         0.0         71         0.0         131         33.2           12         0.2         72         0.0         133         33.3           14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         136         31.9           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.2           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22                                                                                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 9 0.0 69 0.0 129 31.4 10 0.0 70 0.0 130 32.5 111 0.0 71 0.0 131 33.2 112 0.2 72 0.0 132 33.4 13 3.1 73 0.0 133 33.0 14 5.7 74 0.0 135 32.1 15 8.0 75 0.0 135 32.1 16 10.1 76 0.0 136 31.9 17 12.0 77 0.0 137 31.9 18 13.8 78 0.0 138 32.2 19 15.4 79 0.0 139 32.9 20 16.7 80 0.0 140 33.7 21 17,7 81 0.0 141 34.6 22 18.3 82 0.0 142 35.6 23 18.8 83 0.0 142 35.6 24 18.9 84 0.0 144 37.5 25 18.4 85 0.0 145 38.4 26 16.9 86 0.0 146 39.3 27 14.3 87 0.0 147 40.0 28 10.8 38 0.0 148 40.0 29 7.1 89 0.0 149 41.1 30 40.0 90 0.0 150 41.4 31 0.0 91 0.0 151 41.8 33 0.0 92 0.0 152 41.8 33 0.0 93 0.0 152 41.8 33 0.0 93 0.0 154 41.8 34 0.0 94 0.0 156 42.0 37 5.8 97 0.0 155 41.9 36 4.0 96 0.0 156 42.0 37 5.8 97 0.0 156 41.9 36 4.0 96 0.0 156 42.0 37 5.8 97 0.0 166 42.0 37 5.8 97 0.0 166 42.0 37 5.8 97 0.0 166 42.0 37 5.8 97 0.0 166 42.0 37 5.8 97 0.0 166 42.0 37 5.8 97 0.0 166 42.0 37 5.8 97 0.0 166 44.4 41.9 90 0.0 166 42.0 41.8 91.9 91.0 169 44.4 41.9 35 1.5 95 0.0 165 41.9 36 4.0 96 0.0 166 42.0 37 5.8 97 0.0 167 42.1 38 7.5 98 0.0 169 42.3 40 10.9 100 0.0 166 42.0 41.8 10.1 11 12.4 101 0.0 166 42.0 42 13.9 102 0.0 162 43.4 43 15.4 103 0.0 166 44.5 44 16.6 104 0.0 166 44.5 45 17.5 105 0.0 167 44.6 46 18.3 106 0.0 167 44.6 48 19.5 108 0.7 168 44.5 49 20.1 109 1.1 169 44.4 55 17.5 105 0.0 167 44.6 56 25.1 116 9.6 176 44.0 57 25.5 118 11.1 177 43.9 58 25.2 118 11.1 177 43.9 | 7         | 0.0  | 67              | 4.1                            | 127       | 28.5               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8         | 0.0  | 68              |                                | 128       |                    |
| 111         0.0         71         0.0         131         33.2           12         0.2         72         0.0         132         33.4           13         3.1         73         0.0         134         32.4           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         146         39.3                                                                                                                                                                                                                                                                                                                                                          | 9         | 0.0  | 69              | 0.0                            | 129       | 31.4               |
| 12         0.2         72         0.0         132         33.4           13         3.1         73         0.0         133         33.0           14         5.7         74         0.0         135         32.1           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         140         33.7           21         17.7         81         0.0         140         33.7           21         17.7         81         0.0         140         33.7           21         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           <                                                                                                                                                                                                                                                                                                                                               | 10        | 0.0  | 70              | 0.0                            | 130       | 32.5               |
| 13         3.1         73         0.0         133         33.0           14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         136         31.9           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         140         33.7           21         17.7         81         0.0         140         33.7           21         17.7         81         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         144         37.5           24         18.9         84         0.0         144         37.5                                                                                                                                                                                                                                                                                                                                                          | 11        | 0.0  | 71              | 0.0                            | 131       | 33.2               |
| 14         5.7         74         0.0         134         32.4           15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0                                                                                                                                                                                                                                                                                                                                                         | 12        | 0.2  | 72              | 0.0                            | 132       | 33.4               |
| 15         8.0         75         0.0         135         32.1           16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1                                                                                                                                                                                                                                                                                                                                                         | 13        | 3.1  | 73              | 0.0                            | 133       | 33.0               |
| 16         10.1         76         0.0         136         31.9           17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         147         40.0           28         10.8         88         0.0         1447         40.0           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4                                                                                                                                                                                                                                                                                                                                                        | 14        | 5.7  | 74              | 0.0                            | 134       | 32.4               |
| 17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           31         0.0         91         0.0         150         41.4                                                                                                                                                                                                                                                                                                                                                         | 15        | 8.0  | 75              | 0.0                            | 135       | 32.1               |
| 17         12.0         77         0.0         137         31.9           18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           31         0.0         91         0.0         150         41.4                                                                                                                                                                                                                                                                                                                                                         | 16        | 10.1 | 76              | 0.0                            | 136       | 31.9               |
| 18         13.8         78         0.0         138         32.2           19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         152         41.8                                                                                                                                                                                                                                                                                                                                                          |           |      |                 |                                |           |                    |
| 19         15.4         79         0.0         139         32.9           20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         144         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         418 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                      |           |      |                 |                                |           |                    |
| 20         16.7         80         0.0         140         33.7           21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         414           41.1         30         40.0         91         0.0         151         41.1           31         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 21         17.7         81         0.0         141         34.6           22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         144         37.5           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.9           34         0.0         94         0.0         154         41.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                     |           |      |                 |                                |           |                    |
| 22         18.3         82         0.0         142         35.6           23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.0           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0                                                                                                                                                                                                                                                                                                                                                              |           |      |                 |                                |           |                    |
| 23         18.8         83         0.0         143         36.6           24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         414.8           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0                                                                                                                                                                                                                                                                                                                                                              |           |      |                 |                                |           |                    |
| 24         18.9         84         0.0         144         37.5           25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.8           34         0.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38                                                                                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 25         18.4         85         0.0         145         38.4           26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40<                                                                                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 26         16.9         86         0.0         146         39.3           27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           36         4.0         96         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                    |           |      |                 |                                |           |                    |
| 27         14.3         87         0.0         147         40.0           28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41<                                                                                                                                                                                                                                                                                                                                                   | 25        | 18.4 | 85              | 0.0                            | 145       | 38.4               |
| 28         10.8         88         0.0         148         40.6           29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.8           32         0.0         92         0.0         152         41.8           34         0.0         94         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42                                                                                                                                                                                                                                                                                                                                                   | 26        | 16.9 | 86              | 0.0                            | 146       | 39.3               |
| 29         7.1         89         0.0         149         41.1           30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           4                                                                                                                                                                                                                                                                                                                                                   | 27        | 14.3 | 87              | 0.0                            | 147       | 40.0               |
| 30         4.0         90         0.0         150         41.4           31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7 <td< td=""><td>28</td><td>10.8</td><td>88</td><td>0.0</td><td>148</td><td>40.6</td></td<>                                                                                                                                                                                                                                                                   | 28        | 10.8 | 88              | 0.0                            | 148       | 40.6               |
| 31         0.0         91         0.0         151         41.6           32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           <                                                                                                                                                                                                                                                                                                                                               | 29        | 7.1  | 89              | 0.0                            | 149       | 41.1               |
| 32         0.0         92         0.0         152         41.8           33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4                                                                                                                                                                                                                                                                                                                                                         | 30        | 4.0  | 90              | 0.0                            | 150       | 41.4               |
| 33         0.0         93         0.0         153         41.8           34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5                                                                                                                                                                                                                                                                                                                                                       | 31        | 0.0  | 91              | 0.0                            | 151       | 41.6               |
| 34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6                                                                                                                                                                                                                                                                                                                                                     | 32        | 0.0  | 92              | 0.0                            | 152       | 41.8               |
| 34         0.0         94         0.0         154         41.9           35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6                                                                                                                                                                                                                                                                                                                                                     | 33        | 0.0  | 93              | 0.0                            | 153       | 41.8               |
| 35         1.5         95         0.0         155         41.9           36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5                                                                                                                                                                                                                                                                                                                                                   | 34        |      | 94              |                                |           |                    |
| 36         4.0         96         0.0         156         42.0           37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4                                                                                                                                                                                                                                                                                                                                                 |           |      |                 |                                |           |                    |
| 37         5.8         97         0.0         157         42.1           38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4           50         20.8         110         1.5         170         44.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                         |           |      |                 |                                |           |                    |
| 38         7.5         98         0.0         158         42.2           39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4           50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3                                                                                                                                                                                                                                                                                                                                             |           |      |                 |                                |           |                    |
| 39         9.2         99         0.0         159         42.3           40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4           50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3           52         22.5         112         3.5         172         44.3                                                                                                                                                                                                                                                                                                                                           |           |      |                 |                                |           |                    |
| 40         10.9         100         0.0         160         42.6           41         12.4         101         0.0         161         43.0           42         13.9         102         0.0         162         43.4           43         15.4         103         0.0         163         43.7           44         16.6         104         0.0         164         44.1           45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4           50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3           52         22.5         112         3.5         172         44.3           53         23.2         113         4.7         173         44.3                                                                                                                                                                                                                                                                                                                                         |           |      |                 |                                |           |                    |
| 41       12.4       101       0.0       161       43.0         42       13.9       102       0.0       162       43.4         43       15.4       103       0.0       163       43.7         44       16.6       104       0.0       164       44.1         45       17.5       105       0.0       165       44.4         46       18.3       106       0.0       166       44.5         47       18.9       107       0.0       167       44.6         48       19.5       108       0.7       168       44.5         49       20.1       109       1.1       169       44.4         50       20.8       110       1.5       170       44.4         51       21.6       111       2.5       171       44.3         52       22.5       112       3.5       172       44.3         53       23.2       113       4.7       173       44.3         54       23.9       114       6.1       174       44.2         55       24.5       115       7.8       175       44.1         56 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                         |           |      |                 |                                |           |                    |
| 42       13.9       102       0.0       162       43.4         43       15.4       103       0.0       163       43.7         44       16.6       104       0.0       164       44.1         45       17.5       105       0.0       165       44.4         46       18.3       106       0.0       166       44.5         47       18.9       107       0.0       167       44.6         48       19.5       108       0.7       168       44.5         49       20.1       109       1.1       169       44.4         50       20.8       110       1.5       170       44.4         51       21.6       111       2.5       171       44.3         52       22.5       112       3.5       172       44.3         53       23.2       113       4.7       173       44.3         54       23.9       114       6.1       174       44.2         55       24.5       115       7.8       175       44.1         56       25.1       116       9.6       176       44.0         57 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                         |           |      |                 |                                |           |                    |
| 43       15.4       103       0.0       163       43.7         44       16.6       104       0.0       164       44.1         45       17.5       105       0.0       165       44.4         46       18.3       106       0.0       166       44.5         47       18.9       107       0.0       167       44.6         48       19.5       108       0.7       168       44.5         49       20.1       109       1.1       169       44.4         50       20.8       110       1.5       170       44.4         51       21.6       111       2.5       171       44.3         52       22.5       112       3.5       172       44.3         53       23.2       113       4.7       173       44.3         54       23.9       114       6.1       174       44.2         55       24.5       115       7.8       175       44.1         56       25.1       116       9.6       176       44.0         57       25.4       117       11.4       177       43.9         58 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 44       16.6       104       0.0       164       44.1         45       17.5       105       0.0       165       44.4         46       18.3       106       0.0       166       44.5         47       18.9       107       0.0       167       44.6         48       19.5       108       0.7       168       44.5         49       20.1       109       1.1       169       44.4         50       20.8       110       1.5       170       44.4         51       21.6       111       2.5       171       44.3         52       22.5       112       3.5       172       44.3         53       23.2       113       4.7       173       44.3         54       23.9       114       6.1       174       44.2         55       24.5       115       7.8       175       44.1         56       25.1       116       9.6       176       44.0         57       25.4       117       11.4       177       43.9         58       25.2       118       13.1       178       43.8         59<                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |                 |                                |           |                    |
| 45         17.5         105         0.0         165         44.4           46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4           50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3           52         22.5         112         3.5         172         44.3           53         23.2         113         4.7         173         44.3           54         23.9         114         6.1         174         44.2           55         24.5         115         7.8         175         44.1           56         25.1         116         9.6         176         44.0           57         25.4         117         11.4         177         43.9           58         25.2         118         13.1         178         43.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                           |           |      |                 |                                |           |                    |
| 46         18.3         106         0.0         166         44.5           47         18.9         107         0.0         167         44.6           48         19.5         108         0.7         168         44.5           49         20.1         109         1.1         169         44.4           50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3           52         22.5         112         3.5         172         44.3           53         23.2         113         4.7         173         44.3           54         23.9         114         6.1         174         44.2           55         24.5         115         7.8         175         44.1           56         25.1         116         9.6         176         44.0           57         25.4         117         11.4         177         43.9           58         25.2         118         13.1         178         43.8           59         24.2         119         15.0         179         43.7 <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                       |           |      |                 | 0.0                            |           |                    |
| 47       18.9       107       0.0       167       44.6         48       19.5       108       0.7       168       44.5         49       20.1       109       1.1       169       44.4         50       20.8       110       1.5       170       44.4         51       21.6       111       2.5       171       44.3         52       22.5       112       3.5       172       44.3         53       23.2       113       4.7       173       44.3         54       23.9       114       6.1       174       44.2         55       24.5       115       7.8       175       44.1         56       25.1       116       9.6       176       44.0         57       25.4       117       11.4       177       43.9         58       25.2       118       13.1       178       43.8         59       24.2       119       15.0       179       43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45        |      | 105             | 0.0                            |           |                    |
| 48       19.5       108       0.7       168       44.5         49       20.1       109       1.1       169       44.4         50       20.8       110       1.5       170       44.4         51       21.6       111       2.5       171       44.3         52       22.5       112       3.5       172       44.3         53       23.2       113       4.7       173       44.3         54       23.9       114       6.1       174       44.2         55       24.5       115       7.8       175       44.1         56       25.1       116       9.6       176       44.0         57       25.4       117       11.4       177       43.9         58       25.2       118       13.1       178       43.8         59       24.2       119       15.0       179       43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46        | 18.3 | 106             | 0.0                            | 166       | 44.5               |
| 49     20.1     109     1.1     169     44.4       50     20.8     110     1.5     170     44.4       51     21.6     111     2.5     171     44.3       52     22.5     112     3.5     172     44.3       53     23.2     113     4.7     173     44.3       54     23.9     114     6.1     174     44.2       55     24.5     115     7.8     175     44.1       56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47        | 18.9 | 107             | 0.0                            | 167       | 44.6               |
| 50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3           52         22.5         112         3.5         172         44.3           53         23.2         113         4.7         173         44.3           54         23.9         114         6.1         174         44.2           55         24.5         115         7.8         175         44.1           56         25.1         116         9.6         176         44.0           57         25.4         117         11.4         177         43.9           58         25.2         118         13.1         178         43.8           59         24.2         119         15.0         179         43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48        | 19.5 | 108             | 0.7                            | 168       | 44.5               |
| 50         20.8         110         1.5         170         44.4           51         21.6         111         2.5         171         44.3           52         22.5         112         3.5         172         44.3           53         23.2         113         4.7         173         44.3           54         23.9         114         6.1         174         44.2           55         24.5         115         7.8         175         44.1           56         25.1         116         9.6         176         44.0           57         25.4         117         11.4         177         43.9           58         25.2         118         13.1         178         43.8           59         24.2         119         15.0         179         43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49        | 20.1 | 109             | 1.1                            | 169       | 44.4               |
| 51     21.6     111     2.5     171     44.3       52     22.5     112     3.5     172     44.3       53     23.2     113     4.7     173     44.3       54     23.9     114     6.1     174     44.2       55     24.5     115     7.8     175     44.1       56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |      |                 |                                |           |                    |
| 52     22.5     112     3.5     172     44.3       53     23.2     113     4.7     173     44.3       54     23.9     114     6.1     174     44.2       55     24.5     115     7.8     175     44.1       56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |      |                 |                                |           |                    |
| 53     23.2     113     4.7     173     44.3       54     23.9     114     6.1     174     44.2       55     24.5     115     7.8     175     44.1       56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |                 |                                |           |                    |
| 54     23.9     114     6.1     174     44.2       55     24.5     115     7.8     175     44.1       56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |                 |                                |           |                    |
| 55     24.5     115     7.8     175     44.1       56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |      |                 |                                |           |                    |
| 56     25.1     116     9.6     176     44.0       57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |                 |                                |           |                    |
| 57     25.4     117     11.4     177     43.9       58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |                 |                                |           |                    |
| 58     25.2     118     13.1     178     43.8       59     24.2     119     15.0     179     43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |                 |                                |           |                    |
| 59 24.2 119 15.0 179 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |                 |                                |           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |                 |                                |           |                    |
| 60 22.3 120 16.6 180 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |                 |                                |           |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60        | 22.3 | 120             | 16.6                           | 180       | 43.5               |

|           | ,             | WLTC class 1 ve | ehicles, phase Low <sub>1</sub> |           |               |
|-----------|---------------|-----------------|---------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s       | speed in km/h                   | Time in s | speed in km/h |
| 181       | 43.4          | 241             | 40.1                            | 301       | 22.5          |
| 182       | 43.1          | 242             | 40.1                            | 302       | 22.1          |
| 183       | 42.9          | 243             | 40.0                            | 303       | 21.7          |
| 184       | 42.7          | 244             | 39.8                            | 304       | 21.1          |
| 185       | 42.5          | 245             | 39.8                            | 305       | 20.4          |
| 186       | 42.3          | 246             | 39.8                            | 306       | 19.5          |
| 187       | 42.2          | 247             | 39.9                            | 307       | 18.5          |
| 188       | 42.2          | 248             | 40.1                            | 308       | 17.6          |
| 189       | 42.2          | 249             | 40.1                            | 309       | 16.6          |
| 190       | 42.3          | 250             | 39.7                            | 310       | 15.7          |
| 191       | 42.4          | 251             | 38.8                            | 311       | 14.9          |
|           |               |                 |                                 |           | 14.3          |
| 192       | 42.4          | 252             | 37.4                            | 312       |               |
| 193       | 42.6          | 253             | 35.6                            | 313       | 13.8          |
| 194       | 42.8          | 254             | 33.4                            | 314       | 13.6          |
| 195       | 43.1          | 255             | 31.2                            | 315       | 13.4          |
| 196       | 43.3          | 256             | 29.1                            | 316       | 13.4          |
| 197       | 43.4          | 257             | 27.6                            | 317       | 13.5          |
| 198       | 43.4          | 258             | 26.6                            | 318       | 13.5          |
| 199       | 43.4          | 259             | 26.2                            | 319       | 13.5          |
| 200       | 43.2          | 260             | 26.3                            | 320       | 13.4          |
| 201       | 42.9          | 261             | 26.7                            | 321       | 13.3          |
| 202       | 42.6          | 262             | 27.5                            | 322       | 13.1          |
| 203       | 42.2          | 263             | 28.4                            | 323       | 12.9          |
| 204       | 41.9          | 264             | 29.4                            | 324       | 12.9          |
| 205       | 41.5          | 265             | 30.4                            | 325       | 12.8          |
| 206       | 41.0          | 266             | 31.2                            | 326       | 13.0          |
| 207       | 40.5          | 267             | 31.9                            | 327       | 13.4          |
| 208       | 39.9          | 268             | 32.5                            | 328       | 13.8          |
| 209       | 39.3          | 269             | 33.0                            | 329       | 14.1          |
| 210       | 38.7          | 270             | 33.4                            | 330       | 14.2          |
| 211       | 38.1          | 271             | 33.8                            | 331       | 14.4          |
| 212       | 37.6          | 272             | 34.1                            | 332       | 14.5          |
| 213       | 37.1          | 273             | 34.3                            | 333       | 14.5          |
|           |               |                 |                                 |           |               |
| 214       | 36.5          | 274             | 34.3                            | 334       | 14.4          |
| 215       | 35.7          | 275             | 33.9                            | 335       | 14.3          |
| 216       | 35.1          | 276             | 33.3                            | 336       | 14.3          |
| 217       | 34.4          | 277             | 32.6                            | 337       | 14.0          |
| 218       | 33.9          | 278             | 31.8                            | 338       | 13.0          |
| 219       | 33.6          | 279             | 30.7                            | 339       | 11.4          |
| 220       | 33.5          | 280             | 29.6                            | 340       | 9.2           |
| 221       | 33.6          | 281             | 28.6                            | 341       | 6.9           |
| 222       | 33.9          | 282             | 27.8                            | 342       | 4.8           |
| 223       | 34.3          | 283             | 27.2                            | 343       | 3.3           |
| 224       | 34.8          | 284             | 26.4                            | 344       | 2.3           |
| 225       | 35.2          | 285             | 25.8                            | 345       | 1.9           |
| 226       | 35.6          | 286             | 25.3                            | 346       | 1.7           |
| 227       | 36.0          | 287             | 24.9                            | 347       | 1.6           |
| 228       | 36.4          | 288             | 24.5                            | 348       | 1.4           |
| 229       | 36.9          | 289             | 24.2                            | 349       | 1.3           |
| 230       | 37.4          | 290             | 24.0                            | 350       | 1.2           |
| 231       | 37.9          | 291             | 23.8                            | 351       | 1.1           |
| 232       | 38.3          | 292             | 23.6                            | 352       | 1.0           |
| 232       | 38.7          | 292             | 23.5                            | 353       | 0.8           |
| 234       | 39.1          | 293             | 23.4                            | 354       |               |
|           |               |                 |                                 |           | 0.6           |
| 235       | 39.3          | 295             | 23.3                            | 355       | 0.0           |
| 236       | 39.5          | 296             | 23.3                            | 356       | 0.0           |
| 237       | 39.7          | 297             | 23.2                            | 357       | 0.0           |
| 238       | 39.9          | 298             | 23.1                            | 358       | 0.0           |
| 239       | 40.0          | 299             | 23.0                            | 359       | 0.0           |
| 240       | 40.1          | 300             | 22.8                            | 360       | 0.0           |

|           |               |           | hicles, phase Low <sub>1</sub> |           |               |
|-----------|---------------|-----------|--------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s | speed in km/h                  | Time in s | speed in km/h |
| 361       | 2.2           | 421       | 0.0                            | 481       | 1.6           |
| 362       | 4.5           | 422       | 0.0                            | 482       | 3.1           |
| 363       | 6.6           | 423       | 0.0                            | 483       | 4.5           |
| 364       | 8.6           | 424       | 0.0                            | 484       | 6.1           |
| 365       | 10.6          | 425       | 0.0                            | 485       | 7.6           |
| 366       | 12.5          | 426       | 0.0                            | 486       | 9.4           |
| 367       | 14.4          | 427       | 0.0                            | 487       | 11.3          |
| 368       | 16.3          | 428       | 0.0                            | 488       | 13.3          |
| 369       | 17.9          | 429       | 0.0                            | 489       | 15.0          |
| 370       | 19.1          | 430       | 0.0                            | 490       | 16.9          |
| 371       | 19.9          | 431       | 0.0                            | 491       | 18.5          |
| 372       | 20.3          | 432       | 0.0                            | 492       | 20.1          |
| 373       | 20.5          | 433       | 0.0                            | 493       | 21.7          |
| 374       | 20.7          | 434       | 0.0                            | 494       | 23.2          |
| 375       | 21.0          | 435       | 0.0                            | 495       | 24.6          |
| 376       | 21.6          | 436       | 0.0                            | 496       | 25.8          |
| 377       | 22.6          | 437       | 0.0                            | 497       | 27.5          |
| 378       | 23.7          | 438       | 0.0                            | 498       | 28.9          |
| 379       | 24.8          | 439       | 0.0                            | 499       | 30.5          |
| 380       | 25.7          | 440       | 0.0                            | 500       | 32.1          |
| 381       | 26.2          | 441       | 0.0                            | 501       | 33.8          |
| 382       | 26.4          | 442       | 0.0                            | 502       | 35.3          |
| 383       | 26.4          | 443       | 0.0                            | 503       | 36.8          |
| 384       |               | 444       |                                |           |               |
|           | 26.4          |           | 0.0                            | 504       | 38.3          |
| 385       | 26.5          | 445       | 0.0                            | 505       | 39.6          |
| 386       | 26.6          | 446       | 0.0                            | 506       | 40.6          |
| 387       | 26.8          | 447       | 0.0                            | 507       | 41.3          |
| 388       | 26.9          | 448       | 0.0                            | 508       | 42.0          |
| 389       | 27.2          | 449       | 0.0                            | 509       | 42.5          |
| 390       | 27.5          | 450       | 0.0                            | 510       | 43.2          |
| 391       | 28.0          | 451       | 0.0                            | 511       | 44.1          |
| 392       | 28.8          | 452       | 0.0                            | 512       | 44.8          |
| 393       | 29.9          | 453       | 0.0                            | 513       | 45.3          |
| 394       | 31.0          | 454       | 0.0                            | 514       | 45.5          |
| 395       | 31.9          | 455       | 0.0                            | 515       | 45.5          |
| 396       | 32.5          | 456       | 0.0                            | 516       | 45.2          |
| 397       | 32.6          | 457       | 0.0                            | 517       | 44.7          |
| 398       | 32.4          | 458       | 0.0                            | 518       | 44.2          |
| 399       | 32.0          | 459       | 0.0                            | 519       | 43.6          |
| 400       | 31.3          | 460       | 0.0                            | 520       | 43.1          |
| 401       | 30.3          | 461       | 0.0                            | 521       | 42.8          |
| 402       | 28.5          | 462       | 0.0                            | 522       | 42.7          |
| 403       | 26.2          | 463       | 0.0                            | 523       | 42.8          |
| 404       | 23.6          | 464       | 0.0                            | 524       | 43.3          |
| 405       | 21.1          | 465       | 0.0                            | 525       | 43.9          |
| 406       | 19.0          | 466       | 0.0                            | 526       | 44.6          |
| 407       | 17.5          | 467       | 0.0                            | 527       | 45.4          |
| 408       | 16.0          | 468       | 0.0                            | 528       | 46.3          |
| 409       | 14.0          | 469       | 0.0                            | 529       | 47.2          |
| 410       | 11.4          | 470       | 0.0                            | 530       | 47.8          |
| 411       | 8.4           | 471       | 0.0                            | 531       | 48.2          |
| 412       | 5.3           | 472       | 0.0                            | 532       | 48.5          |
| 413       | 2.9           | 473       | 0.0                            | 533       | 48.7          |
| 414       | 0.0           | 474       | 0.0                            | 534       | 48.9          |
| 415       | 0.0           | 475       | 0.0                            | 535       | 49.           |
| 416       | 0.0           | 476       | 0.0                            | 536       | 49.           |
| 417       | 0.0           | 477       | 0.0                            | 537       | 49.0          |
| 417       |               | 477       |                                | 538       | 48.8          |
| 418       | 0.0           |           | 0.0                            | 538       |               |
| 414       | 0.0           | 479       | 0.0                            | ეაყ       | 48.6          |

| Time in s  | speed in km/h | Time in s | speed in km/h | Time in s | speed in km/h |
|------------|---------------|-----------|---------------|-----------|---------------|
| 541        | 48.6          | Time in S | speed in km/n | Time in S | speed in km/n |
| 542        | 48.7          |           |               |           |               |
|            |               |           |               |           |               |
| 543        | 48.6          |           |               |           |               |
| 544        | 48.2          |           |               |           |               |
| 545        | 47.5          |           |               |           |               |
| 546        | 46.7          |           |               |           |               |
| 547        | 45.7          |           |               |           |               |
| 548        | 44.6          |           |               |           |               |
| 549        | 42.9          |           |               |           |               |
| 550        | 40.8          |           |               |           |               |
| 551        | 38.2          |           |               |           |               |
| 552        | 35.3          |           |               |           |               |
| 553        | 31.8          |           |               |           |               |
| 554        | 28.7          |           |               |           |               |
| 555        | 25.8          |           |               |           |               |
| 556        | 22.9          |           |               |           |               |
| 557        | 20.2          |           |               |           |               |
| 558        | 17.8          |           |               |           |               |
| 559        | 15.5          |           |               |           |               |
| 560        | 13.3          |           |               |           |               |
| 561        | 11.3          |           |               |           |               |
| 562        | 9.3           |           |               |           |               |
| 563        | 7.4           |           |               |           |               |
| 564        | 5.5           |           |               |           |               |
| 565        | 3.7           |           |               |           |               |
| 566        | 2.2           |           |               |           |               |
| 567        | 0.0           |           |               |           |               |
| 568        | 0.0           |           |               |           |               |
| 569        | 0.0           |           |               |           |               |
| 570        | 0.0           |           |               |           |               |
| 571        | 0.0           |           |               |           |               |
| 572        | 0.0           |           |               |           |               |
| 573        | 0.0           |           |               |           |               |
| 574        | 0.0           |           |               |           |               |
| 575        | 0.0           |           |               |           |               |
| 576        | 0.0           |           |               |           |               |
| 577        | 0.0           |           |               |           |               |
| 578        | 0.0           |           |               |           |               |
| 579        | 0.0           |           |               |           |               |
| 580        | 0.0           |           |               |           |               |
| 581        | 0.0           |           |               |           |               |
| 582        | 0.0           |           |               |           |               |
| 583        | 0.0           |           |               |           |               |
| 584        | 0.0           |           |               |           |               |
| 585        | 0.0           |           |               |           |               |
|            |               |           |               |           |               |
| 586        | 0.0           |           |               |           |               |
| 587        | 0.0           |           |               |           |               |
| 588<br>589 | 0.0           |           | ļ             |           |               |

Table 2: WLTC, Class 1 vehicles, phase  $Medium_1$ 

| Time in s<br>590 | speed in km/h | Time in s | speed in km/h     | Time in s    |               |
|------------------|---------------|-----------|-------------------|--------------|---------------|
| 590              |               |           | Speca III KIII/II | IIIIIe III 3 | speed in km/h |
|                  | 0.0           | 650       | 35.2              | 710          | 51.7          |
| 591              | 0.0           | 651       | 36.3              | 711          | 51.6          |
| 592              | 0.0           | 652       | 37.5              | 712          | 51.5          |
| 593              | 0.0           | 653       | 38.5              | 713          | 51.7          |
| 594              | 0.0           | 654       | 39.7              | 714          | 52.0          |
| 595              | 0.0           | 655       | 40.8              | 715          | 52.3          |
| 596              | 0.0           | 656       | 41.7              | 716          | 52.7          |
| 597              | 0.0           | 657       | 42.5              | 717          | 52.9          |
| 598              | 0.0           | 658       | 43.2              | 718          | 53.1          |
| 599              | 0.0           | 659       | 43.7              | 719          | 53.3          |
| 600              | 0.6           | 660       | 44.1              | 720          | 53.3          |
| 601              | 1.9           | 661       | 44.4              | 721          | 53.3          |
| 602              | 2.7           | 662       | 44.8              | 722          | 53.3          |
| 603              | 5.2           | 663       | 45.1              | 723          | 53.4          |
| 604              | 7.0           | 664       | 45.6              | 724          | 53.5          |
| 605              | 9.4           | 665       | 46.0              | 725          | 53.8          |
| 606              | 11.5          | 666       | 46.5              | 726          | 54.3          |
| 607              | 13.8          | 667       | 47.0              | 727          | 54.8          |
| 608              | 15.9          | 668       | 47.5              | 728          | 55.5          |
| 609              | 18.1          | 669       | 48.0              | 729          | 56.3          |
| 610              | 19.9          | 670       | 48.6              | 730          | 57.1          |
| 611              | 21.8          | 671       | 49.1              | 731          | 57.9          |
| 612              | 23.4          | 672       | 49.7              | 732          | 58.8          |
| 613              | 24.7          | 673       | 50.3              | 733          | 59.6          |
| 614              | 25.8          | 674       | 50.8              | 734          | 60.4          |
| 615              | 26.7          | 675       | 51.2              | 735          | 61.1          |
| 616              | 27.2          | 676       | 51.8              | 736          | 61.5          |
|                  | +             |           | +                 |              |               |
| 617              | 27.7          | 677       | 52.3              | 737          | 61.7          |
| 618              | 28.1          | 678       | 52.9              | 738          | 61.8          |
| 619              | 28.4          | 679       | 53.4              | 739          | 61.8          |
| 620              | 28.7          | 680       | 54.0              | 740          | 61.6          |
| 621              | 29.0          | 681       | 54.5              | 741          | 61.2          |
| 622              | 29.2          | 682       | 55.0              | 742          | 60.8          |
| 623              | 29.4          | 683       | 55.6              | 743          | 60.4          |
| 624              | 29.4          | 684       | 56.2              | 744          | 59.8          |
| 625              | 29.3          | 685       | 56.7              | 745          | 59.4          |
| 626              | 28.9          | 686       | 57.3              | 746          | 58.9          |
| 627              | 28.5          | 687       | 57.9              | 747          | 58.5          |
| 628              | 28.1          | 688       | 58.4              | 748          | 58.1          |
| 629              | 27.6          | 689       | 58.8              | 749          | 57.9          |
| 630              | 26.9          | 690       | 58.9              | 750          | 57.7          |
| 631              | 26.0          | 691       | 58.4              | 751          | 57.5          |
| 632              | 24.6          | 692       | 58.1              | 752          | 57.3          |
| 633              | 22.8          | 693       | 57.6              | 753          | 57.0          |
| 634              | 21.0          | 694       | 56.9              | 754          | 56.7          |
| 635              | 19.5          | 695       | 56.3              | 755          | 56.4          |
| 636              | 18.6          | 696       | 55.7              | 756          | 56.4          |
| 637              | 18.4          | 697       | 55.2              | 757          | 56.6          |
| 638              | 19.0          | 698       | 54.9              | 758          | 56.9          |
| 639              | 20.1          | 699       | 54.6              | 759          | 57.4          |
| 640              | 21.5          | 700       | 54.4              | 760          | 58.1          |
| 641              | 23.1          | 701       | 54.4              | 761          | 58.9          |
| 642              | 24.9          | 702       | 54.4              | 762          | 59.8          |
| 643              | 26.4          | 703       | 54.3              | 763          | 60.6          |
| 644              | 27.9          | 704       | 54.2              | 764          | 61.4          |
| 645              | 29.2          | 705       | 53.9              | 765          | 62.2          |
| 646              | 30.5          | 706       | 53.5              | 766          | 63.0          |
| 647              | 31.6          | 707       | 53.1              | 767          | 63.7          |
| 0+1              |               |           |                   |              |               |
| 648              | 32.8          | 708       | 52.6              | 768          | 64.2          |

| Time in a |               |           | nicles, phase Medium |           | enood in km/h |
|-----------|---------------|-----------|----------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s | speed in km/h        | Time in s | speed in km/h |
| 770       | 64.4          | 830       | 52.5                 | 890       | 48.           |
| 771       | 64.0          | 831       | 53.4                 | 891       | 47.           |
| 772       | 63.5          | 832       | 54.2                 | 892       | 46.           |
| 773       | 62.9          | 833       | 54.9                 | 893       | 45.           |
| 774       | 62.3          | 834       | 55.4                 | 894       | 44.           |
| 775       | 61.8          | 835       | 55.8                 | 895       | 44.           |
| 776       | 61.5          | 836       | 56.2                 | 896       | 43.           |
| 777       | 61.3          | 837       | 56.4                 | 897       | 43.           |
| 778       | 61.3          | 838       | 56.7                 | 898       | 42.           |
| 779       | 61.2          | 839       | 57.0                 | 899       | 42.           |
| 780       | 60.9          | 840       | 57.4                 | 900       | 42.           |
| 781       | 60.4          | 841       | 57.9                 | 901       | 41.           |
| 782       | 59.7          | 842       | 58.6                 | 902       | 41.           |
| 783       | 59.0          | 843       | 59.3                 | 903       | 40.           |
| 784       | 58.2          | 844       | 60.1                 | 904       | 39.           |
| 785       | 57.2          | 845       | 60.8                 | 905       | 38.           |
| 786       | 56.2          | 846       | 61.3                 | 906       | 37.           |
| 787       | 55.3          | 847       | 61.5                 | 907       | 36.           |
|           | 54.4          |           | 61.5                 |           | 36            |
| 788       |               | 848       |                      | 908       |               |
| 789       | 53.5          | 849       | 61.4                 | 909       | 36            |
| 790       | 52.5          | 850       | 61.2                 | 910       | 36            |
| 791       | 51.4          | 851       | 60.6                 | 911       | 37            |
| 792       | 50.4          | 852       | 60.0                 | 912       | 38            |
| 793       | 49.4          | 853       | 59.4                 | 913       | 39            |
| 794       | 48.5          | 854       | 58.9                 | 914       | 39            |
| 795       | 47.5          | 855       | 58.4                 | 915       | 40            |
| 796       | 46.5          | 856       | 57.9                 | 916       | 40            |
| 797       | 45.5          | 857       | 57.5                 | 917       | 41            |
| 798       | 44.3          | 858       | 57.0                 | 918       | 41            |
| 799       | 43.2          | 859       | 56.7                 | 919       | 42            |
| 800       | 42.0          | 860       | 56.3                 | 920       | 42            |
| 801       | 40.7          | 861       | 56.0                 | 921       | 43            |
| 802       | 39.6          | 862       | 55.8                 | 922       | 43            |
| 803       | 38.6          | 863       | 55.6                 | 923       | 44            |
| 804       | 37.8          | 864       | 55.3                 | 924       | 44            |
| 805       | 37.4          | 865       | 55.0                 | 925       | 44            |
| 806       | 37.1          | 866       | 54.6                 | 926       | 44            |
| 807       | 36.9          | 867       | 54.4                 | 927       | 44            |
|           |               |           |                      |           |               |
| 808       | 37.0          | 868       | 54.2                 | 928       | 44            |
| 809       | 37.4          | 869       | 54.0                 | 929       | 44            |
| 810       | 37.8          | 870       | 53.9                 | 930       | 44            |
| 811       | 38.2          | 871       | 53.7                 | 931       | 44            |
| 812       | 38.6          | 872       | 53.6                 | 932       | 44            |
| 813       | 39.0          | 873       | 53.5                 | 933       | 44            |
| 814       | 39.5          | 874       | 53.4                 | 934       | 43            |
| 815       | 40.1          | 875       | 53.3                 | 935       | 43            |
| 816       | 40.6          | 876       | 53.1                 | 936       | 42            |
| 817       | 41.2          | 877       | 53.0                 | 937       | 42            |
| 818       | 41.9          | 878       | 53.0                 | 938       | 41            |
| 819       | 42.6          | 879       | 53.0                 | 939       | 40            |
| 820       | 43.4          | 880       | 53.1                 | 940       | 39            |
| 821       | 44.2          | 881       | 53.3                 | 941       | 38            |
| 822       | 45.0          | 882       | 53.3                 | 942       | 37            |
| 823       | 45.8          | 883       | 53.3                 | 943       | 36            |
| 824       | 46.8          | 884       | 53.1                 | 944       | 35            |
| 825       | 47.7          | 885       | 52.8                 | 944       | 35            |
|           |               |           |                      |           |               |
| 826       | 48.7          | 886       | 52.2                 | 946       | 34            |
| 827       | 49.7          | 887       | 51.3                 | 947       | 34            |
| 828       | 50.7          | 888       | 50.2                 | 948       | 34            |
| 829       | 51.6          | 889       | 49.2                 | 949       | 34            |

|           | WI            | TC class 1 veh | icles, phase Medium <sub>1</sub> |             |                |
|-----------|---------------|----------------|----------------------------------|-------------|----------------|
| Time in s | speed in km/h | Time in s      | speed in km/h                    | Time in s   | speed in km/h  |
| 950       | 33.9          | 1010           | 0.0                              | 11110 111 0 | ороса пт кипуп |
| 951       | 33.6          | 1011           | 0.0                              |             |                |
| 952       | 33.3          | 1012           | 0.0                              |             |                |
| 953       | 33.0          | 1012           | 0.0                              |             |                |
|           |               |                |                                  |             |                |
| 954       | 32.8          | 1014           | 0.0                              |             |                |
| 955       | 32.4          | 1015           | 0.0                              |             |                |
| 956       | 31.9          | 1016           | 0.0                              |             |                |
| 957       | 31.4          | 1017           | 0.0                              |             |                |
| 958       | 31.0          | 1018           | 0.0                              |             |                |
| 959       | 30.6          | 1019           | 0.0                              |             |                |
| 960       | 30.3          | 1020           | 0.0                              |             |                |
| 961       | 29.8          | 1021           | 0.0                              |             |                |
| 962       | 29.1          | 1022           | 0.0                              |             |                |
| 963       | 28.5          |                |                                  |             |                |
| 964       | 27.7          |                |                                  |             |                |
| 965       | 26.8          |                |                                  |             |                |
| 966       | 25.8          |                |                                  |             |                |
|           | 24.9          |                | +                                |             |                |
| 967       |               |                |                                  |             |                |
| 968       | 24.2          |                |                                  |             |                |
| 969       | 23.8          |                |                                  |             |                |
| 970       | 23.4          |                |                                  |             |                |
| 971       | 22.9          |                |                                  |             |                |
| 972       | 22.2          |                |                                  |             |                |
| 973       | 21.1          |                |                                  |             |                |
| 974       | 19.6          |                |                                  |             |                |
| 975       | 18.1          |                |                                  |             |                |
| 976       | 16.0          |                |                                  |             |                |
| 977       | 14.0          |                |                                  |             |                |
| 978       | 12.0          |                |                                  |             |                |
| 979       | 10.3          |                |                                  |             |                |
| -         |               |                |                                  |             |                |
| 980       | 8.5           |                |                                  |             |                |
| 981       | 6.5           |                |                                  |             |                |
| 982       | 4.6           |                |                                  |             |                |
| 983       | 3.1           |                |                                  |             |                |
| 984       | 1.9           |                |                                  |             |                |
| 985       | 1.0           |                |                                  |             |                |
| 986       | 0.0           |                |                                  |             |                |
| 987       | 0.0           |                |                                  |             |                |
| 988       | 0.0           |                |                                  |             |                |
| 989       | 0.0           |                |                                  |             |                |
| 990       | 0.0           |                |                                  |             |                |
| 991       | 0.0           |                |                                  |             |                |
| 992       | 0.0           |                |                                  |             |                |
| 993       | 0.0           |                |                                  |             |                |
| 994       | 0.0           |                | +                                |             |                |
|           | •             |                |                                  |             |                |
| 995       | 0.0           |                |                                  |             |                |
| 996       | 0.0           |                |                                  |             |                |
| 997       | 0.0           |                |                                  |             |                |
| 998       | 0.0           |                |                                  |             |                |
| 999       | 0.0           |                |                                  |             |                |
| 1000      | 0.0           |                |                                  |             |                |
| 1001      | 0.0           |                |                                  |             |                |
| 1002      | 0.0           |                |                                  |             |                |
| 1003      | 0.0           |                |                                  |             |                |
| 1004      | 0.0           |                |                                  |             |                |
| 1005      | 0.0           |                |                                  |             |                |
| 1005      | 0.0           |                |                                  |             |                |
| 1006      |               |                |                                  |             |                |
| 1007      | 0.0           |                |                                  |             |                |
| 1008      | 0.0           |                |                                  |             |                |

# 5. WLTC for Class 2 vehicles

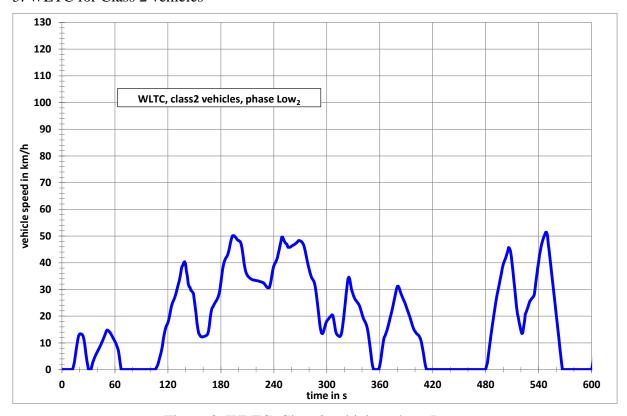



Figure 3: WLTC, Class 2 vehicles, phase Low<sub>2</sub>

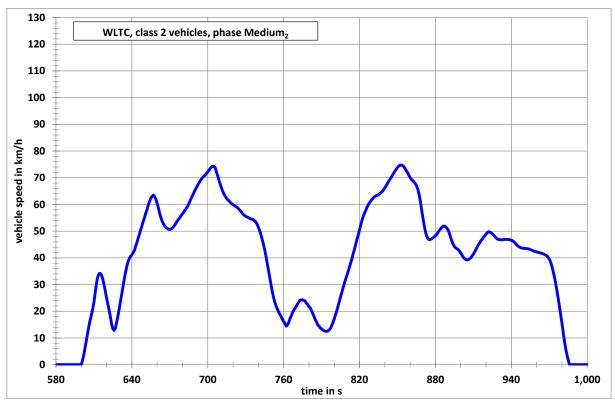



Figure 4: WLTC, Class 2 vehicles, phase Medium<sub>2</sub>

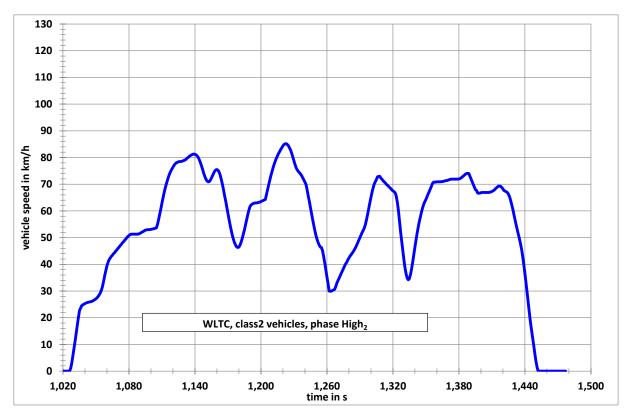



Figure 5: WLTC, Class 2 vehicles, phase High<sub>2</sub>

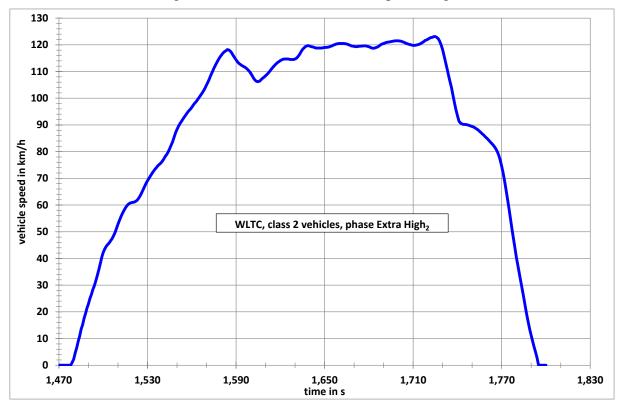



Figure 6: WLTC, Class 2 vehicles, phase Extra High<sub>2</sub>

Table 3: WLTC, Class 2 vehicles, phase Low<sub>2</sub>

| Time in s | speed in km/h | Time in s  | speed in km/h | Time in s  | speed in km/h |
|-----------|---------------|------------|---------------|------------|---------------|
| 0         | 0.0           |            |               |            |               |
| 1         | 0.0           | 61         | 9.9           | 121        | 18.8          |
| 2         | 0.0           | 62         | 9.0           | 122        | 20.3          |
| 3         | 0.0           | 63         | 8.2           | 123        | 22.0          |
| 4         | 0.0           | 64         | 7.0           | 124        | 23.6          |
| 5         | 0.0           | 65         | 4.8           | 125        | 24.8          |
| 6         | 0.0           | 66         | 2.3           | 126        | 25.0          |
| 7         | 0.0           | 67         | 0.0           | 127        | 26.3          |
| 8         | 0.0           | 68         | 0.0           | 128        | 27.2          |
| 9         | 0.0           | 69         | 0.0           | 129        | 28.3          |
| 10        | 0.0           | 70         | 0.0           | 130        | 29.0          |
| 11        | 0.0           | 71         | 0.0           | 131        | 30.9          |
| 12        | 0.0           | 72         | 0.0           | 132        | 32.2          |
| 13        | 1.2           | 73         | 0.0           | 133        | 33.4          |
| 14        | 2.6           | 74         | 0.0           | 134        | 35.           |
| 15        | 4.9           | 75         | 0.0           | 135        | 37.2          |
| 16        | 7.3           | 76         | 0.0           | 136        | 38.7          |
| 17        | 9.4           | 77         | 0.0           | 137        | 39.0          |
| 18        | 11.4          | 78         | 0.0           | 138        | 40.           |
| 19        | 12.7          | 79         | 0.0           | 139        | 40.4          |
| 20        | 13.3          | 80         | 0.0           | 140        | 39.           |
| 21        | 13.4          | 81         | 0.0           | 141        | 36.8          |
| 22        | 13.3          | 82         | 0.0           | 142        | 35.           |
| 23        | 13.1          | 83         | 0.0           | 143        | 32.2          |
|           | 12.5          | 84         |               | 143        | 31.           |
| 24<br>25  | 11.1          | 85         | 0.0           | 145        | 30.8          |
|           |               |            |               |            | 29.           |
| 26        | 8.9           | 86         | 0.0           | 146        |               |
| 27        | 6.2           | 87         | 0.0           | 147        | 29.4          |
| 28        | 3.8           | 88         | 0.0           | 148        | 29.0          |
| 29        | 1.8           | 89         | 0.0           | 149        | 28.9          |
| 30        | 0.0           | 90         | 0.0           | 150        | 26.0          |
| 31        | 0.0           | 91         | 0.0           | 151        | 23.4          |
| 32        | 0.0           | 92         | 0.0           | 152        | 20.           |
| 33<br>34  | 0.0           | 93<br>94   | 0.0           | 153<br>154 | 17.4<br>15.2  |
|           |               |            | 0.0           | <b></b>    |               |
| 35        | 2.8           | 95         | 0.0           | 155        | 13.5          |
| 36<br>37  | 3.6           | 96         | 0.0           | 156        | 13.0          |
|           | 4.5<br>5.3    | 97         | 0.0           | 157        | 12.4          |
| 38        | 6.0           | 98<br>99   | 0.0           | 158<br>159 | 12.3          |
| 39<br>40  | 6.6           | 100        | 0.0           | 160        | 12.2          |
| 41        | 7.3           | 100        | 0.0           | 161        | 12.4          |
| 42        | 7.9           |            | 0.0           | 162        | 12.           |
| 43        | 8.6           | 102<br>103 | 0.0           | 163        | 12.           |
|           |               |            |               | <b></b>    |               |
| 44        | 9.3           | 104        | 0.0           | 164        | 12.8          |
| 45        |               | 105        | 0.0           | 165        | 13.3          |
| 46        | 10.8          | 106        | 0.0           | 166<br>167 | 14.3          |
| 47        | 11.6          | 107        | 0.8           | 167        | 16.           |
| 48        | 12.4          | 108        | 1.4           | 168        | 19.           |
| 49        | 13.2          | 109        | 2.3           | 169        | 21.           |
| 50        | 14.2          | 110        | 3.5           | 170        | 23.           |
| 51        | 14.8          | 111        | 4.7           | 171        | 23.           |
| 52        | 14.7          | 112        | 5.9           | 172        | 24.           |
| 53        | 14.4          | 113        | 7.4           | 173        | 24.           |
| 54        | 14.1          | 114        | 9.2           | 174        | 25.           |
| 55        | 13.6          | 115        | 11.7          | 175        | 25.           |
| 56        | 13.0          | 116        | 13.5          | 176        | 26.           |
| 57        | 12.4          | 117        | 15.0          | 177        | 27.:          |
| 58        | 11.8          | 118        | 16.2          | 178        | 28.3          |
| 59        | 11.2          | 119        | 16.8          | 179        | 29.9          |

|            |               | WLTC class | s 2 vehicles, phase Low <sub>2</sub> |           |               |
|------------|---------------|------------|--------------------------------------|-----------|---------------|
| Time in s  | speed in km/h | Time in s  | speed in km/h                        | Time in s | speed in km/h |
| 181        | 35.1          | 241        | 39.6                                 | 301       | 18.6          |
| 182        | 37.5          | 242        | 40.1                                 | 302       | 19.0          |
| 183        | 39.2          | 243        | 40.9                                 | 303       | 19.4          |
| 184        | 40.5          | 244        | 41.8                                 | 304       | 19.8          |
| 185        | 41.4          | 245        | 43.3                                 | 305       | 20.1          |
| 186        | 42.0          | 246        | 44.7                                 | 306       | 20.5          |
| 187        | 42.5          | 247        | 46.4                                 | 307       | 20.2          |
| 188        | 43.2          | 248        | 47.9                                 | 308       | 18.6          |
| 189        | 44.4          | 249        | 49.6                                 | 309       | 16.5          |
| 190        | 45.9          | 250        | 49.6                                 | 310       | 14.4          |
| 191        | 47.6          | 251        | 48.8                                 | 311       | 13.4          |
| 192        | 49.0          | 252        | 48.0                                 | 312       | 12.9          |
| 193        | 50.0          | 253        | 47.5                                 | 313       | 12.7          |
| 194        | 50.2          | 254        | 47.1                                 | 314       | 12.4          |
| 195        | 50.1          | 255        | 46.9                                 | 315       | 12.4          |
| 196        | 49.8          | 256        | 45.8                                 | 316       | 12.8          |
| 197        | 49.4          | 257        | 45.8                                 | 317       | 14.1          |
| 198        | 48.9          | 258        | 45.8                                 | 318       | 16.2          |
| 199        | 48.5          | 259        | 45.9                                 | 319       | 18.8          |
| 200        | 48.3          | 260        | 46.2                                 | 320       | 21.9          |
| 201        | 48.2          | 261        | 46.4                                 | 321       | 25.0          |
| 202        | 47.9          | 262        | 46.6                                 | 322       | 28.4          |
| 203        | 47.1          | 263        | 46.8                                 | 323       | 31.3          |
| 204        | 45.5          | 264        | 47.0                                 | 324       | 34.0          |
| 205        | 43.2          | 265        | 47.3                                 | 325       | 34.6          |
| 206        | 40.6          | 266        | 47.5                                 | 326       | 33.9          |
| 207        | 38.5          | 267        | 47.9                                 | 327       | 31.9          |
|            | 36.9          |            |                                      | -         |               |
| 208        |               | 268        | 48.3                                 | 328       | 30.0          |
| 209        | 35.9          | 269        | 48.3                                 | 329       | 29.0          |
| 210        | 35.3          | 270        | 48.2                                 | 330       | 27.9          |
| 211        | 34.8          | 271        | 48.0                                 | 331       | 27.1          |
| 212        | 34.5          | 272        | 47.7                                 | 332       | 26.4          |
| 213        | 34.2          | 273        | 47.2                                 | 333       | 25.9          |
| 214        | 34.0          | 274        | 46.5                                 | 334       | 25.5          |
| 215        | 33.8          | 275        | 45.2                                 | 335       | 25.0          |
| 216        | 33.6          | 276        | 43.7                                 | 336       | 24.6          |
| 217        | 33.5          | 277        | 42.0                                 | 337       | 23.9          |
| 218        | 33.5          | 278        | 40.4                                 | 338       | 23.0          |
| 219        | 33.4          | 279        | 39.0                                 | 339       | 21.8          |
| 220        | 33.3          | 280        | 37.7                                 | 340       | 20.7          |
| 221        | 33.3          | 281        | 36.4                                 | 341       | 19.6          |
| 222        | 33.2          | 282        | 35.2                                 | 342       | 18.7          |
| 223        | 33.1          | 283        | 34.3                                 | 343       | 18.1          |
| 224<br>225 | 33.0          | 284        | 33.8                                 | 344       | 17.5          |
| 225        | 32.9          | 285        | 33.3                                 | 345       | 16.7          |
| 226        | 32.8          | 286        | 32.5                                 | 346       | 15.4          |
| 227        | 32.7          | 287        | 30.9                                 | 347       | 13.6          |
| 228        | 32.5          | 288        | 28.6                                 | 348       | 11.2          |
| 229        | 32.3          | 289        | 25.9                                 | 349       | 8.6           |
| 230        | 31.8          | 290        | 23.1                                 | 350       | 6.0           |
| 231        | 31.4          | 291        | 20.1                                 | 351       | 3.1           |
| 232        | 30.9          | 292        | 17.3                                 | 352       | 1.2           |
| 233        | 30.6          | 293        | 15.1                                 | 353       | 0.0           |
| 234        | 30.6          | 294        | 13.7                                 | 354       | 0.0           |
| 235        | 30.7          | 295        | 13.4                                 | 355       | 0.0           |
| 236        | 32.0          | 296        | 13.9                                 | 356       | 0.0           |
| 237        | 33.5          | 297        | 15.0                                 | 357       | 0.0           |
| 238        | 35.8          | 298        | 16.3                                 | 358       | 0.0           |
| 239        | 37.6          | 299        | 17.4                                 | 359       | 0.0           |
| 240        | 38.8          | 300        | 18.2                                 | 360       | 1.4           |

| Time in s  | speed in km/h | Time in s  | s 2 vehicles, phase Low <sub>2</sub> speed in km/h | Time in s  | speed in km/h |
|------------|---------------|------------|----------------------------------------------------|------------|---------------|
| 361        | 3.2           | 421        | 0.0                                                | 481        | 1.4           |
| 362        | 5.6           | 422        | 0.0                                                | 482        | 2.5           |
| 363        | 8.1           | 423        | 0.0                                                | 483        | 5.2           |
| 364        | 10.3          | 424        | 0.0                                                | 484        | 7.9           |
| 365        | 12.1          | 425        | 0.0                                                | 485        | 10.3          |
| 366        | 12.6          | 426        | 0.0                                                | 486        | 12.7          |
| 367        | 13.6          | 427        | 0.0                                                | 487        | 15.0          |
| 368        | 14.5          | 428        | 0.0                                                | 488        | 17.4          |
| 369        | 15.6          | 429        | 0.0                                                | 489        | 19.7          |
| 370        | 16.8          | 430        | 0.0                                                | 490        | 21.9          |
| 371        | 18.2          | 431        | 0.0                                                | 491        | 24.1          |
| 372        | 19.6          | 432        | 0.0                                                | 492        | 26.2          |
| 373        | 20.9          | 433        | 0.0                                                | 493        | 28.1          |
| 374        | 22.3          | 434        | 0.0                                                | 494        | 29.7          |
| 375        | 23.8          | 435        | 0.0                                                | 495        | 31.3          |
| 376        | 25.4          | 436        | 0.0                                                | 496        | 33.0          |
| 377        | 27.0          | 437        | 0.0                                                | 497        | 34.7          |
| 378        | 28.6          | 438        | 0.0                                                | 498        | 36.3          |
| 379        | 30.2          | 439        | 0.0                                                | 499        | 38.1          |
| 380        | 31.2          | 440        | 0.0                                                | 500        | 39.4          |
| 381        | 31.2          | 441        | 0.0                                                | 501        | 40.4          |
| 382        | 30.7          | 442        | 0.0                                                | 502        | 41.2          |
| 383        | 29.5          | 443        | 0.0                                                | 503        | 42.1          |
| 384        | 28.6          | 444        | 0.0                                                | 504        | 43.2          |
| 385        | 27.7          | 445        | 0.0                                                | 505        | 44.3          |
| 386        | 26.9          | 446        | 0.0                                                | 506        | 45.7          |
| 387        | 26.1          | 447        | 0.0                                                | 507        | 45.4          |
| 388        | 25.4          | 448        | 0.0                                                | 508        | 44.5          |
| 389        | 24.6          | 449        | 0.0                                                | 509        | 42.5          |
| 390        | 23.6          | 450        | 0.0                                                | 510        | 39.5          |
| 391        | 22.6          | 451        | 0.0                                                | 511        | 36.5          |
| 392        | 21.7          | 452        | 0.0                                                | 512        | 33.5          |
| 393        | 20.7          | 453        | 0.0                                                | 513        | 30.4          |
| 394        | 19.8          | 454        | 0.0                                                | 514        | 27.0          |
| 395        | 18.8          | 455        | 0.0                                                | 515        | 23.0          |
| 396        | 17.7          | 456        | 0.0                                                | 516        | 21.0          |
| 397        | 16.6          | 457        | 0.0                                                | 517        | 19.5          |
| 398        | 15.6          | 458        | 0.0                                                | 518        | 17.6          |
| 399        | 14.8          | 459        | 0.0                                                | 519        | 16.1          |
| 400        | 14.3          | 460        | 0.0                                                | 520        | 14.5          |
| 401        | 13.8          | 461        | 0.0                                                | 521        | 13.5          |
| 402        | 13.4          | 462        | 0.0                                                | 522        | 13.7          |
| 403        | 13.1          | 463        | 0.0                                                | 523        | 16.0          |
| 404        | 12.8          | 464        | 0.0                                                | 524        | 18.           |
| 405        | 12.3          | 465        | 0.0                                                | 525        | 20.8          |
| 406        | 11.6          | 466        | 0.0                                                | 526        | 21.5          |
| 407        | 10.5          | 467        | 0.0                                                | 527        | 22.5          |
| 408        | 9.0           | 468        | 0.0                                                | 528        | 23.4          |
| 409        | 7.2           | 469        | 0.0                                                | 529        | 24.           |
| 410        | 5.2           | 470        | 0.0                                                | 530        | 25.0          |
| 411        | 2.9           | 470        | 0.0                                                | 531        | 26.0          |
| 412        | 1.2           | 471        | 0.0                                                | 532        | 26.           |
| 413        | 0.0           | 472        | 0.0                                                | 532        | 26.9          |
| 414        |               | 473        |                                                    | 533        | 27.3          |
|            | 0.0           |            | 0.0                                                | 535        |               |
| 415        | 0.0           | 475        | 0.0                                                |            | 27.9          |
| 416        | 0.0           | 476        | 0.0                                                | 536        | 30.3          |
| 417        | 0.0           | 477        | 0.0                                                | 537        | 33.2          |
| 418        | 0.0           | 478        | 0.0                                                | 538        | 35.4          |
| 419<br>420 | 0.0           | 479<br>480 | 0.0                                                | 539<br>540 | 38.0<br>40.   |

| Time in a | Time in a     | anaad in less //- |               |           |               |
|-----------|---------------|-------------------|---------------|-----------|---------------|
| Time in s | speed in km/h | Time in s         | speed in km/h | Time in s | speed in km/h |
| 541       | 42.7          |                   |               |           |               |
| 542       | 44.5          |                   |               |           |               |
| 543       | 46.3          |                   |               |           |               |
| 544       | 47.6          |                   |               |           |               |
| 545       | 48.8          |                   |               |           |               |
| 546       | 49.7          |                   |               |           |               |
| 547       | 50.6          |                   |               |           |               |
| 548       | 51.4          |                   |               |           |               |
| 549       | 51.4          |                   |               |           |               |
| 550       | 50.2          |                   |               |           |               |
| 551       | 47.1          |                   |               |           |               |
| 552       | 44.5          |                   |               |           |               |
| 553       | 41.5          |                   |               |           |               |
| 554       | 38.5          |                   |               |           |               |
| 555       | 35.5          |                   |               |           |               |
| 556       | 32.5          |                   |               |           |               |
| 557       | 29.5          |                   |               |           |               |
| 558       | 26.5          |                   |               |           |               |
| 559       | 23.5          |                   |               |           |               |
| 560       | 20.4          |                   |               |           |               |
| 561       | 17.5          |                   |               |           |               |
| 562       | 14.5          |                   |               |           |               |
| 563       | 11.5          |                   |               |           |               |
| 564       | 8.5           |                   |               |           |               |
| 565       | 5.6           |                   |               |           |               |
| 566       | 2.6           |                   |               |           |               |
| 567       | 0.0           |                   |               |           |               |
| 568       | 0.0           |                   |               |           |               |
| 569       | 0.0           |                   |               |           |               |
| 570       | 0.0           |                   |               |           |               |
| 571       | 0.0           |                   |               |           |               |
| 572       | 0.0           |                   |               |           |               |
| 573       | 0.0           |                   |               | +         |               |
| 574       | 0.0           |                   |               | +         |               |
| 575       | 0.0           |                   |               | +         |               |
| 576       | 0.0           |                   |               | + +       |               |
|           |               | +                 |               |           |               |
| 577       | 0.0           |                   |               | +         |               |
| 578       | 0.0           |                   |               | +         |               |
| 579       | 0.0           |                   |               | +         |               |
| 580       | 0.0           |                   |               | + +       |               |
| 581       | 0.0           |                   |               |           |               |
| 582       | 0.0           |                   |               | +         |               |
| 583       | 0.0           |                   |               |           |               |
| 584       | 0.0           |                   |               |           |               |
| 585       | 0.0           |                   |               |           |               |
| 586       | 0.0           |                   |               |           |               |
| 587       | 0.0           |                   |               |           |               |
| 588       | 0.0           |                   |               |           |               |
| 589       | 0.0           |                   |               |           |               |

Table 4: WLTC, Class 2 vehicles, phase Medium<sub>2</sub>

| Time in s  | speed in km/h | Time in s | vehicles, phase Medium<br>speed in km/h | Time in s  | speed in km/h |
|------------|---------------|-----------|-----------------------------------------|------------|---------------|
| 590        | 0.0           | 650       | 55.0                                    | 710        | 67.4          |
| 591        | 0.0           | 651       | 56.8                                    | 711        | 66.0          |
| 592        | 0.0           | 652       | 58.0                                    | 712        | 64.           |
| 593        | 0.0           | 653       | 59.8                                    | 713        | 63.           |
| 594        | 0.0           | 654       | 61.1                                    | 714        | 62.           |
| 595        | 0.0           | 655       | 62.4                                    | 715        | 62.:          |
| 596        | 0.0           | 656       | 63.0                                    | 716        | 61.           |
| 597        | 0.0           | 657       | 63.5                                    | 717        | 61            |
| 598        | 0.0           | 658       | 63.0                                    | 718        | 60.           |
| 599        | 0.0           | 659       | 62.0                                    | 719        | 60.           |
| 600        | 0.0           | 660       | 60.4                                    | 720        | 59.           |
| 601        | 1.6           | 661       | 58.6                                    | 721        | 59.           |
| 602        | 3.6           | 662       | 56.7                                    | 722        | 59.           |
| 603        | 6.3           | 663       | 55.0                                    | 723        | 59.           |
| 604        | 9.0           | 664       | 53.7                                    | 724        | 58.           |
|            | 11.8          |           |                                         | 725        |               |
| 605<br>606 | 14.2          | 665       | 52.7<br>51.9                            | 726        | 58.<br>57.    |
|            |               | 666       |                                         | <b>-</b>   |               |
| 607        | 16.6          | 667       | 51.4                                    | 727        | 56.<br>56     |
| 608        | 18.5          | 668       | 51.0<br>50.7                            | 728<br>729 | 56.<br>55.    |
| 609        |               | 669       |                                         | <b>-</b>   |               |
| 610        | 23.4          | 670       | 50.6                                    | 730        | 55.           |
| 611        | 26.9          | 671       | 50.8                                    | 731        | 55.           |
| 612        | 30.3          | 672       | 51.2                                    | 732        | 55.           |
| 613        | 32.8          | 673       | 51.7                                    | 733        | 54.           |
| 614        | 34.1          | 674       | 52.3                                    | 734        | 54.           |
| 615        | 34.2          | 675       | 53.1                                    | 735        | 54.           |
| 616        | 33.6          | 676       | 53.8                                    | 736        | 54.           |
| 617        | 32.1          | 677       | 54.5                                    | 737        | 53.           |
| 618        | 30.0          | 678       | 55.1                                    | 738        | 53.           |
| 619        | 27.5          | 679       | 55.9                                    | 739        | 52.           |
| 620        | 25.1          | 680       | 56.5                                    | 740        | 51.           |
| 621        | 22.8          | 681       | 57.1                                    | 741        | 50.           |
| 622        | 20.5          | 682       | 57.8                                    | 742        | 48.           |
| 623        | 17.9          | 683       | 58.5                                    | 743        | 47.           |
| 624        | 15.1          | 684       | 59.3                                    | 744        | 45.           |
| 625        | 13.4          | 685       | 60.2                                    | 745        | 43.           |
| 626        | 12.8          | 686       | 61.3                                    | 746        | 40.           |
| 627        | 13.7          | 687       | 62.4                                    | 747        | 38.           |
| 628        | 16.0          | 688       | 63.4                                    | 748        | 35.           |
| 629        | 18.1          | 689       | 64.4                                    | 749        | 32.           |
| 630        | 20.8          | 690       | 65.4                                    | 750        | 30.           |
| 631        | 23.7          | 691       | 66.3                                    | 751        | 27.           |
| 632        | 26.5          | 692       | 67.2                                    | 752        | 25.           |
| 633        | 29.3          | 693       | 68.0                                    | 753        | 23.           |
| 634        | 32.0          | 694       | 68.8                                    | 754        | 22.           |
| 635        | 34.5          | 695       | 69.5                                    | 755        | 20.           |
| 636        | 36.8          | 696       | 70.1                                    | 756        | 19.           |
| 637        | 38.6          | 697       | 70.6                                    | 757        | 18.           |
| 638        | 39.8          | 698       | 71.0                                    | 758        | 18.           |
| 639        | 40.6          | 699       | 71.6                                    | 759        | 17.           |
| 640        | 41.1          | 700       | 72.2                                    | 760        | 16.           |
| 641        | 41.9          | 701       | 72.8                                    | 761        | 15.           |
| 642        | 42.8          | 702       | 73.5                                    | 762        | 14.           |
| 643        | 44.3          | 703       | 74.1                                    | 763        | 14.           |
| 644        | 45.7          | 704       | 74.3                                    | 764        | 15.           |
| 645        | 47.4          | 705       | 74.3                                    | 765        | 17.           |
| 646        | 48.9          | 706       | 73.7                                    | 766        | 18.           |
| 647        | 50.6          | 707       | 71.9                                    | 767        | 19.           |
| 648        | 52.0          | 708       | 70.5                                    | 768        | 20.           |
| 649        | 53.7          | 709       | 68.9                                    | 769        | 21.           |

| <del></del> |               |           | 2 vehicles, phase Medium |           |               |
|-------------|---------------|-----------|--------------------------|-----------|---------------|
| Time in s   | speed in km/h | Time in s | speed in km/h            | Time in s | speed in km/h |
| 770         | 21.9          | 830       | 62.0                     | 890       | 50.4          |
| 771         | 22.7          | 831       | 62.5                     | 891       | 49.2          |
| 772         | 23.4          | 832       | 62.9                     | 892       | 47.7          |
| 773         | 24.2          | 833       | 63.2                     | 893       | 46.3          |
| 774         | 24.3          | 834       | 63.4                     | 894       | 45.1          |
| 775         | 24.2          | 835       | 63.7                     | 895       | 44.2          |
| 776         | 24.1          | 836       | 64.0                     | 896       | 43.7          |
| 777         | 23.8          | 837       | 64.4                     | 897       | 43.4          |
| 778         | 23.0          | 838       | 64.9                     | 898       | 43.1          |
| 779         | 22.6          | 839       | 65.5                     | 899       | 42.5          |
| 780         | 21.7          | 840       | 66.2                     | 900       | 41.8          |
| 781         | 21.3          | 841       | 67.0                     | 901       | 41.1          |
| 782         | 20.3          | 842       | 67.8                     | 902       | 40.3          |
| 783         | 19.1          | 843       | 68.6                     | 903       | 39.7          |
| 784         | 18.1          | 844       | 69.4                     | 904       | 39.3          |
| 785         | 16.9          | 845       | 70.1                     | 905       | 39.2          |
| 786         | 16.0          | 846       | 70.9                     | 906       | 39.3          |
| 787         | 14.8          | 847       | 71.7                     | 907       | 39.6          |
| 788         | 14.5          | 848       | 72.5                     | 908       | 40.0          |
| 789         | 13.7          | 849       | 73.2                     | 909       | 40.7          |
| 790         | 13.5          | 850       | 73.8                     | 910       | 41.4          |
| 791         | 12.9          | 851       | 74.4                     | 911       | 42.2          |
| 792         | 12.7          | 852       | 74.7                     | 912       | 43.1          |
| 793         | 12.5          | 853       | 74.7                     | 913       | 44.1          |
| 794         | 12.5          | 854       | 74.6                     | 914       | 44.9          |
| 795         | 12.6          | 855       | 74.2                     | 915       | 45.6          |
| 796         | 13.0          | 856       | 73.5                     | 916       | 46.4          |
| 797         | 13.6          | 857       | 72.6                     | 917       | 47.0          |
| 798         | 14.6          | 858       | 71.8                     | 918       | 47.8          |
| 799         | 15.7          | 859       | 71.0                     | 919       | 48.3          |
| 800         | 17.1          | 860       | 70.1                     | 920       | 48.9          |
| 801         | 18.7          | 861       | 69.4                     | 921       | 49.4          |
| 802         | 20.2          | 862       | 68.9                     | 922       | 49.8          |
| 803         | 21.9          | 863       | 68.4                     | 923       | 49.6          |
| 804         | 23.6          | 864       | 67.9                     | 924       | 49.3          |
| 805         | 25.4          | 865       | 67.1                     | 925       | 49.0          |
| 806         | 27.1          | 866       | 65.8                     | 926       | 48.5          |
| 807         | 28.9          | 867       | 63.9                     | 927       | 48.0          |
| 808         | 30.4          | 868       | 61.4                     | 928       | 47.5          |
| 809         | 32.0          | 869       | 58.4                     | 929       | 47.0          |
| 810         | 33.4          | 870       | 55.4                     | 930       | 46.9          |
| 811         | 35.0          | 871       | 52.4                     | 931       | 46.8          |
| 812         | 36.4          | 872       | 50.0                     | 932       | 46.8          |
| 813         | 38.1          | 873       | 48.3                     | 933       | 46.8          |
| 814         | 39.7          | 874       | 47.3                     | 934       | 46.9          |
| 815         | 41.6          | 875       | 46.8                     | 935       | 46.9          |
| 816         | 43.3          | 876       | 46.9                     | 936       | 46.9          |
| 817         | 45.1          | 877       | 47.1                     | 937       | 46.9          |
| 818         | 46.9          | 878       | 47.5                     | 938       | 46.9          |
| 819         | 48.7          | 879       | 47.8                     | 939       | 46.8          |
| 820         | 50.5          | 880       | 48.3                     | 940       | 46.6          |
| 821         | 52.4          | 881       | 48.8                     | 941       | 46.4          |
| 822         | 54.1          | 882       | 49.5                     | 942       | 46.0          |
| 823         | 55.7          | 883       | 50.2                     | 943       | 45.5          |
| 824         | 56.8          | 884       | 50.8                     | 944       | 45.0          |
| 825         | 57.9          | 885       | 51.4                     | 945       | 44.5          |
| 826         | 59.0          | 886       | 51.8                     | 946       | 44.2          |
| 827         | 59.9          | 887       | 51.9                     | 947       | 43.9          |
| 828         | 60.7          | 888       | 51.7                     | 948       | 43.7          |
| 829         | 61.4          | 889       | 51.2                     | 949       | 43.6          |

|           | V             | VLTC class 2 | 2 vehicles, phase Medium | 2         |               |
|-----------|---------------|--------------|--------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s    | speed in km/h            | Time in s | speed in km/h |
| 950       | 43.6          | 1010         | 0.0                      |           | •             |
| 951       | 43.5          | 1011         | 0.0                      |           |               |
| 952       | 43.5          | 1012         | 0.0                      |           |               |
| 953       | 43.4          | 1013         | 0.0                      |           |               |
| 954       | 43.3          | 1014         | 0.0                      |           |               |
| 955       | 43.1          | 1015         | 0.0                      |           |               |
| 956       | 42.9          | 1016         | 0.0                      |           |               |
| 957       | 42.7          | 1017         | 0.0                      |           |               |
| 958       | 42.5          | 1018         | 0.0                      |           |               |
| 959       | 42.4          | 1019         | 0.0                      |           |               |
| 960       | 42.2          | 1020         | 0.0                      |           |               |
| 961       | 42.1          | 1021         | 0.0                      |           |               |
| 962       | 42.0          | 1022         | 0.0                      |           |               |
| 963       | 41.8          | -            |                          |           |               |
| 964       | 41.7          |              |                          |           |               |
| 965       | 41.5          |              |                          |           |               |
| 966       | 41.3          |              |                          |           |               |
| 967       | 41.1          |              |                          |           |               |
| 968       | 40.8          |              |                          |           |               |
| 969       | 40.3          |              |                          |           |               |
| 970       | 39.6          |              |                          |           |               |
| 971       | 38.5          |              |                          |           |               |
| 972       | 37.0          |              |                          |           |               |
| 973       | 35.1          |              |                          |           |               |
| 974       | 33.0          |              |                          |           |               |
| 975       | 30.6          |              |                          |           |               |
| 976       | 27.9          |              |                          |           |               |
| 977       | 25.1          |              |                          |           |               |
| 978       | 22.0          |              |                          |           |               |
| 979       | 18.8          |              |                          |           |               |
| 980       | 15.5          |              |                          |           |               |
| 981       | 12.3          |              |                          |           |               |
| 982       | 8.8           |              |                          |           |               |
| 983       | 6.0           |              |                          |           |               |
| 984       | 3.6           |              |                          |           |               |
| 985       | 1.6           |              |                          |           |               |
| 986       | 0.0           |              |                          |           |               |
| 987       | 0.0           |              |                          |           |               |
| 988       | 0.0           |              |                          |           |               |
| 989       | 0.0           |              |                          |           |               |
| 990       | 0.0           |              |                          |           |               |
| 991       | 0.0           |              |                          |           |               |
| 992       | 0.0           |              |                          |           |               |
| 993       | 0.0           |              |                          |           |               |
| 994       | 0.0           |              |                          |           |               |
| 995       | 0.0           |              |                          |           |               |
| 996       | 0.0           |              |                          |           |               |
| 997       | 0.0           |              |                          |           |               |
| 998       | 0.0           |              |                          |           |               |
| 999       | 0.0           |              |                          |           |               |
| 1000      | 0.0           |              |                          |           |               |
| 1000      | 0.0           |              |                          |           |               |
| 1001      | 0.0           |              |                          |           |               |
|           |               |              |                          |           |               |
| 1003      | 0.0           |              |                          |           |               |
| 1004      | 0.0           |              |                          |           |               |
| 1005      | 0.0           |              |                          |           |               |
| 1006      | 0.0           |              |                          |           |               |
| 1007      | 0.0           |              |                          |           |               |
| 1008      | 0.0           |              |                          |           |               |
| 1009      | 0.0           |              |                          |           |               |

Table 5: WLTC, Class 2 vehicles, phase High<sub>2</sub>

|           |               | WLTC class | s 2 vehicles, phase High <sub>2</sub> |           |               |
|-----------|---------------|------------|---------------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s  | speed in km/h                         | Time in s | speed in km/h |
| 1023      | 0.0           | 1083       | 51.3                                  | 1143      | 80.0          |
| 1024      | 0.0           | 1084       | 51.3                                  | 1144      | 79.1          |
| 1025      | 0.0           | 1085       | 51.3                                  | 1145      | 78.0          |
| 1026      | 0.0           | 1086       | 51.3                                  | 1146      | 76.8          |
| 1027      | 1.1           | 1087       | 51.3                                  | 1147      | 75.5          |
| 1028      | 3.0           | 1088       | 51.3                                  | 1148      | 74.1          |
| 1029      | 5.7           | 1089       | 51.4                                  | 1149      | 72.9          |
| 1030      | 8.4           | 1090       | 51.6                                  | 1150      | 71.9          |
| 1031      | 11.1          | 1091       | 51.8                                  | 1151      | 71.2          |
| 1032      | 14.0          | 1092       | 52.1                                  | 1152      | 70.9          |
| 1033      | 17.0          | 1093       | 52.3                                  | 1153      | 71.0          |
| 1034      | 20.1          | 1094       | 52.6                                  | 1154      | 71.5          |
| 1035      | 22.7          | 1095       | 52.8                                  | 1155      | 72.3          |
| 1036      | 23.6          | 1096       | 52.9                                  | 1156      | 73.2          |
| 1037      | 24.5          | 1097       | 53.0                                  | 1157      | 74.1          |
| 1038      | 24.8          | 1098       | 53.0                                  | 1158      | 74.9          |
| 1039      | 25.1          | 1099       | 53.0                                  | 1159      | 75.4          |
| 1040      | 25.3          | 1100       | 53.1                                  | 1160      | 75.5          |
| 1040      | 25.5          | 1101       | 53.1                                  | 1161      | 75.2          |
| 1041      | 25.7          | 1101       | 53.3                                  | 1162      | 74.5          |
| 1042      | 25.7          | 1102       | 53.4                                  | 1163      | 73.3          |
| 1043      | 25.9          | 1103       | 53.5                                  | 1164      | 71.7          |
|           |               | 1104       |                                       |           |               |
| 1045      | 26.0          |            | 53.7                                  | 1165      | 69.9          |
| 1046      | 26.1          | 1106       | 55.0                                  | 1166      | 67.9          |
| 1047      | 26.3          | 1107       | 56.8                                  | 1167      | 65.7          |
| 1048      | 26.5          | 1108       | 58.8                                  | 1168      | 63.5          |
| 1049      | 26.8          | 1109       | 60.9                                  | 1169      | 61.2          |
| 1050      | 27.1          | 1110       | 63.0                                  | 1170      | 59.0          |
| 1051      | 27.5          | 1111       | 65.0                                  | 1171      | 56.8          |
| 1052      | 28.0          | 1112       | 66.9                                  | 1172      | 54.7          |
| 1053      | 28.6          | 1113       | 68.6                                  | 1173      | 52.7          |
| 1054      | 29.3          | 1114       | 70.1                                  | 1174      | 50.9          |
| 1055      | 30.4          | 1115       | 71.5                                  | 1175      | 49.4          |
| 1056      | 31.8          | 1116       | 72.8                                  | 1176      | 48.1          |
| 1057      | 33.7          | 1117       | 73.9                                  | 1177      | 47.1          |
| 1058      | 35.8          | 1118       | 74.9                                  | 1178      | 46.5          |
| 1059      | 37.8          | 1119       | 75.7                                  | 1179      | 46.3          |
| 1060      | 39.5          | 1120       | 76.4                                  | 1180      | 46.5          |
| 1061      | 40.8          | 1121       | 77.1                                  | 1181      | 47.2          |
| 1062      | 41.8          | 1122       | 77.6                                  | 1182      | 48.3          |
| 1063      | 42.4          | 1123       | 78.0                                  | 1183      | 49.7          |
| 1064      | 43.0          | 1124       | 78.2                                  | 1184      | 51.3          |
| 1065      | 43.4          | 1125       | 78.4                                  | 1185      | 53.0          |
| 1066      | 44.0          | 1126       | 78.5                                  | 1186      | 54.9          |
| 1067      | 44.4          | 1127       | 78.5                                  | 1187      | 56.7          |
| 1068      | 45.0          | 1128       | 78.6                                  | 1188      | 58.6          |
| 1069      | 45.4          | 1129       | 78.7                                  | 1189      | 60.2          |
| 1070      | 46.0          | 1130       | 78.9                                  | 1190      | 61.6          |
| 1071      | 46.4          | 1131       | 79.1                                  | 1191      | 62.2          |
| 1072      | 47.0          | 1132       | 79.4                                  | 1192      | 62.5          |
| 1073      | 47.4          | 1133       | 79.8                                  | 1193      | 62.8          |
| 1074      | 48.0          | 1134       | 80.1                                  | 1194      | 62.9          |
| 1075      | 48.4          | 1135       | 80.5                                  | 1195      | 63.0          |
| 1076      | 49.0          | 1136       | 80.8                                  | 1196      | 63.0          |
| 1077      | 49.4          | 1137       | 81.0                                  | 1197      | 63.1          |
| 1078      | 50.0          | 1138       | 81.2                                  | 1198      | 63.2          |
| 1079      | 50.4          | 1139       | 81.3                                  | 1199      | 63.3          |
| 1080      | 50.8          | 1140       | 81.2                                  | 1200      | 63.5          |
| 1081      | 51.1          | 1141       | 81.0                                  | 1201      | 63.7          |
| 1082      | 51.3          | 1142       | 80.6                                  | 1202      | 63.9          |

|           |               |           | s 2 vehicles, phase High <sub>2</sub> | 1         |               |
|-----------|---------------|-----------|---------------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s | speed in km/h                         | Time in s | speed in km/h |
| 1203      | 64.1          | 1263      | 29.9                                  | 1323      | 65.6          |
| 1204      | 64.3          | 1264      | 30.0                                  | 1324      | 63.3          |
| 1205      | 66.1          | 1265      | 30.2                                  | 1325      | 60.2          |
| 1206      | 67.9          | 1266      | 30.4                                  | 1326      | 56.2          |
| 1207      | 69.7          | 1267      | 30.6                                  | 1327      | 52.2          |
| 1208      | 71.4          | 1268      | 31.6                                  | 1328      | 48.4          |
| 1209      | 73.1          | 1269      | 33.0                                  | 1329      | 45.0          |
| 1210      | 74.7          | 1270      | 33.9                                  | 1330      | 41.6          |
| 1211      | 76.2          | 1271      | 34.8                                  | 1331      | 38.6          |
| 1212      | 77.5          | 1272      | 35.7                                  | 1332      | 36.4          |
| 1213      | 78.6          | 1273      | 36.6                                  | 1333      | 34.8          |
| 1214      | 79.7          | 1274      | 37.5                                  | 1334      | 34.2          |
| 1215      | 80.6          | 1275      | 38.4                                  | 1335      | 34.7          |
| 1216      | 81.5          | 1276      | 39.3                                  | 1336      | 36.3          |
| 1217      | 82.2          | 1277      | 40.2                                  | 1337      | 38.5          |
| 1218      | 83.0          | 1278      | 40.8                                  | 1338      | 41.0          |
| 1219      | 83.7          | 1279      | 41.7                                  | 1339      | 43.7          |
| 1220      | 84.4          | 1280      | 42.4                                  | 1340      | 46.5          |
| 1221      | 84.9          | 1281      | 43.1                                  | 1341      | 49.1          |
| 1222      | 85.1          | 1282      | 43.6                                  | 1342      | 51.6          |
| 1223      | 85.2          | 1283      | 44.2                                  | 1343      | 53.9          |
| 1224      | 84.9          | 1284      | 44.8                                  | 1344      | 56.0          |
| 1225      | 84.4          | 1285      | 45.5                                  | 1345      | 57.9          |
| 1226      | 83.6          | 1286      | 46.3                                  | 1346      | 59.7          |
| 1227      | 82.7          | 1287      | 47.2                                  | 1347      | 61.2          |
| 1228      | 81.5          | 1288      | 48.1                                  | 1348      | 62.5          |
| 1229      | 80.1          | 1289      | 49.1                                  | 1349      | 63.5          |
| 1230      | 78.7          | 1290      | 50.0                                  | 1350      | 64.3          |
| 1231      | 77.4          | 1291      | 51.0                                  | 1351      | 65.3          |
| 1232      | 76.2          | 1292      | 51.9                                  | 1352      | 66.3          |
| 1233      | 75.4          | 1293      | 52.7                                  | 1353      | 67.3          |
| 1234      | 74.8          | 1294      | 53.7                                  | 1354      | 68.3          |
| 1235      | 74.3          | 1295      | 55.0                                  | 1355      | 69.3          |
| 1236      | 73.8          | 1296      | 56.8                                  | 1356      | 70.3          |
| 1237      | 73.2          | 1297      | 58.8                                  | 1357      | 70.8          |
| 1238      | 72.4          | 1298      | 60.9                                  | 1358      | 70.8          |
| 1239      | 71.6          | 1299      | 63.0                                  | 1359      | 70.8          |
| 1240      | 70.8          | 1300      | 65.0                                  | 1360      | 70.9          |
| 1241      | 69.9          | 1301      | 66.9                                  | 1361      | 70.9          |
| 1242      | 67.9          | 1302      | 68.6                                  | 1362      | 70.9          |
| 1243      | 65.7          | 1303      | 70.1                                  | 1363      | 70.9          |
| 1244      | 63.5          | 1304      | 71.0                                  | 1364      | 71.0          |
| 1245      | 61.2          | 1305      | 71.8                                  | 1365      | 71.0          |
| 1246      | 59.0          | 1306      | 72.8                                  | 1366      | 71.1          |
| 1247      | 56.8          | 1307      | 72.9                                  | 1367      | 71.2          |
| 1248      | 54.7          | 1308      | 73.0                                  | 1368      | 71.3          |
| 1249      | 52.7          | 1309      | 72.3                                  | 1369      | 71.4          |
| 1250      | 50.9          | 1310      | 71.9                                  | 1370      | 71.5          |
| 1251      | 49.4          | 1311      | 71.3                                  | 1371      | 71.7          |
| 1252      | 48.1          | 1312      | 70.9                                  | 1372      | 71.8          |
| 1253      | 47.1          | 1313      | 70.5                                  | 1373      | 71.9          |
| 1254      | 46.5          | 1314      | 70.0                                  | 1374      | 71.9          |
| 1255      | 46.3          | 1315      | 69.6                                  | 1375      | 71.9          |
| 1256      | 45.1          | 1316      | 69.2                                  | 1376      | 71.9          |
| 1257      | 43.0          | 1317      | 68.8                                  | 1377      | 71.9          |
| 1258      | 40.6          | 1318      | 68.4                                  | 1378      | 71.9          |
| 1259      | 38.1          | 1319      | 67.9                                  | 1379      | 71.9          |
| 1260      | 35.4          | 1320      | 67.5                                  | 1380      | 72.0          |
| 1261      | 32.7          | 1321      | 67.2                                  | 1381      | 72.1          |
| 1262      | 30.0          | 1322      | 66.8                                  | 1382      | 72.4          |

|           |               |           | s 2 vehicles, phase High <sub>2</sub> |           |               |
|-----------|---------------|-----------|---------------------------------------|-----------|---------------|
| lime in s | speed in km/h | Time in s | speed in km/h                         | Time in s | speed in km/h |
| 1383      | 72.7          | 1443      | 25.8                                  |           |               |
| 1384      | 73.1          | 1444      | 22.1                                  |           |               |
| 1385      | 73.4          | 1445      | 18.6                                  |           |               |
| 1386      | 73.8          | 1446      | 15.3                                  |           |               |
| 1387      | 74.0          | 1447      | 12.4                                  |           |               |
| 1388      | 74.1          | 1448      | 9.6                                   |           |               |
| 1389      | 74.0          | 1449      | 6.6                                   |           |               |
| 1390      | 73.0          | 1450      | 3.8                                   |           |               |
|           | 72.0          | 1451      |                                       | +         |               |
| 1391      |               |           | 1.6                                   | -         |               |
| 1392      | 71.0          | 1452      | 0.0                                   |           |               |
| 1393      | 70.0          | 1453      | 0.0                                   |           |               |
| 1394      | 69.0          | 1454      | 0.0                                   |           |               |
| 1395      | 68.0          | 1455      | 0.0                                   |           |               |
| 1396      | 67.7          | 1456      | 0.0                                   |           |               |
| 1397      | 66.7          | 1457      | 0.0                                   |           |               |
| 1398      | 66.6          | 1458      | 0.0                                   |           |               |
| 1399      | 66.7          | 1459      | 0.0                                   |           |               |
| 1400      | 66.8          | 1460      | 0.0                                   |           |               |
| 1401      | 66.9          | 1461      | 0.0                                   |           |               |
| 1402      | 66.9          | 1462      | 0.0                                   |           |               |
| 1403      | 66.9          | 1463      | 0.0                                   |           |               |
|           | 66.9          |           |                                       |           |               |
| 1404      |               | 1464      | 0.0                                   |           |               |
| 1405      | 66.9          | 1465      | 0.0                                   |           |               |
| 1406      | 66.9          | 1466      | 0.0                                   |           |               |
| 1407      | 66.9          | 1467      | 0.0                                   |           |               |
| 1408      | 67.0          | 1468      | 0.0                                   |           |               |
| 1409      | 67.1          | 1469      | 0.0                                   |           |               |
| 1410      | 67.3          | 1470      | 0.0                                   |           |               |
| 1411      | 67.5          | 1471      | 0.0                                   |           |               |
| 1412      | 67.8          | 1472      | 0.0                                   |           |               |
| 1413      | 68.2          | 1473      | 0.0                                   |           |               |
| 1414      | 68.6          | 1474      | 0.0                                   |           |               |
| 1415      | 69.0          | 1475      | 0.0                                   |           |               |
| 1416      | 69.3          | 1476      | 0.0                                   |           |               |
| 1417      | 69.3          | 1477      | 0.0                                   |           |               |
| 1418      | 69.2          | 1777      | 0.0                                   |           |               |
|           |               |           |                                       | -         |               |
| 1419      | 68.8          |           |                                       |           |               |
| 1420      | 68.2          |           |                                       |           |               |
| 1421      | 67.6          |           |                                       |           |               |
| 1422      | 67.4          |           |                                       |           |               |
| 1423      | 67.2          |           |                                       |           |               |
| 1424      | 66.9          |           |                                       |           |               |
| 1425      | 66.3          |           |                                       |           |               |
| 1426      | 65.4          |           |                                       |           |               |
| 1427      | 64.0          |           |                                       |           |               |
| 1428      | 62.4          |           |                                       |           |               |
| 1429      | 60.6          |           |                                       |           |               |
| 1430      | 58.6          |           |                                       |           |               |
| 1431      | 56.7          |           |                                       |           |               |
| 1432      | 54.8          |           |                                       |           |               |
|           |               |           |                                       |           |               |
| 1433      | 53.0          |           |                                       |           |               |
| 1434      | 51.3          |           |                                       |           |               |
| 1435      | 49.6          |           |                                       |           |               |
| 1436      | 47.8          |           |                                       |           |               |
| 1437      | 45.5          |           |                                       |           |               |
| 1438      | 42.8          |           |                                       |           |               |
| 1439      | 39.8          |           |                                       |           |               |
| 1440      | 36.5          |           |                                       |           |               |
| 1441      | 33.0          |           |                                       |           |               |
| 1442      | 29.5          |           |                                       |           |               |

Table 6: WLTC, Class 2 vehicles, phase Extra High<sub>2</sub>

| Time in s    | speed in km/h | Time in s    | vehicles, phase Extra Hig<br>speed in km/h | Time in s    | speed in km/h |
|--------------|---------------|--------------|--------------------------------------------|--------------|---------------|
| 1478         | 0.0           | 1538         | 75.2                                       | 1598         | 110.7         |
| 1478         | 1.1           | 1539         | 75.7                                       |              | 110.7         |
| 1479         | 2.3           | 1540         | 76.4                                       | 1599<br>1600 | 109.3         |
|              |               |              |                                            |              | 109.3         |
| 1481<br>1482 | 4.6<br>6.5    | 1541<br>1542 | 77.2<br>78.2                               | 1601         |               |
|              | 8.9           |              |                                            | 1602         | 107.4         |
| 1483         |               | 1543         | 78.9                                       | 1603         | 106.7         |
| 1484         | 10.9          | 1544         | 79.9                                       | 1604         | 106.3         |
| 1485         | 13.5          | 1545         | 81.1                                       | 1605         | 106.2         |
| 1486         | 15.2          | 1546         | 82.4                                       | 1606         | 106.4         |
| 1487         | 17.6          | 1547         | 83.7                                       | 1607         | 107.0         |
| 1488         | 19.3          | 1548         | 85.4                                       | 1608         | 107.5         |
| 1489         | 21.4          | 1549         | 87.0                                       | 1609         | 107.9         |
| 1490         | 23.0          | 1550         | 88.3                                       | 1610         | 108.4         |
| 1491         | 25.0          | 1551         | 89.5                                       | 1611         | 108.9         |
| 1492         | 26.5          | 1552         | 90.5                                       | 1612         | 109.5         |
| 1493         | 28.4          | 1553         | 91.3                                       | 1613         | 110.2         |
| 1494         | 29.8          | 1554         | 92.2                                       | 1614         | 110.9         |
| 1495         | 31.7          | 1555         | 93.0                                       | 1615         | 111.6         |
| 1496         | 33.7          | 1556         | 93.8                                       | 1616         | 112.2         |
| 1497         | 35.8          | 1557         | 94.6                                       | 1617         | 112.8         |
| 1498         | 38.1          | 1558         | 95.3                                       | 1618         | 113.3         |
| 1499         | 40.5          | 1559         | 95.9                                       | 1619         | 113.7         |
| 1500         | 42.2          | 1560         | 96.6                                       | 1620         | 114.1         |
| 1501         | 43.5          | 1561         | 97.4                                       | 1621         | 114.4         |
| 1502         | 44.5          | 1562         | 98.1                                       | 1622         | 114.6         |
| 1503         | 45.2          | 1563         | 98.7                                       | 1623         | 114.7         |
| 1504         | 45.8          | 1564         | 99.5                                       | 1624         | 114.7         |
| 1505         | 46.6          | 1565         | 100.3                                      | 1625         | 114.7         |
| 1506         | 47.4          | 1566         | 101.1                                      | 1626         | 114.6         |
| 1507         | 48.5          | 1567         | 101.9                                      | 1627         | 114.5         |
| 1508         | 49.7          | 1568         | 102.8                                      | 1628         | 114.5         |
| 1509         | 51.3          | 1569         | 103.8                                      | 1629         | 114.5         |
| 1510         | 52.9          | 1570         | 105.0                                      | 1630         | 114.7         |
| 1511         | 54.3          | 1571         | 106.1                                      | 1631         | 115.0         |
| 1512         | 55.6          | 1572         | 107.4                                      | 1632         | 115.6         |
| 1513         | 56.8          | 1573         | 108.7                                      | 1633         | 116.4         |
| 1514         | 57.9          | 1574         | 109.9                                      | 1634         | 117.3         |
| 1515         | 58.9          | 1575         | 111.2                                      | 1635         | 118.2         |
| 1516         | 59.7          | 1576         | 112.3                                      | 1636         | 118.8         |
| 1517         | 60.3          | 1577         | 113.4                                      | 1637         | 119.3         |
| 1518         | 60.7          | 1578         | 114.4                                      | 1638         | 119.6         |
| 1519         | 60.9          | 1579         | 115.3                                      | 1639         | 119.7         |
| 1520         | 61.0          | 1580         | 116.1                                      | 1640         | 119.5         |
| 1521         | 61.1          | 1581         | 116.8                                      | 1641         | 119.3         |
| 1522         | 61.4          | 1582         | 117.4                                      | 1642         | 119.2         |
| 1523         | 61.8          | 1583         | 117.7                                      | 1643         | 119.0         |
| 1524         | 62.5          | 1584         | 118.2                                      | 1644         | 118.8         |
| 1525         | 63.4          | 1585         | 118.1                                      | 1645         | 118.8         |
| 1526         | 64.5          | 1586         | 117.7                                      | 1646         | 118.8         |
| 1527         | 65.7          | 1587         | 117.0                                      | 1647         | 118.8         |
| 1528         | 66.9          | 1588         | 116.1                                      | 1648         | 118.8         |
| 1529         | 68.1          | 1589         | 115.2                                      | 1649         | 118.9         |
| 1530         | 69.1          | 1590         | 114.4                                      | 1650         | 119.0         |
| 1531         | 70.0          | 1591         | 113.6                                      | 1651         | 119.0         |
| 1532         | 70.9          | 1592         | 113.0                                      | 1652         | 119.1         |
| 1533         | 71.8          | 1593         | 112.6                                      | 1653         | 119.2         |
| 1534         | 72.6          | 1594         | 112.2                                      | 1654         | 119.4         |
| 1535         | 73.4          | 1595         | 111.9                                      | 1655         | 119.6         |
| 1536         | 74.0          | 1596         | 111.6                                      | 1656         | 119.9         |
| 1537         | 74.7          | 1597         | 111.2                                      | 1657         | 120.1         |

|           | W             | LTC class 2 | vehicles, phase Extra Hig | h <sub>2</sub> |               |
|-----------|---------------|-------------|---------------------------|----------------|---------------|
| Time in s | speed in km/h | Time in s   | speed in km/h             | Time in s      | speed in km/h |
| 1658      | 120.3         | 1718        | 121.6                     | 1778           | 47.3          |
| 1659      | 120.4         | 1719        | 121.8                     | 1779           | 43.8          |
| 1660      | 120.5         | 1720        | 122.1                     | 1780           | 40.4          |
| 1661      | 120.5         | 1721        | 122.4                     | 1781           | 37.4          |
| 1662      | 120.5         | 1722        | 122.7                     | 1782           | 34.3          |
| 1663      | 120.5         | 1723        | 122.8                     | 1783           | 31.3          |
| 1664      | 120.4         | 1724        | 123.1                     | 1784           | 28.3          |
|           | +             | 1724        | 123.1                     | 1785           | 25.2          |
| 1665      | 120.3         |             |                           |                |               |
| 1666      | 120.1         | 1726        | 122.8                     | 1786           | 22.0          |
| 1667      | 119.9         | 1727        | 122.3                     | 1787           | 18.9          |
| 1668      | 119.6         | 1728        | 121.3                     | 1788           | 16.1          |
| 1669      | 119.5         | 1729        | 119.9                     | 1789           | 13.4          |
| 1670      | 119.4         | 1730        | 118.1                     | 1790           | 11.1          |
| 1671      | 119.3         | 1731        | 115.9                     | 1791           | 8.9           |
| 1672      | 119.3         | 1732        | 113.5                     | 1792           | 6.9           |
| 1673      | 119.4         | 1733        | 111.1                     | 1793           | 4.9           |
| 1674      | 119.5         | 1734        | 108.6                     | 1794           | 2.8           |
| 1675      | 119.5         | 1735        | 106.2                     | 1795           | 0.0           |
| 1676      | 119.6         | 1736        | 104.0                     | 1796           | 0.0           |
| 1677      | 119.6         | 1737        | 101.1                     | 1797           | 0.0           |
| 1678      | 119.6         | 1738        | 98.3                      | 1798           | 0.0           |
| 1679      | 119.4         | 1739        | 95.7                      | 1799           | 0.0           |
| 1680      | 119.3         | 1740        | 93.5                      | 1800           | 0.0           |
| 1681      |               |             | 91.5                      | 1000           | 0.0           |
|           | 119.0         | 1741        |                           |                |               |
| 1682      | 118.8         | 1742        | 90.7                      |                |               |
| 1683      | 118.7         | 1743        | 90.4                      |                |               |
| 1684      | 118.8         | 1744        | 90.2                      |                |               |
| 1685      | 119.0         | 1745        | 90.2                      |                |               |
| 1686      | 119.2         | 1746        | 90.1                      |                |               |
| 1687      | 119.6         | 1747        | 90.0                      |                |               |
| 1688      | 120.0         | 1748        | 89.8                      |                |               |
| 1689      | 120.3         | 1749        | 89.6                      |                |               |
| 1690      | 120.5         | 1750        | 89.4                      |                |               |
| 1691      | 120.7         | 1751        | 89.2                      |                |               |
| 1692      | 120.9         | 1752        | 88.9                      |                |               |
| 1693      | 121.0         | 1753        | 88.5                      |                |               |
| 1694      | 121.1         | 1754        | 88.1                      |                |               |
| 1695      | 121.2         | 1755        | 87.6                      |                |               |
|           | 121.3         | 1756        |                           |                |               |
| 1696      |               |             | 87.1<br>86.6              |                |               |
| 1697      | 121.4         | 1757        |                           |                |               |
| 1698      | 121.5         | 1758        | 86.1                      |                |               |
| 1699      | 121.5         | 1759        | 85.5                      |                |               |
| 1700      | 121.5         | 1760        | 85.0                      |                |               |
| 1701      | 121.4         | 1761        | 84.4                      |                |               |
| 1702      | 121.3         | 1762        | 83.8                      |                |               |
| 1703      | 121.1         | 1763        | 83.2                      |                |               |
| 1704      | 120.9         | 1764        | 82.6                      |                |               |
| 1705      | 120.6         | 1765        | 81.9                      |                |               |
| 1706      | 120.4         | 1766        | 81.1                      |                |               |
| 1707      | 120.2         | 1767        | 80.0                      |                |               |
| 1708      | 120.1         | 1768        | 78.7                      |                |               |
| 1709      | 119.9         | 1769        | 76.9                      |                |               |
| 1710      | 119.8         | 1770        | 74.6                      |                |               |
| 1711      | 119.8         | 1771        | 72.0                      |                |               |
| 1712      | 119.9         | 1772        | 69.0                      |                |               |
|           |               |             |                           |                |               |
| 1713      | 120.0         | 1773        | 65.6                      |                |               |
| 1714      | 120.2         | 1774        | 62.1                      |                |               |
| 1715      | 120.4         | 1775        | 58.5                      |                |               |
| 1716      | 120.8         | 1776        | 54.7                      |                |               |
| 1717      | 121.1         | 1777        | 50.9                      |                |               |

## 6. WLTC for Class 3 vehicles

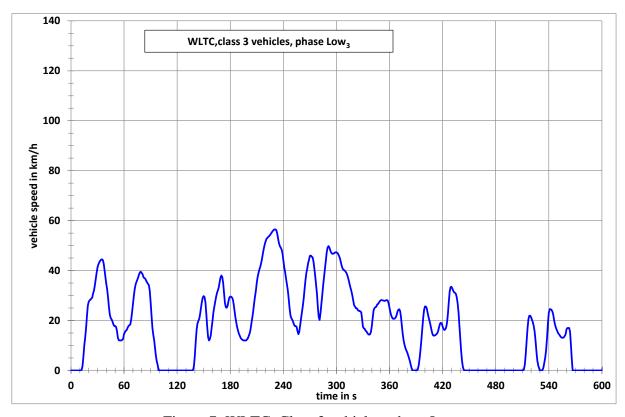



Figure 7: WLTC, Class 3 vehicles, phase Low<sub>3</sub>

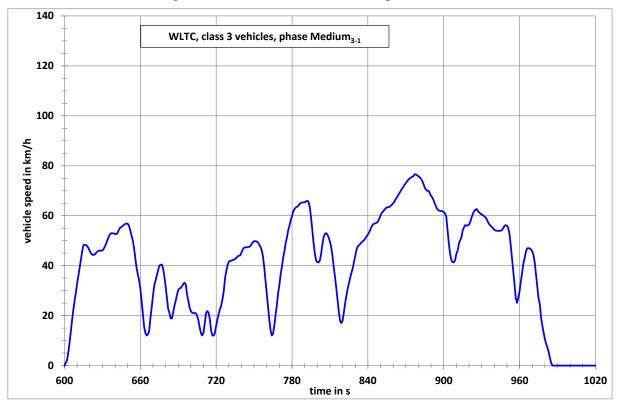



Figure 8: WLTC, Class 3 vehicles, phase Medium<sub>3-1</sub>

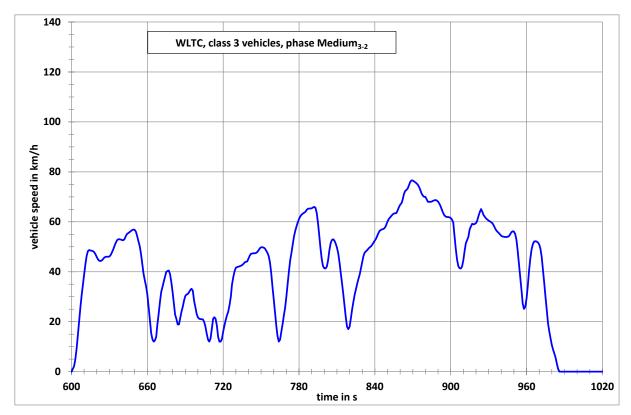



Figure 9: WLTC, Class 3 vehicles, phase Medium<sub>3-2</sub>

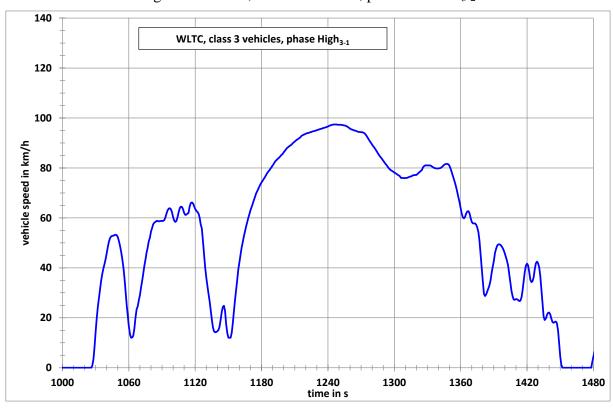



Figure 10: WLTC, Class 3 vehicles, phase High<sub>3-1</sub>

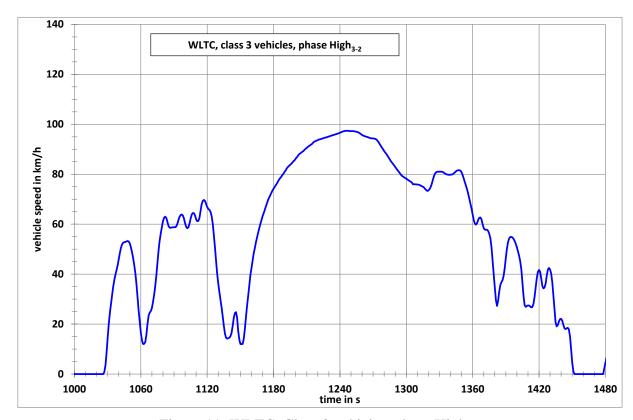



Figure 11: WLTC, Class 3 vehicles, phase High<sub>3-2</sub>

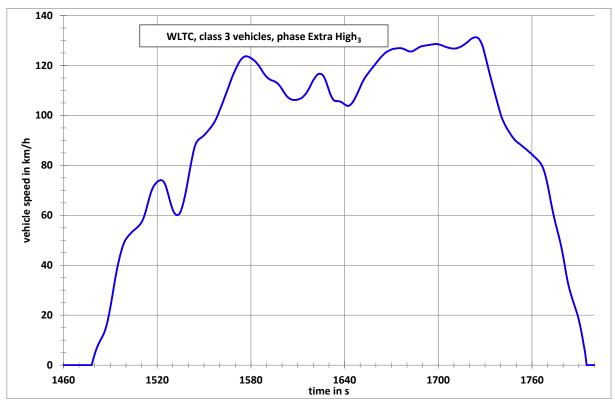



Figure 12: WLTC, Class 3 vehicles, phase Extra High<sub>3</sub>

Table 7: WLTC, Class 3 vehicles, phase Low<sub>3</sub>

|           |               |           | s 3 vehicles, phase Low <sub>3</sub> |           | 3             |
|-----------|---------------|-----------|--------------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s | speed in km/h                        | Time in s | speed in km/h |
| 0         | 0.0           |           |                                      |           |               |
| 1         | 0.0           | 61        | 15.3                                 | 121       | 0.0           |
| 2         | 0.0           | 62        | 15.9                                 | 122       | 0.0           |
| 3         | 0.0           | 63        | 16.2                                 | 123       | 0.0           |
| 4         | 0.0           | 64        | 17.1                                 | 124       | 0.0           |
| 5         | 0.0           | 65        | 17.8                                 | 125       | 0.0           |
| 6         | 0.0           | 66        | 18.1                                 | 126       | 0.0           |
| 7         | 0.0           | 67        | 18.4                                 | 127       | 0.0           |
| 8         | 0.0           | 68        | 20.3                                 | 128       | 0.0           |
| 9         | 0.0           | 69        | 23.2                                 | 129       | 0.0           |
| 10        | 0.0           | 70        | 26.5                                 | 130       | 0.0           |
| 11        | 0.0           | 71        | 29.8                                 | 131       | 0.0           |
| 12        | 0.2           | 72        | 32.6                                 | 132       | 0.0           |
| 13        | 1.7           | 73        | 34.4                                 | 133       | 0.0           |
| 14        | 5.4           | 74        | 35.5                                 | 134       | 0.0           |
| 15        | 9.9           | 75        | 36.4                                 | 135       | 0.0           |
| 16        | 13.1          | 76        | 37.4                                 | 136       | 0.0           |
| 17        | 16.9          | 77        | 38.5                                 | 137       | 0.0           |
| 18        | 21.7          | 78        | 39.3                                 | 138       | 0.2           |
| 19        | 26.0          | 79        | 39.5                                 | 139       | 1.9           |
| 20        | 27.5          | 80        | 39.0                                 | 140       | 6.1           |
| 21        | 28.1          | 81        | 38.5                                 | 141       | 11.7          |
| 22        | 28.3          | 82        | 37.3                                 | 142       | 16.4          |
| 23        | 28.8          | 83        | 37.0                                 | 143       | 18.9          |
| 24        | 29.1          | 84        | 36.7                                 | 144       | 19.9          |
| 25        | 30.8          | 85        | 35.9                                 | 145       | 20.8          |
| 26        | 31.9          | 86        | 35.3                                 | 146       | 22.8          |
| 27        | 34.1          | 87        | 34.6                                 | 147       | 25.4          |
| 28        | 36.6          | 88        | 34.2                                 | 148       | 27.7          |
| 29        | 39.1          | 89        | 31.9                                 | 149       | 29.2          |
| 30        | 41.3          | 90        | 27.3                                 | 150       | 29.8          |
| 31        | 42.5          | 91        | 22.0                                 | 151       | 29.4          |
| 32        | 43.3          | 92        | 17.0                                 | 152       | 27.2          |
| 33        | 43.9          | 93        | 14.2                                 | 153       | 22.6          |
| 34        | 44.4          | 94        | 12.0                                 | 154       | 17.3          |
| 35        | 44.5          | 95        | 9.1                                  | 155       | 13.3          |
| 36        | 44.2          | 96        | 5.8                                  | 156       | 12.0          |
| 37        | 42.7          | 97        | 3.6                                  | 157       | 12.6          |
| 38        | 39.9          | 98        | 2.2                                  | 158       | 14.1          |
| 39        | 37.0          | 99        | 0.0                                  | 159       | 17.2          |
| 40        | 34.6          | 100       | 0.0                                  | 160       | 20.1          |
| 41        | 32.3          | 101       | 0.0                                  | 161       | 23.4          |
| 42        | 29.0          | 102       | 0.0                                  | 162       | 25.5          |
| 43        | 25.1          | 103       | 0.0                                  | 163       | 27.6          |
| 44        | 22.2          | 104       | 0.0                                  | 164       | 29.5          |
| 45        | 20.9          | 105       | 0.0                                  | 165       | 31.1          |
| 46        | 20.4          | 106       | 0.0                                  | 166       | 32.1          |
| 47        | 19.5          | 107       | 0.0                                  | 167       | 33.2          |
| 48        | 18.4          | 108       | 0.0                                  | 168       | 35.2          |
| 49        | 17.8          | 109       | 0.0                                  | 169       | 37.2          |
| 50        | 17.8          | 110       | 0.0                                  | 170       | 38.0          |
| 51        | 17.4          | 111       | 0.0                                  | 171       | 37.4          |
| 52        | 15.7          | 112       | 0.0                                  | 172       | 35.1          |
| 53        | 13.1          | 113       | 0.0                                  | 173       | 31.0          |
| 54        | 12.1          | 114       | 0.0                                  | 174       | 27.1          |
| 55        | 12.0          | 115       | 0.0                                  | 175       | 25.3          |
| 56        | 12.0          | 116       | 0.0                                  | 176       | 25.1          |
| 57        | 12.0          | 117       | 0.0                                  | 177       | 25.9          |
| 58        | 12.3          | 118       | 0.0                                  | 178       | 27.8          |
| 59        | 12.6          | 119       | 0.0                                  | 179       | 29.2          |
| 60        | 14.7          | 120       | 0.0                                  | 180       | 29.6          |
| OU        | 14.7          | 120       | 0.0                                  | 100       | 29.0          |

| Time in s | speed in km/h | Time in s | s 3 vehicles, phase Low <sub>3</sub> speed in km/h | Time in s | speed in km/h |
|-----------|---------------|-----------|----------------------------------------------------|-----------|---------------|
| 181       | 29.5          | 241       | 41.5                                               | 301       | 47.1          |
| 182       | 29.2          | 242       | 39.5                                               | 302       | 46.6          |
| 183       | 28.3          | 243       | 37.0                                               | 303       | 45.8          |
| 184       | 26.1          | 244       | 34.6                                               | 304       | 44.8          |
| 185       | 23.6          | 245       | 32.3                                               | 305       | 43.3          |
| 186       | 21.0          | 246       | 29.0                                               | 306       | 41.8          |
| 187       | 18.9          | 247       | 25.1                                               | 307       | 40.8          |
| 188       | 17.1          | 248       | 22.2                                               | 308       | 40.3          |
| 189       | 15.7          | 249       | 20.9                                               | 309       | 40.1          |
| 190       | 14.5          | 250       | 20.4                                               | 310       | 39.7          |
| 191       | 13.7          | 251       | 19.5                                               | 311       | 39.2          |
| 192       | 12.9          | 252       | 18.4                                               | 312       | 38.5          |
| 193       | 12.5          | 253       | 17.8                                               | 313       | 37.4          |
| 194       | 12.2          | 254       | 17.8                                               | 314       | 36.0          |
| 195       | 12.0          | 255       | 17.4                                               | 315       | 34.4          |
| 196       | 12.0          | 256       | 15.7                                               | 316       | 33.0          |
| 197       | 12.0          | 257       | 14.5                                               | 317       | 31.7          |
| 198       | 12.0          | 258       | 15.4                                               | 318       | 30.0          |
| 199       | 12.0          | 259       | 17.9                                               | 319       | 28.0          |
| 200       | 13.0          | 260       | 20.6                                               | 320       | 26.1          |
| 200       | 14.0          | 261       | 23.2                                               | 321       | 25.6          |
| 202       | 15.0          | 262       | 25.7                                               | 322       | 24.9          |
| 202       | 16.5          | 263       | 28.7                                               | 323       | 24.9          |
| 203       | 19.0          | 264       | 32.5                                               | 324       | 24.8          |
| 205       | 21.2          | 265       | 36.1                                               | 325       | 23.9          |
| 206       | 23.8          | 266       | 39.0                                               | 326       | 23.9          |
| 207       | 26.9          | 267       | 40.8                                               | 327       | 23.6          |
| 208       | 29.6          |           | 42.9                                               | 328       |               |
| 209       | 32.0          | 268       | 44.4                                               | 329       | 23.3          |
|           |               | 269       |                                                    |           |               |
| 210       | 35.2          | 270       | 45.9                                               | 330       | 17.5          |
| 211       | 37.5          | 271       | 46.0<br>45.6                                       | 331       | 16.9          |
| 212       | 39.2          | 272       |                                                    | 332       | 16.7          |
| 213       | 40.5          | 273       | 45.3                                               | 333       | 15.9          |
| 214       | 41.6          | 274       | 43.7                                               | 334       | 15.6          |
| 215       | 43.1          | 275       | 40.8                                               | 335       | 15.0          |
| 216       | 45.0          | 276       | 38.0                                               | 336       | 14.5          |
| 217       | 47.1          | 277       | 34.4                                               | 337       | 14.3          |
| 218       | 49.0          | 278       | 30.9                                               | 338       | 14.5          |
| 219       | 50.6          | 279       | 25.5                                               | 339       | 15.4          |
| 220       | 51.8          | 280       | 21.4                                               | 340       | 17.8          |
| 221       | 52.7          | 281       | 20.2                                               | 341       | 21.1          |
| 222       | 53.1          | 282       | 22.9                                               | 342       | 24.1          |
| 223       | 53.5          | 283       | 26.6                                               | 343       | 25.0          |
| 224       | 53.8          | 284       | 30.2                                               | 344       | 25.3          |
| 225       | 54.2          | 285       | 34.1                                               | 345       | 25.5          |
| 226       | 54.8          | 286       | 37.4                                               | 346       | 26.4          |
| 227       | 55.3          | 287       | 40.7                                               | 347       | 26.6          |
| 228       | 55.8          | 288       | 44.0                                               | 348       | 27.′          |
| 229       | 56.2          | 289       | 47.3                                               | 349       | 27.7          |
| 230       | 56.5          | 290       | 49.2                                               | 350       | 28.           |
| 231       | 56.5          | 291       | 49.8                                               | 351       | 28.2          |
| 232       | 56.2          | 292       | 49.2                                               | 352       | 28.           |
| 233       | 54.9          | 293       | 48.1                                               | 353       | 28.0          |
| 234       | 52.9          | 294       | 47.3                                               | 354       | 27.           |
| 235       | 51.0          | 295       | 46.8                                               | 355       | 27.9          |
| 236       | 49.8          | 296       | 46.7                                               | 356       | 28.           |
| 237       | 49.2          | 297       | 46.8                                               | 357       | 28.2          |
| 238       | 48.4          | 298       | 47.1                                               | 358       | 28.0          |
| 239       | 46.9          | 299       | 47.3                                               | 359       | 26.9          |
| 240       | 44.3          | 300       | 47.3                                               | 360       | 25.0          |

|           |               |           | s 3 vehicles, phase Low <sub>3</sub> |           |               |
|-----------|---------------|-----------|--------------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s | speed in km/h                        | Time in s | speed in km/h |
| 361       | 23.2          | 421       | 16.6                                 | 481       | 0.0           |
| 362       | 21.9          | 422       | 16.2                                 | 482       | 0.0           |
| 363       | 21.1          | 423       | 16.4                                 | 483       | 0.0           |
| 364       | 20.7          | 424       | 17.2                                 | 484       | 0.0           |
| 365       | 20.7          | 425       | 19.1                                 | 485       | 0.0           |
| 366       | 20.8          | 426       | 22.6                                 | 486       | 0.0           |
| 367       | 21.2          | 427       | 27.4                                 | 487       | 0.0           |
| 368       | 22.1          | 428       | 31.6                                 | 488       | 0.0           |
| 369       | 23.5          | 429       | 33.4                                 | 489       | 0.0           |
| 370       | 24.3          | 430       | 33.5                                 | 490       | 0.0           |
| 371       | 24.5          | 431       | 32.8                                 | 491       | 0.0           |
| 372       | 23.8          | 432       | 31.9                                 | 492       | 0.0           |
| 373       | 21.3          | 433       | 31.3                                 | 493       | 0.0           |
| 374       | 17.7          | 434       | 31.1                                 | 494       | 0.0           |
| 375       | 14.4          | 435       | 30.6                                 | 495       | 0.0           |
| 376       | 11.9          | 436       | 29.2                                 | 496       | 0.0           |
| 377       | 10.2          | 437       | 26.7                                 | 497       | 0.0           |
| 378       | 8.9           | 438       | 23.0                                 | 498       | 0.0           |
| 379       | 8.0           | 439       | 18.2                                 | 499       | 0.0           |
| 380       | 7.2           | 440       | 12.9                                 | 500       | 0.0           |
| 381       | 6.1           | 441       | 7.7                                  | 501       | 0.0           |
| 382       | 4.9           | 442       | 3.8                                  | 502       | 0.0           |
| 383       | 3.7           | 443       | 1.3                                  | 503       | 0.0           |
| 384       | 2.3           | 444       | 0.2                                  | 504       | 0.0           |
| 385       | 0.9           | 445       | 0.0                                  | 505       | 0.0           |
| 386       | 0.0           | 446       | 0.0                                  | 506       | 0.0           |
| 387       | 0.0           | 447       | 0.0                                  | 507       | 0.0           |
| 388       | 0.0           | 448       | 0.0                                  | 508       | 0.0           |
| 389       | 0.0           | 449       | 0.0                                  | 509       | 0.0           |
| 390       | 0.0           | 450       | 0.0                                  | 510       | 0.0           |
| 391       | 0.0           | 451       | 0.0                                  | 511       | 0.0           |
| 392       | 0.5           | 452       | 0.0                                  | 512       | 0.5           |
| 393       | 2.1           | 453       | 0.0                                  | 513       | 2.5           |
| 394       | 4.8           | 454       | 0.0                                  | 514       | 6.6           |
| 395       | 8.3           | 455       | 0.0                                  | 515       | 11.8          |
| 396       | 12.3          | 456       | 0.0                                  | 516       | 16.8          |
| 397       | 16.6          | 457       | 0.0                                  | 517       | 20.5          |
| 398       | 20.9          | 458       | 0.0                                  | 518       | 21.9          |
| 399       | 24.2          | 459       | 0.0                                  | 519       | 21.9          |
| 400       | 25.6          | 460       | 0.0                                  | 520       | 21.3          |
| 401       | 25.6          | 461       | 0.0                                  | 521       | 20.3          |
| 402       | 24.9          | 462       | 0.0                                  | 522       | 19.2          |
| 403       | 23.3          | 463       | 0.0                                  | 523       | 17.8          |
| 404       | 21.6          | 464       | 0.0                                  | 524       | 15.5          |
| 405       | 20.2          | 465       | 0.0                                  | 525       | 11.9          |
| 406       | 18.7          | 466       | 0.0                                  | 526       | 7.6           |
| 407       | 17.0          | 467       | 0.0                                  | 527       | 4.0           |
| 408       | 15.3          | 468       | 0.0                                  | 528       | 2.0           |
| 409       | 14.2          | 469       | 0.0                                  | 529       | 1.0           |
| 410       | 13.9          | 470       | 0.0                                  | 530       | 0.0           |
| 411       | 14.0          | 471       | 0.0                                  | 531       | 0.0           |
| 412       | 14.2          | 472       | 0.0                                  | 532       | 0.0           |
| 413       | 14.5          | 472       | 0.0                                  | 533       | 0.0           |
| 414       | 14.9          | 474       | 0.0                                  | 534       | 1.2           |
| 415       | 15.9          | 475       | 0.0                                  | 535       | 3.2           |
| 416       | 17.4          | 475       | 0.0                                  | 536       | 5.2           |
| 417       | 18.7          | 477       | 0.0                                  | 537       | 8.2           |
|           |               |           |                                      |           |               |
| 418       | 19.1          | 478       | 0.0                                  | 538       | 13.0          |
| 419       | 18.8          | 479       | 0.0                                  | 539       | 18.8          |
| 420       | 17.6          | 480       | 0.0                                  | 540       | 23.1          |

| WLTC class 3 vehicles, phase Low <sub>3</sub> |               |           |               |           |               |  |
|-----------------------------------------------|---------------|-----------|---------------|-----------|---------------|--|
| Time in s                                     | speed in km/h | Time in s | speed in km/h | Time in s | speed in km/h |  |
| 541                                           | 24.5          |           |               |           |               |  |
| 542                                           | 24.5          |           |               |           |               |  |
| 543                                           | 24.3          |           |               |           |               |  |
| 544                                           | 23.6          |           |               |           |               |  |
| 545                                           | 22.3          |           |               |           |               |  |
| 546                                           | 20.1          |           |               |           |               |  |
| 547                                           | 18.5          |           |               |           |               |  |
| 548                                           | 17.2          |           |               |           |               |  |
| 549                                           | 16.3          |           |               |           |               |  |
| 550                                           | 15.4          |           |               |           |               |  |
| 551                                           | 14.7          |           |               |           |               |  |
| 552                                           | 14.3          |           |               |           |               |  |
| 553                                           | 13.7          |           |               |           |               |  |
| 554                                           | 13.3          |           |               |           |               |  |
| 555                                           | 13.1          |           |               |           |               |  |
| 556                                           | 13.1          |           |               |           |               |  |
| 557                                           | 13.3          |           |               |           |               |  |
| 558                                           | 13.8          |           |               |           |               |  |
| 559                                           | 14.5          |           |               |           |               |  |
|                                               |               |           |               |           |               |  |
| 560                                           | 16.5          |           |               |           |               |  |
| 561                                           | 17.0          |           |               |           |               |  |
| 562                                           | 17.0          |           |               |           |               |  |
| 563                                           | 17.0          |           |               |           |               |  |
| 564                                           | 15.4          |           |               |           |               |  |
| 565                                           | 10.1          |           |               |           |               |  |
| 566                                           | 4.8           |           |               |           |               |  |
| 567                                           | 0.0           |           |               |           |               |  |
| 568                                           | 0.0           |           |               |           |               |  |
| 569                                           | 0.0           |           |               |           |               |  |
| 570                                           | 0.0           |           |               |           |               |  |
| 571                                           | 0.0           |           |               |           |               |  |
| 572                                           | 0.0           |           |               |           |               |  |
| 573                                           | 0.0           |           |               |           |               |  |
| 574                                           | 0.0           |           |               |           |               |  |
| 575                                           | 0.0           |           |               |           |               |  |
| 576                                           | 0.0           |           |               |           |               |  |
| 577                                           | 0.0           |           |               |           |               |  |
| 578                                           | 0.0           |           |               |           |               |  |
| 579                                           | 0.0           |           |               |           |               |  |
| 580                                           | 0.0           |           |               |           |               |  |
| 581                                           | 0.0           |           |               |           |               |  |
| 582                                           | 0.0           |           |               | 1         |               |  |
| 583                                           | 0.0           |           |               | +         |               |  |
| 584                                           | 0.0           |           |               |           |               |  |
| 585                                           | 0.0           |           |               |           |               |  |
| 586                                           | 0.0           | +         |               | +         |               |  |
| 587                                           | 0.0           |           |               | +         |               |  |
|                                               |               |           |               |           |               |  |
| 588<br>589                                    | 0.0           |           |               | +         |               |  |

Table 8: WLTC, Class 3 vehicles, phase Medium<sub>3-1</sub>

| WLTC class 3 vehicles, phase Medium <sub>3-1</sub> |               |           |               |            |               |  |  |  |
|----------------------------------------------------|---------------|-----------|---------------|------------|---------------|--|--|--|
| Time in s                                          | speed in km/h | Time in s | speed in km/h | Time in s  | speed in km/h |  |  |  |
| 590                                                | 0.0           | 650       | 56.8          | 710        | 13.2          |  |  |  |
| 591                                                | 0.0           | 651       | 56.0          | 711        | 17.1          |  |  |  |
| 592                                                | 0.0           | 652       | 54.2          | 712        | 21.1          |  |  |  |
| 593                                                | 0.0           | 653       | 52.1          | 713        | 21.8          |  |  |  |
| 594                                                | 0.0           | 654       | 50.1          | 714        | 21.2          |  |  |  |
| 595                                                | 0.0           | 655       | 47.2          | 715        | 18.5          |  |  |  |
| 596                                                | 0.0           | 656       | 43.2          | 716        | 13.9          |  |  |  |
| 597                                                | 0.0           | 657       | 39.2          | 717        | 12.0          |  |  |  |
| 598                                                | 0.0           | 658       | 36.5          | 718        | 12.0          |  |  |  |
| 599                                                | 0.0           | 659       | 34.3          | 719        | 13.0          |  |  |  |
| 600                                                | 0.0           | 660       | 31.0          | 720        | 16.0          |  |  |  |
| 601                                                | 1.0           | 661       | 26.0          | 721        | 18.5          |  |  |  |
| 602                                                | 2.1           | 662       | 20.7          | 722        | 20.6          |  |  |  |
| 603                                                | 5.2           | 663       | 15.4          | 723        | 22.5          |  |  |  |
| 604                                                | 9.2           | 664       | 13.1          | 724        | 24.0          |  |  |  |
| 605                                                | 13.5          | 665       | 12.0          | 725        | 26.6          |  |  |  |
| 606                                                | 18.1          | 666       | 12.5          | 726        | 29.9          |  |  |  |
| 607                                                | 22.3          | 667       | 14.0          | 727        | 34.8          |  |  |  |
| 608                                                | 26.0          | 668       | 19.0          | 728        | 37.8          |  |  |  |
| 609                                                | 29.3          | 669       | 23.2          | 729        | 40.2          |  |  |  |
| 610                                                | 32.8          | 670       | 28.0          | 730        | 41.6          |  |  |  |
| 611                                                | 36.0          | 671       | 32.0          | 730        | 41.9          |  |  |  |
| 612                                                | 39.2          | 672       | 34.0          | 731        | 42.0          |  |  |  |
| 613                                                | 42.5          | 673       | 36.0          | 732        | 42.0          |  |  |  |
|                                                    | 45.7          |           | 38.0          | 734        | 42.4          |  |  |  |
| 614                                                | 48.2          | 674       | 40.0          | 735        | 42.4          |  |  |  |
| 615                                                | 48.4          | 675       |               | 736        |               |  |  |  |
| 616                                                | 48.2          | 676       | 40.3          | 737        | 43.1          |  |  |  |
| 617                                                |               | 677       | 40.5          |            |               |  |  |  |
| 618                                                | 47.8          | 678       | 39.0          | 738        | 44.0          |  |  |  |
| 619                                                | 47.0          | 679       | 35.7          | 739        | 44.1          |  |  |  |
| 620                                                | 45.9          | 680       | 31.8          | 740        | 45.3          |  |  |  |
| 621                                                | 44.9          | 681       | 27.1          | 741        | 46.4          |  |  |  |
| 622                                                | 44.4          | 682       | 22.8          | 742        | 47.2          |  |  |  |
| 623                                                | 44.3          | 683       | 21.1          | 743        | 47.3          |  |  |  |
| 624                                                | 44.5          | 684       | 18.9          | 744        | 47.4          |  |  |  |
| 625                                                | 45.1          | 685       | 18.9          | 745        | 47.4          |  |  |  |
| 626                                                | 45.7          | 686       | 21.3          | 746        | 47.5          |  |  |  |
| 627                                                | 46.0          | 687       | 23.9          | 747        | 47.9          |  |  |  |
| 628                                                | 46.0          | 688       | 25.9          | 748        | 48.6          |  |  |  |
| 629                                                | 46.0          | 689       | 28.4          | 749        | 49.4          |  |  |  |
| 630                                                | 46.1          | 690       | 30.3          | 750<br>751 | 49.8          |  |  |  |
| 631                                                | 46.7          | 691       | 30.9          | 751        | 49.8          |  |  |  |
| 632                                                | 47.7          | 692       | 31.1          | 752        | 49.7          |  |  |  |
| 633                                                | 48.9          | 693       | 31.8          | 753        | 49.3          |  |  |  |
| 634                                                | 50.3          | 694       | 32.7          | 754        | 48.5          |  |  |  |
| 635                                                | 51.6          | 695       | 33.2          | 755        | 47.6          |  |  |  |
| 636                                                | 52.6          | 696       | 32.4          | 756        | 46.3          |  |  |  |
| 637                                                | 53.0          | 697       | 28.3          | 757        | 43.7          |  |  |  |
| 638                                                | 53.0          | 698       | 25.8          | 758        | 39.3          |  |  |  |
| 639                                                | 52.9          | 699       | 23.1          | 759        | 34.1          |  |  |  |
| 640                                                | 52.7          | 700       | 21.8          | 760        | 29.0          |  |  |  |
| 641                                                | 52.6          | 701       | 21.2          | 761        | 23.7          |  |  |  |
| 642                                                | 53.1          | 702       | 21.0          | 762        | 18.4          |  |  |  |
| 643                                                | 54.3          | 703       | 21.0          | 763        | 14.3          |  |  |  |
| 644                                                | 55.2          | 704       | 20.9          | 764        | 12.0          |  |  |  |
| 645                                                | 55.5          | 705       | 19.9          | 765        | 12.8          |  |  |  |
| 646                                                | 55.9          | 706       | 17.9          | 766        | 16.0          |  |  |  |
| 647                                                | 56.3          | 707       | 15.1          | 767        | 20.4          |  |  |  |
| 648                                                | 56.7          | 708       | 12.8          | 768        | 24.0          |  |  |  |
| 649                                                | 56.9          | 709       | 12.0          | 769        | 29.0          |  |  |  |

| Time in a  |               |            | 3 vehicles, phase Medium; |            | enood in km/h |
|------------|---------------|------------|---------------------------|------------|---------------|
| Time in s  | speed in km/h | Time in s  | speed in km/h             | Time in s  | speed in km/h |
| 770        | 32.2          | 830        | 44.0                      | 890        | 68.0          |
| 771        | 36.8          | 831        | 46.3                      | 891        | 67.3          |
| 772        | 43.2          | 832        | 48.2                      | 892        | 66.2          |
| 773<br>774 | 45.8          | 833<br>834 | 48.7                      | 893<br>894 | 64.8          |
|            | 49.2          |            | 49.3                      | +          |               |
| 775        | 51.4          | 835        |                           | 895        | 62.6          |
| 776        |               | 836        | 49.8                      | 896        | 62.1          |
| 777        | 54.2          | 837        | 50.2                      | 897        | 61.9          |
| 778        | 56.0<br>58.3  | 838        | 50.9                      | 898        | 61.9          |
| 779        | 59.8          | 839        | 51.8                      | 899<br>900 | 61.8          |
| 780        | 61.7          | 840<br>841 | 52.5                      | 900        | 61.5          |
| 781<br>782 | 62.7          | 842        | 53.3                      | 902        | 60.9<br>59.7  |
|            |               | 843        | 54.5                      | 902        | 59.7          |
| 783<br>784 | 63.3          |            | 55.7                      | 903        | 49.3          |
|            | 63.6          | 844        | 56.5                      | -          | 44.9          |
| 785        | 64.0          | 845        | 56.8                      | 905        |               |
| 786        |               | 846        | 57.0                      | 906        | 42.3          |
| 787        | 65.2          | 847        | 57.2                      | 907        | 41.4          |
| 788        | 65.3          | 848        | 57.7                      | 908        | 41.3          |
| 789        | 65.3          | 849        | 58.7                      | 909        | 42.1          |
| 790        | 65.4          | 850        | 60.1                      | 910        | 44.7          |
| 791        | 65.7          | 851        | 61.1                      | 911        | 46.0          |
| 792        | 66.0          | 852        | 61.7                      | 912        | 48.8          |
| 793        | 65.6          | 853        | 62.3                      | 913        | 50.1          |
| 794        | 63.5          | 854        | 62.9                      | 914        | 51.3          |
| 795        | 59.7          | 855        | 63.3                      | 915        | 54.1          |
| 796        | 54.6          | 856        | 63.4                      | 916        | 55.2          |
| 797        | 49.3          | 857        | 63.5                      | 917        | 56.2          |
| 798        | 44.9          | 858        | 63.9                      | 918        | 56.1          |
| 799        | 42.3          | 859        | 64.4                      | 919        | 56.1          |
| 800        | 41.4          | 860        | 65.0                      | 920        | 56.5          |
| 801        | 41.3          | 861        | 65.6                      | 921        | 57.5          |
| 802        | 42.1          | 862        | 66.6                      | 922        | 59.2          |
| 803        | 44.7          | 863        | 67.4                      | 923        | 60.7          |
| 804        | 48.4          | 864        | 68.2                      | 924        | 61.8          |
| 805        | 51.4          | 865        | 69.1                      | 925        | 62.3          |
| 806        | 52.7          | 866        | 70.0                      | 926        | 62.7          |
| 807        | 53.0          | 867        | 70.8                      | 927        | 62.0          |
| 808        | 52.5          | 868        | 71.5                      | 928        | 61.3          |
| 809        | 51.3          | 869        | 72.4                      | 929        | 60.9          |
| 810        | 49.7          | 870        | 73.0                      | 930        | 60.5          |
| 811        | 47.4          | 871        | 73.7                      | 931        | 60.2          |
| 812        | 43.7          | 872        | 74.4                      | 932        | 59.8          |
| 813        | 39.7          | 873        | 74.9                      | 933        | 59.4          |
| 814        | 35.5          | 874        | 75.3                      | 934        | 58.6          |
| 815        | 31.1          | 875        | 75.6                      | 935        | 57.5          |
| 816        | 26.3          | 876        | 75.8                      | 936        | 56.6          |
| 817        | 21.9          | 877        | 76.6                      | 937        | 56.0          |
| 818        | 18.0          | 878        | 76.5                      | 938        | 55.5          |
| 819        | 17.0          | 879        | 76.2                      | 939        | 55.0          |
| 820        | 18.0          | 880        | 75.8                      | 940        | 54.4          |
| 821        | 21.4          | 881        | 75.4                      | 941        | 54.1          |
| 822        | 24.8          | 882        | 74.8                      | 942        | 54.0          |
| 823        | 27.9          | 883        | 73.9                      | 943        | 53.9          |
| 824        | 30.8          | 884        | 72.7                      | 944        | 53.9          |
| 825        | 33.0          | 885        | 71.3                      | 945        | 54.0          |
| 826        | 35.1          | 886        | 70.4                      | 946        | 54.2          |
| 827        | 37.1          | 887        | 70.0                      | 947        | 55.0          |
| 828        | 38.9          | 888        | 70.0                      | 948        | 55.8          |
| 829        | 41.4          | 889        | 69.0                      | 949        | 56.2          |

| WLTC class 3 vehicles, phase Medium <sub>3-1</sub> |                    |           |               |           |                   |  |
|----------------------------------------------------|--------------------|-----------|---------------|-----------|-------------------|--|
| Time in s                                          | speed in km/h      | Time in s | speed in km/h | Time in s | speed in km/h     |  |
| 950                                                | speed in km/n 56.1 | 1010      | speed in km/n | mine in s | speed III KIII/II |  |
|                                                    |                    |           |               |           |                   |  |
| 951                                                | 55.1               | 1011      | 0.0           |           |                   |  |
| 952                                                | 52.7               | 1012      | 0.0           |           |                   |  |
| 953                                                | 48.4               | 1013      | 0.0           |           |                   |  |
| 954                                                | 43.1               | 1014      | 0.0           |           |                   |  |
| 955                                                | 37.8               | 1015      | 0.0           |           |                   |  |
| 956                                                | 32.5               | 1016      | 0.0           |           |                   |  |
| 957                                                | 27.2               | 1017      | 0.0           |           |                   |  |
| 958                                                | 25.1               | 1018      | 0.0           |           |                   |  |
| 959                                                | 27.0               | 1019      | 0.0           |           |                   |  |
| 960                                                | 29.8               | 1020      | 0.0           |           |                   |  |
| 961                                                | 33.8               | 1021      | 0.0           |           |                   |  |
| 962                                                | 37.0               | 1021      | 0.0           |           |                   |  |
|                                                    |                    | 1022      | 0.0           |           |                   |  |
| 963                                                | 40.7               |           |               |           |                   |  |
| 964                                                | 43.0               |           |               |           |                   |  |
| 965                                                | 45.6               |           |               |           |                   |  |
| 966                                                | 46.9               |           |               |           |                   |  |
| 967                                                | 47.0               |           |               |           |                   |  |
| 968                                                | 46.9               |           |               |           |                   |  |
| 969                                                | 46.5               |           |               |           |                   |  |
| 970                                                | 45.8               |           |               |           |                   |  |
| 971                                                | 44.3               |           |               |           |                   |  |
| 972                                                | 41.3               |           |               |           |                   |  |
| 973                                                | 36.5               |           |               |           |                   |  |
| 974                                                | 31.7               |           |               |           |                   |  |
| 975                                                | 27.0               |           |               |           |                   |  |
|                                                    |                    |           |               |           |                   |  |
| 976                                                | 24.7               |           |               |           |                   |  |
| 977                                                | 19.3               |           |               |           |                   |  |
| 978                                                | 16.0               |           |               |           |                   |  |
| 979                                                | 13.2               |           |               |           |                   |  |
| 980                                                | 10.7               |           |               |           |                   |  |
| 981                                                | 8.8                |           |               |           |                   |  |
| 982                                                | 7.2                |           |               |           |                   |  |
| 983                                                | 5.5                |           |               |           |                   |  |
| 984                                                | 3.2                |           |               |           |                   |  |
| 985                                                | 1.1                |           |               |           |                   |  |
| 986                                                | 0.0                |           |               |           |                   |  |
| 987                                                | 0.0                |           |               |           |                   |  |
| 988                                                | 0.0                |           |               |           |                   |  |
| 989                                                | 0.0                |           |               |           |                   |  |
| 990                                                |                    |           |               |           |                   |  |
| -                                                  | 0.0                |           |               |           |                   |  |
| 991                                                | 0.0                |           |               |           |                   |  |
| 992                                                | 0.0                |           |               |           |                   |  |
| 993                                                | 0.0                |           |               |           |                   |  |
| 994                                                | 0.0                |           |               |           |                   |  |
| 995                                                | 0.0                |           |               |           |                   |  |
| 996                                                | 0.0                |           |               |           |                   |  |
| 997                                                | 0.0                |           |               |           |                   |  |
| 998                                                | 0.0                |           |               |           |                   |  |
| 999                                                | 0.0                |           |               |           |                   |  |
| 1000                                               | 0.0                |           |               |           |                   |  |
| 1001                                               | 0.0                |           |               |           |                   |  |
| 1001                                               | 0.0                |           |               |           |                   |  |
| <b></b>                                            |                    |           |               |           |                   |  |
| 1003                                               | 0.0                |           |               |           |                   |  |
| 1004                                               | 0.0                |           |               |           |                   |  |
| 1005                                               | 0.0                |           |               |           |                   |  |
| 1006                                               | 0.0                |           |               |           |                   |  |
| 1007                                               | 0.0                |           |               |           |                   |  |
| 1008                                               | 0.0                |           |               |           |                   |  |
| 1009                                               | 0.0                |           |               |           |                   |  |

Table 9: WLTC, Class 3 vehicles, phase Medium<sub>3-2</sub>

| Table 9: WLTC, Class 3 vehicles, phase Medium <sub>3-2</sub> WLTC class 3 vehicles, phase Medium <sub>3-2</sub> |               |           |               |            |               |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------|-----------|---------------|------------|---------------|--|--|--|
| Time in s                                                                                                       | speed in km/h | Time in s | speed in km/h | Time in s  | speed in km/h |  |  |  |
| 590                                                                                                             | 0.0           | 650       | 56.8          | 710        | 13.2          |  |  |  |
| 591                                                                                                             | 0.0           | 651       | 56.0          | 711        | 17.1          |  |  |  |
| 592                                                                                                             | 0.0           | 652       | 54.2          | 712        | 21.1          |  |  |  |
| 593                                                                                                             | 0.0           | 653       | 52.1          | 713        | 21.8          |  |  |  |
| 594                                                                                                             | 0.0           | 654       | 50.1          | 714        | 21.2          |  |  |  |
| 595                                                                                                             | 0.0           | 655       | 47.2          | 715        | 18.5          |  |  |  |
| 596                                                                                                             | 0.0           | 656       | 43.2          | 716        | 13.9          |  |  |  |
| 597                                                                                                             | 0.0           | 657       | 39.2          | 717        | 12.0          |  |  |  |
| 598                                                                                                             | 0.0           | 658       | 36.5          | 717        | 12.0          |  |  |  |
| 599                                                                                                             | 0.0           | 659       | 34.3          | 719        | 13.0          |  |  |  |
|                                                                                                                 |               |           |               |            | 16.0          |  |  |  |
| 600                                                                                                             | 0.0           | 660       | 31.0          | 720        |               |  |  |  |
| 601                                                                                                             | 1.0           | 661       | 26.0          | 721        | 18.5          |  |  |  |
| 602                                                                                                             | 2.1           | 662       | 20.7          | 722        | 20.6          |  |  |  |
| 603                                                                                                             | 4.8           | 663       | 15.4          | 723        | 22.5          |  |  |  |
| 604                                                                                                             | 9.1           | 664       | 13.1          | 724        | 24.0          |  |  |  |
| 605                                                                                                             | 14.2          | 665       | 12.0          | 725        | 26.6          |  |  |  |
| 606                                                                                                             | 19.8          | 666       | 12.5          | 726        | 29.9          |  |  |  |
| 607                                                                                                             | 25.5          | 667       | 14.0          | 727        | 34.8          |  |  |  |
| 608                                                                                                             | 30.5          | 668       | 19.0          | 728        | 37.8          |  |  |  |
| 609                                                                                                             | 34.8          | 669       | 23.2          | 729        | 40.2          |  |  |  |
| 610                                                                                                             | 38.8          | 670       | 28.0          | 730        | 41.6          |  |  |  |
| 611                                                                                                             | 42.9          | 671       | 32.0          | 731        | 41.9          |  |  |  |
| 612                                                                                                             | 46.4          | 672       | 34.0          | 732        | 42.0          |  |  |  |
| 613                                                                                                             | 48.3          | 673       | 36.0          | 733        | 42.2          |  |  |  |
| 614                                                                                                             | 48.7          | 674       | 38.0          | 734        | 42.4          |  |  |  |
| 615                                                                                                             | 48.5          | 675       | 40.0          | 735        | 42.7          |  |  |  |
| 616                                                                                                             | 48.4          | 676       | 40.3          | 736        | 43.1          |  |  |  |
| 617                                                                                                             | 48.2          | 677       | 40.5          | 737        | 43.7          |  |  |  |
| 618                                                                                                             | 47.8          | 678       | 39.0          | 738        | 44.0          |  |  |  |
| 619                                                                                                             | 47.0          | 679       | 35.7          | 739        | 44.1          |  |  |  |
| 620                                                                                                             | 45.9          | 680       | 31.8          | 740        | 45.3          |  |  |  |
| 621                                                                                                             | 44.9          | 681       | 27.1          | 741        | 46.4          |  |  |  |
| 622                                                                                                             | 44.4          | 682       | 22.8          | 742        | 47.2          |  |  |  |
| 623                                                                                                             | 44.3          | 683       | 21.1          | 743        | 47.3          |  |  |  |
| 624                                                                                                             | 44.5          | 684       | 18.9          | 744        | 47.4          |  |  |  |
| 625                                                                                                             | 45.1          | 685       | 18.9          | 745        | 47.4          |  |  |  |
| 626                                                                                                             | 45.7          | 686       | 21.3          | 746        | 47.5          |  |  |  |
| 627                                                                                                             | 46.0          | 687       | 23.9          | 747        | 47.9          |  |  |  |
| 628                                                                                                             | 46.0          | 688       | 25.9          | 748        | 48.6          |  |  |  |
| 629                                                                                                             | 46.0          | 689       | 28.4          | 749        | 49.4          |  |  |  |
| 630                                                                                                             | 46.1          | 690       | 30.3          | 750        | 49.8          |  |  |  |
| 631                                                                                                             | 46.7          | 691       | 30.9          | 751        | 49.8          |  |  |  |
| 632                                                                                                             | 47.7          | 692       | 31.1          | 752        | 49.8          |  |  |  |
| 633                                                                                                             | 48.9          | 693       | 31.8          | 753        | 49.7          |  |  |  |
|                                                                                                                 |               |           |               |            |               |  |  |  |
| 634                                                                                                             | 50.3          | 694       | 32.7          | 754<br>755 | 48.5          |  |  |  |
| 635                                                                                                             | 51.6          | 695       | 33.2          | 755<br>756 | 47.6          |  |  |  |
| 636                                                                                                             | 52.6          | 696       | 32.4          | 756<br>757 | 46.3          |  |  |  |
| 637                                                                                                             | 53.0          | 697       | 28.3          | 757        | 43.7          |  |  |  |
| 638                                                                                                             | 53.0          | 698       | 25.8          | 758        | 39.3          |  |  |  |
| 639                                                                                                             | 52.9          | 699       | 23.1          | 759        | 34.1          |  |  |  |
| 640                                                                                                             | 52.7          | 700       | 21.8          | 760        | 29.0          |  |  |  |
| 641                                                                                                             | 52.6          | 701       | 21.2          | 761        | 23.7          |  |  |  |
| 642                                                                                                             | 53.1          | 702       | 21.0          | 762        | 18.4          |  |  |  |
| 643                                                                                                             | 54.3          | 703       | 21.0          | 763        | 14.3          |  |  |  |
| 644                                                                                                             | 55.2          | 704       | 20.9          | 764        | 12.0          |  |  |  |
| 645                                                                                                             | 55.5          | 705       | 19.9          | 765        | 12.8          |  |  |  |
| 646                                                                                                             | 55.9          | 706       | 17.9          | 766        | 16.0          |  |  |  |
| 647                                                                                                             | 56.3          | 707       | 15.1          | 767        | 19.1          |  |  |  |
| 648                                                                                                             | 56.7          | 708       | 12.8          | 768        | 22.4          |  |  |  |
| 649                                                                                                             | 56.9          | 709       | 12.0          | 769        | 25.6          |  |  |  |

|           | V             | LIC class : | 3 vehicles, phase Medium | 3-2       |               |
|-----------|---------------|-------------|--------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s   | speed in km/h            | Time in s | speed in km/h |
| 770       | 30.1          | 830         | 44.0                     | 890       | 68.1          |
| 771       | 35.3          | 831         | 46.3                     | 891       | 67.3          |
| 772       | 39.9          | 832         | 47.7                     | 892       | 66.2          |
| 773       | 44.5          | 833         | 48.2                     | 893       | 64.8          |
| 774       | 47.5          | 834         | 48.7                     | 894       | 63.6          |
| 775       | 50.9          | 835         | 49.3                     | 895       | 62.6          |
|           |               |             |                          |           |               |
| 776       | 54.1          | 836         | 49.8                     | 896       | 62.1          |
| 777       | 56.3          | 837         | 50.2                     | 897       | 61.9          |
| 778       | 58.1          | 838         | 50.9                     | 898       | 61.9          |
| 779       | 59.8          | 839         | 51.8                     | 899       | 61.8          |
| 780       | 61.1          | 840         | 52.5                     | 900       | 61.5          |
| 781       | 62.1          | 841         | 53.3                     | 901       | 60.9          |
| 782       | 62.8          | 842         | 54.5                     | 902       | 59.7          |
| 783       | 63.3          | 843         | 55.7                     | 903       | 54.6          |
| 784       | 63.6          | 844         | 56.5                     | 904       | 49.3          |
| 785       | 64.0          | 845         | 56.8                     | 905       | 44.9          |
| 786       | 64.7          | 846         | 57.0                     | 906       | 42.3          |
| 787       | 65.2          | 847         | 57.2                     | 907       | 41.4          |
| 788       | 65.3          | 848         | 57.7                     | 908       | 41.3          |
| 789       | 65.3          | 849         | 58.7                     | 909       | 42.1          |
| 790       | 65.4          | 850         | 60.1                     | 910       | 44.7          |
| 790       | 65.7          | 851         | 61.1                     | 911       | 48.4          |
|           |               |             |                          | -         |               |
| 792       | 66.0          | 852         | 61.7                     | 912       | 51.4          |
| 793       | 65.6          | 853         | 62.3                     | 913       | 52.7          |
| 794       | 63.5          | 854         | 62.9                     | 914       | 54.0          |
| 795       | 59.7          | 855         | 63.3                     | 915       | 57.0          |
| 796       | 54.6          | 856         | 63.4                     | 916       | 58.1          |
| 797       | 49.3          | 857         | 63.5                     | 917       | 59.2          |
| 798       | 44.9          | 858         | 64.5                     | 918       | 59.0          |
| 799       | 42.3          | 859         | 65.8                     | 919       | 59.1          |
| 800       | 41.4          | 860         | 66.8                     | 920       | 59.5          |
| 801       | 41.3          | 861         | 67.4                     | 921       | 60.5          |
| 802       | 42.1          | 862         | 68.8                     | 922       | 62.3          |
| 803       | 44.7          | 863         | 71.1                     | 923       | 63.9          |
| 804       | 48.4          | 864         | 72.3                     | 924       | 65.1          |
| 805       | 51.4          | 865         | 72.8                     | 925       | 64.1          |
| 806       | 52.7          | 866         | 73.4                     | 926       | 62.7          |
| 807       | 53.0          | 867         | 74.6                     | 927       | 62.0          |
| 808       | 52.5          | 868         | 76.0                     | 928       | 61.3          |
| 809       | 51.3          | 869         | 76.6                     | 929       | 60.9          |
|           | 49.7          |             |                          |           |               |
| 810       |               | 870         | 76.5                     | 930       | 60.5          |
| 811       | 47.4          | 871         | 76.2                     | 931       | 60.2          |
| 812       | 43.7          | 872         | 75.8                     | 932       | 59.8          |
| 813       | 39.7          | 873         | 75.4                     | 933       | 59.4          |
| 814       | 35.5          | 874         | 74.8                     | 934       | 58.6          |
| 815       | 31.1          | 875         | 73.9                     | 935       | 57.5          |
| 816       | 26.3          | 876         | 72.7                     | 936       | 56.6          |
| 817       | 21.9          | 877         | 71.3                     | 937       | 56.0          |
| 818       | 18.0          | 878         | 70.4                     | 938       | 55.5          |
| 819       | 17.0          | 879         | 70.0                     | 939       | 55.0          |
| 820       | 18.0          | 880         | 70.0                     | 940       | 54.4          |
| 821       | 21.4          | 881         | 69.0                     | 941       | 54.1          |
| 822       | 24.8          | 882         | 68.0                     | 942       | 54.0          |
| 823       | 27.9          | 883         | 68.0                     | 943       | 53.9          |
| 824       | 30.8          | 884         | 68.0                     | 944       | 53.9          |
| 825       | 33.0          | 885         | 68.1                     | 945       | 54.0          |
|           |               |             |                          |           |               |
| 826       | 35.1          | 886         | 68.4                     | 946       | 54.2          |
| 827       | 37.1          | 887         | 68.6                     | 947       | 55.0          |
| 828       | 38.9          | 888         | 68.7                     | 948       | 55.8          |
| 829       | 41.4          | 889         | 68.5                     | 949       | 56.2          |

Table 10: WLTC, Class 3 vehicles, phase High<sub>3-1</sub>

|              |               | VVETO ciass  | 3 vehicles, phase High <sub>3-1</sub> |              |               |
|--------------|---------------|--------------|---------------------------------------|--------------|---------------|
| Time in s    | speed in km/h | Time in s    | speed in km/h                         | Time in s    | speed in km/h |
| 1023         | 0.0           | 1083         | 58.1                                  | 1143         | 19.1          |
| 1024         | 0.0           | 1084         | 58.4                                  | 1144         | 22.5          |
| 1025         | 0.0           | 1085         | 58.8                                  | 1145         | 24.4          |
| 1026         | 0.0           | 1086         | 58.8                                  | 1146         | 24.8          |
| 1027         | 0.8           | 1087         | 58.6                                  | 1147         | 22.7          |
| 1028         | 3.6           | 1088         | 58.7                                  | 1148         | 17.4          |
| 1029         | 8.6           | 1089         | 58.8                                  | 1149         | 13.8          |
| 1030         | 14.6          | 1090         | 58.8                                  | 1150         | 12.0          |
| 1031         | 20.0          | 1091         | 58.8                                  | 1151         | 12.0          |
| 1032         | 24.4          | 1092         | 59.1                                  | 1152         | 12.0          |
| 1033         | 28.2          | 1093         | 60.1                                  | 1153         | 13.9          |
| 1034         | 31.7          | 1094         | 61.7                                  | 1154         | 17.7          |
| 1035         | 35.0          | 1095         | 63.0                                  | 1155         | 22.8          |
| 1036         | 37.6          | 1096         | 63.7                                  | 1156         | 27.3          |
| 1037         | 39.7          | 1097         | 63.9                                  | 1157         | 31.2          |
| 1038         | 41.5          | 1098         | 63.5                                  | 1158         | 35.2          |
| 1039         | 43.6          | 1099         | 62.3                                  | 1159         | 39.4          |
| 1040         | 46.0          | 1100         | 60.3                                  | 1160         | 42.5          |
| 1041         | 48.4          | 1101         | 58.9                                  | 1161         | 45.4          |
| 1042         | 50.5          | 1102         | 58.4                                  | 1162         | 48.2          |
| 1043         | 51.9          | 1103         | 58.8                                  | 1163         | 50.3          |
| 1044         | 52.6          | 1104         | 60.2                                  | 1164         | 52.6          |
| 1045         | 52.8          | 1105         | 62.3                                  | 1165         | 54.5          |
| 1045         | 52.9          | 1106         | 63.9                                  | 1166         | 56.6          |
| 1040         | 53.1          | 1107         | 64.5                                  | 1167         | 58.3          |
| 1047         | 53.3          | 1108         | 64.4                                  | 1168         | 60.0          |
|              |               |              |                                       |              |               |
| 1049         | 53.1          | 1109         | 63.5                                  | 1169         | 61.5          |
| 1050         | 52.3          | 1110         | 62.0                                  | 1170         | 63.1          |
| 1051<br>1052 | 50.7<br>48.8  | 1111         | 61.2<br>61.3                          | 1171<br>1172 | 64.3<br>65.7  |
| 1052         | 46.5          | 1113         | 61.7                                  | 1172         | 67.1          |
| 1054         | 43.8          | 1114         | 62.0                                  | 1173         | 68.3          |
|              | 40.3          | 1115         |                                       |              |               |
| 1055         |               |              | 64.6                                  | 1175<br>1176 | 69.7          |
| 1056         | 36.0          | 1116         | 66.0                                  |              | 70.6<br>71.6  |
| 1057         | 30.7          | 1117         | 66.2                                  | 1177         |               |
| 1058         | 25.4          | 1118         | 65.8                                  | 1178         | 72.6          |
| 1059         | 21.0          | 1119         | 64.7                                  | 1179         | 73.5          |
| 1060         | 16.7          | 1120         | 63.6                                  | 1180         | 74.2          |
| 1061         | 13.4          | 1121         | 62.9                                  | 1181         | 74.9          |
| 1062         | 12.0          | 1122         | 62.4                                  | 1182         | 75.6          |
| 1063         | 12.1          | 1123         | 61.7                                  | 1183         | 76.3          |
| 1064         | 12.8          | 1124         | 60.1                                  | 1184         | 77.1          |
| 1065         | 15.6          | 1125         | 57.3                                  | 1185         | 77.9          |
| 1066         | 19.9          | 1126         | 55.8                                  | 1186         | 78.5          |
| 1067         | 23.4          | 1127         | 50.5                                  | 1187         | 79.0          |
| 1068         | 24.6          | 1128         | 45.2                                  | 1188         | 79.7          |
| 1069         | 27.0          | 1129         | 40.1                                  | 1189         | 80.3          |
| 1070         | 29.0          | 1130         | 36.2                                  | 1190         | 81.0          |
| 1071         | 32.0          | 1131         | 32.9                                  | 1191         | 81.6          |
| 1072         | 34.8          | 1132         | 29.8                                  | 1192         | 82.4          |
| 1073         | 37.7          | 1133         | 26.6                                  | 1193         | 82.9          |
| 1074         | 40.8          | 1134         | 23.0                                  | 1194         | 83.4          |
| 1075         | 43.2          | 1135         | 19.4                                  | 1195         | 83.8          |
| 1076         | 46.0          | 1136         | 16.3                                  | 1196         | 84.2          |
| 1077         | 48.0          | 1137         | 14.6                                  | 1197         | 84.7          |
| 1078         | 50.7          | 1138         | 14.2                                  | 1198         | 85.2          |
|              | 52.0          | 1139         | 14.3                                  | 1199         | 85.6          |
| 1079         |               |              |                                       |              |               |
| 1079<br>1080 | 54.5          | 1140         | 14.6                                  | 1200         | 86.3          |
|              | 54.5<br>55.9  | 1140<br>1141 | 14.6<br>15.1                          | 1200<br>1201 | 86.3<br>86.8  |

| Time in s | enood in km/h |           | 3 vehicles, phase High <sub>3-1</sub> |           | anood in km/h |
|-----------|---------------|-----------|---------------------------------------|-----------|---------------|
|           | speed in km/h | Time in s | speed in km/h                         | Time in s | speed in km/h |
| 1203      | 88.0          | 1263      | 95.2                                  | 1323      | 78.4          |
| 1204      | 88.3          | 1264      | 95.0                                  | 1324      | 78.8          |
| 1205      | 88.7          | 1265      | 94.9                                  | 1325      | 79.2          |
| 1206      | 89.0          | 1266      | 94.7                                  | 1326      | 80.3          |
| 1207      | 89.3          | 1267      | 94.5                                  | 1327      | 80.8          |
| 1208      | 89.8          | 1268      | 94.4                                  | 1328      | 81.0          |
| 1209      | 90.2          | 1269      | 94.4                                  | 1329      | 81.0          |
| 1210      | 90.6          | 1270      | 94.3                                  | 1330      | 81.0          |
| 1211      | 91.0          | 1271      | 94.3                                  | 1331      | 81.0          |
| 1212      | 91.3          | 1272      | 94.1                                  | 1332      | 81.0          |
| 1213      | 91.6          | 1273      | 93.9                                  | 1333      | 80.9          |
| 1214      | 91.9          | 1274      | 93.4                                  | 1334      | 80.6          |
| 1215      | 92.2          | 1275      | 92.8                                  | 1335      | 80.3          |
| 1216      | 92.8          | 1276      | 92.0                                  | 1336      | 80.0          |
| 1217      | 93.1          | 1277      | 91.3                                  | 1337      | 79.9          |
| 1218      | 93.3          | 1278      | 90.6                                  | 1338      | 79.8          |
| 1219      | 93.5          | 1279      | 90.0                                  | 1339      | 79.8          |
| 1220      | 93.7          | 1280      | 89.3                                  | 1340      | 79.8          |
| 1221      | 93.9          | 1281      | 88.7                                  | 1341      | 79.9          |
| 1222      | 94.0          | 1282      | 88.1                                  | 1342      | 80.0          |
| 1223      | 94.1          | 1283      | 87.4                                  | 1343      | 80.4          |
| 1224      | 94.3          | 1284      | 86.7                                  | 1344      | 80.8          |
| 1225      | 94.4          | 1285      | 86.0                                  | 1345      | 81.2          |
| 1226      | 94.6          | 1286      | 85.3                                  | 1346      | 81.5          |
| 1227      | 94.7          | 1287      | 84.7                                  | 1347      | 81.6          |
| 1228      | 94.8          | 1288      | 84.1                                  | 1348      | 81.6          |
| 1229      | 95.0          | 1289      | 83.5                                  | 1349      | 81.4          |
| 1230      | 95.1          | 1290      | 82.9                                  | 1350      | 80.7          |
| 1231      | 95.3          | 1291      | 82.3                                  | 1351      | 79.6          |
| 1232      | 95.4          | 1292      | 81.7                                  | 1352      | 78.2          |
| 1233      | 95.6          | 1293      | 81.1                                  | 1353      | 76.8          |
| 1234      | 95.7          | 1294      | 80.5                                  | 1354      | 75.3          |
| 1235      | 95.8          | 1295      | 79.9                                  | 1355      | 73.8          |
| 1236      | 96.0          | 1296      | 79.4                                  | 1356      | 72.1          |
| 1237      | 96.1          | 1297      | 79.1                                  | 1357      | 70.2          |
| 1238      | 96.3          | 1298      | 78.8                                  | 1358      | 68.2          |
| 1239      | 96.4          | 1299      | 78.5                                  | 1359      | 66.1          |
| 1240      | 96.6          | 1300      | 78.2                                  | 1360      | 63.8          |
| 1241      | 96.8          | 1301      | 77.9                                  | 1361      | 61.6          |
| 1242      | 97.0          | 1302      | 77.6                                  | 1362      | 60.2          |
| 1243      | 97.2          | 1303      | 77.3                                  | 1363      | 59.8          |
| 1244      | 97.3          | 1304      | 77.0                                  | 1364      | 60.4          |
| 1245      | 97.4          | 1305      | 76.7                                  | 1365      | 61.8          |
| 1246      | 97.4          | 1306      | 76.0                                  | 1366      | 62.6          |
| 1247      | 97.4          | 1307      | 76.0                                  | 1367      | 62.7          |
| 1248      | 97.4          | 1308      | 76.0                                  | 1368      | 61.9          |
| 1249      | 97.3          | 1309      | 75.9                                  | 1369      | 60.0          |
| 1250      | 97.3          | 1310      | 76.0                                  | 1370      | 58.4          |
| 1251      | 97.3          | 1311      | 76.0                                  | 1371      | 57.8          |
| 1252      | 97.3          | 1312      | 76.1                                  | 1372      | 57.8          |
| 1253      | 97.2          | 1313      | 76.3                                  | 1373      | 57.8          |
| 1254      | 97.1          | 1314      | 76.5                                  | 1374      | 57.3          |
| 1255      | 97.0          | 1315      | 76.6                                  | 1375      | 56.2          |
| 1256      | 96.9          | 1316      | 76.8                                  | 1376      | 54.3          |
| 1257      | 96.7          | 1317      | 77.1                                  | 1377      | 50.8          |
| 1258      | 96.4          | 1318      | 77.1                                  | 1378      | 45.5          |
| 1259      | 96.1          | 1319      | 77.2                                  | 1379      | 40.2          |
| 1260      | 95.7          | 1320      | 77.2                                  | 1380      | 34.9          |
| 1261      | 95.5          | 1321      | 77.6                                  | 1381      | 29.6          |
| 1262      | 95.3          | 1322      | 78.0                                  | 1382      | 28.7          |

|              |               | WLTC class   | 3 vehicles, phase High <sub>3-1</sub> |           |                                       |
|--------------|---------------|--------------|---------------------------------------|-----------|---------------------------------------|
| Time in s    | speed in km/h | Time in s    | speed in km/h                         | Time in s | speed in km/h                         |
| 1383         | 29.3          | 1443         | 18.3                                  |           | · · · · · · · · · · · · · · · · · · · |
| 1384         | 30.5          | 1444         | 18.0                                  |           |                                       |
| 1385         | 31.7          | 1445         | 18.3                                  |           |                                       |
| 1386         | 32.9          | 1446         | 18.5                                  |           |                                       |
| 1387         | 35.0          | 1447         | 17.9                                  |           |                                       |
| 1388         | 38.0          | 1448         | 15.0                                  |           |                                       |
| 1389         | 40.5          | 1449         | 9.9                                   |           |                                       |
| 1390         | 42.7          | 1450         | 4.6                                   |           |                                       |
| 1391         | 45.8          | 1451         | 1.2                                   |           |                                       |
| 1392         | 47.5          | 1452         | 0.0                                   |           |                                       |
| 1393         | 48.9          | 1453         | 0.0                                   |           |                                       |
| 1394         | 49.4          | 1454         | 0.0                                   |           |                                       |
| 1395         | 49.4          | 1455         | 0.0                                   |           |                                       |
| 1396         | 49.2          | 1456         | 0.0                                   |           |                                       |
| 1397         | 48.7          | 1457         | 0.0                                   |           |                                       |
| 1398         | 47.9          | 1458         | 0.0                                   |           |                                       |
| 1399         | 46.9          | 1456         | 0.0                                   | +         |                                       |
|              |               | 1459         |                                       | +         |                                       |
| 1400         | 45.6          |              | 0.0                                   | +         |                                       |
| 1401         | 44.2          | 1461<br>1462 | 0.0                                   | +         |                                       |
| 1402<br>1403 | 42.7          | _            | 0.0                                   |           |                                       |
|              | 40.7          | 1463         | 0.0                                   |           |                                       |
| 1404         | 37.1          | 1464         | 0.0                                   |           |                                       |
| 1405         | 33.9          | 1465         | 0.0                                   |           |                                       |
| 1406         | 30.6          | 1466         | 0.0                                   |           |                                       |
| 1407         | 28.6          | 1467         | 0.0                                   |           |                                       |
| 1408         | 27.3          | 1468         | 0.0                                   |           |                                       |
| 1409         | 27.2          | 1469         | 0.0                                   |           |                                       |
| 1410         | 27.5          | 1470         | 0.0                                   |           |                                       |
| 1411         | 27.4          | 1471         | 0.0                                   |           |                                       |
| 1412         | 27.1          | 1472         | 0.0                                   |           |                                       |
| 1413         | 26.7          | 1473         | 0.0                                   |           |                                       |
| 1414         | 26.8          | 1474         | 0.0                                   |           |                                       |
| 1415         | 28.2          | 1475         | 0.0                                   |           |                                       |
| 1416         | 31.1          | 1476         | 0.0                                   |           |                                       |
| 1417         | 34.8          | 1477         | 0.0                                   |           |                                       |
| 1418         | 38.4          |              |                                       |           |                                       |
| 1419         | 40.9          |              |                                       |           |                                       |
| 1420         | 41.7          |              |                                       |           |                                       |
| 1421         | 40.9          |              |                                       |           |                                       |
| 1422         | 38.3          |              |                                       |           |                                       |
| 1423         | 35.3          |              |                                       |           |                                       |
| 1424         | 34.3          |              |                                       |           |                                       |
| 1425         | 34.6          |              |                                       |           |                                       |
| 1426         | 36.3          |              |                                       |           |                                       |
| 1427         | 39.5          |              |                                       |           |                                       |
| 1428         | 41.8          |              |                                       |           |                                       |
| 1429         | 42.5          |              |                                       |           |                                       |
| 1430         | 41.9          |              |                                       |           |                                       |
| 1431         | 40.1          |              |                                       |           |                                       |
| 1432         | 36.6          |              |                                       |           |                                       |
| 1433         | 31.3          |              |                                       |           |                                       |
| 1434         | 26.0          |              |                                       |           |                                       |
| 1435         | 20.6          |              |                                       |           |                                       |
| 1436         | 19.1          |              |                                       |           |                                       |
| 1437         | 19.7          |              |                                       |           |                                       |
| 1438         | 21.1          |              |                                       |           |                                       |
| 1439         | 22.0          |              |                                       |           |                                       |
| 1440         | 22.1          |              |                                       |           |                                       |
| 1441         | 21.4          |              |                                       |           |                                       |
| 1442         | 19.6          |              |                                       |           |                                       |
|              |               |              |                                       | <u> </u>  |                                       |

Table 11: WLTC, Class 3 vehicles, phase High<sub>3-2</sub>

| Table 11: WLTC, Class 3 vehicles, phase High <sub>3-2</sub> WLTC class 3 vehicles, phase High <sub>3-2</sub> |               |                    |               |              |               |  |
|--------------------------------------------------------------------------------------------------------------|---------------|--------------------|---------------|--------------|---------------|--|
| Time in s                                                                                                    | speed in km/h | Time in s          | speed in km/h | Time in s    | speed in km/h |  |
|                                                                                                              |               | 1083               |               |              | 19.1          |  |
| 1023<br>1024                                                                                                 | 0.0           | 1084               | 62.5          | 1143<br>1144 | 22.5          |  |
| -                                                                                                            | 0.0           |                    | 60.9          |              | 24.4          |  |
| 1025                                                                                                         | 0.0           | 1085               | 59.3          | 1145         |               |  |
| 1026                                                                                                         | 0.0           | 1086               | 58.6          | 1146         | 24.8          |  |
| 1027                                                                                                         | 0.8           | 1087               | 58.6          | 1147         | 22.7          |  |
| 1028                                                                                                         | 3.6           | 1088               | 58.7          | 1148         | 17.4          |  |
| 1029                                                                                                         | 8.6           | 1089               | 58.8          | 1149         | 13.8          |  |
| 1030                                                                                                         | 14.6          | 1090               | 58.8          | 1150         | 12.0          |  |
| 1031                                                                                                         | 20.0          | 1091               | 58.8          | 1151         | 12.0          |  |
| 1032                                                                                                         | 24.4          | 1092               | 59.1          | 1152         | 12.0          |  |
| 1033                                                                                                         | 28.2          | 1093               | 60.1          | 1153         | 13.9          |  |
| 1034                                                                                                         | 31.7          | 1094               | 61.7          | 1154         | 17.7          |  |
| 1035                                                                                                         | 35.0          | 1095               | 63.0          | 1155         | 22.8          |  |
| 1036                                                                                                         | 37.6          | 1096               | 63.7          | 1156         | 27.3          |  |
| 1037                                                                                                         | 39.7          | 1097               | 63.9          | 1157         | 31.2          |  |
| 1038                                                                                                         | 41.5          | 1098               | 63.5          | 1158         | 35.2          |  |
| 1039                                                                                                         | 43.6          | 1099               | 62.3          | 1159         | 39.4          |  |
| 1040                                                                                                         | 46.0          | 1100               | 60.3          | 1160         | 42.5          |  |
| 1041                                                                                                         | 48.4          | 1101               | 58.9          | 1161         | 45.4          |  |
| 1042                                                                                                         | 50.5          | 1102               | 58.4          | 1162         | 48.2          |  |
| 1043                                                                                                         | 51.9          | 1103               | 58.8          | 1163         | 50.3          |  |
| 1044                                                                                                         | 52.6          | 1104               | 60.2          | 1164         | 52.6          |  |
| 1045                                                                                                         | 52.8          | 1105               | 62.3          | 1165         | 54.5          |  |
| 1046                                                                                                         | 52.9          | 1106               | 63.9          | 1166         | 56.6          |  |
| 1047                                                                                                         | 53.1          | 1107               | 64.5          | 1167         | 58.3          |  |
| 1048                                                                                                         | 53.3          | 1108               | 64.4          | 1168         | 60.0          |  |
| 1049                                                                                                         | 53.1          | 1109               | 63.5          | 1169         | 61.5          |  |
| 1050                                                                                                         | 52.3          | 1110               | 62.0          | 1170         | 63.1          |  |
| 1051                                                                                                         | 50.7          | 1111               | 61.2          | 1171         | 64.3          |  |
| 1052                                                                                                         | 48.8          | 1112               | 61.3          | 1172         | 65.7          |  |
| 1053                                                                                                         | 46.5          | 1113               | 62.6          | 1173         | 67.1          |  |
| 1054                                                                                                         | 43.8          | 1114               | 65.3          | 1174         | 68.3          |  |
| 1055                                                                                                         | 40.3          | 1115               | 68.0          | 1175         | 69.7          |  |
| 1056                                                                                                         | 36.0          | 1116               | 69.4          | 1176         | 70.6          |  |
| 1057                                                                                                         | 30.7          | 1117               | 69.7          | 1177         | 71.6          |  |
| 1058                                                                                                         | 25.4          | 1118               | 69.3          | 1178         | 72.6          |  |
| 1059                                                                                                         | 21.0          | 1119               | 68.1          | 1179         | 73.5          |  |
| 1060                                                                                                         | 16.7          | 1120               | 66.9          | 1180         | 74.2          |  |
| 1061                                                                                                         | 13.4          | 1121               | 66.2          | 1181         | 74.9          |  |
| 1062                                                                                                         | 12.0          | 1122               | 65.7          | 1182         | 75.6          |  |
| 1063                                                                                                         | 12.1          | 1123               | 64.9          | 1183         | 76.3          |  |
| 1064                                                                                                         | 12.8          | 1124               | 63.2          | 1184         | 77.1          |  |
| 1065                                                                                                         | 15.6          | 1125               | 60.3          | 1185         | 77.9          |  |
| 1066                                                                                                         | 19.9          | 1126               | 55.8          | 1186         | 78.5          |  |
| 1067                                                                                                         | 23.4          | 1127               | 50.5          | 1187         | 79.0          |  |
| 1068                                                                                                         | 24.6          | 1128               | 45.2          | 1188         | 79.7          |  |
| 1069                                                                                                         | 25.2          | 1129               | 40.1          | 1189         | 80.3          |  |
| 1070                                                                                                         | 26.4          | 1130               | 36.2          | 1190         | 81.0          |  |
| 1071                                                                                                         | 28.8          | 1131               | 32.9          | 1191         | 81.6          |  |
| 1072                                                                                                         | 31.8          | 1132               | 29.8          | 1192         | 82.4          |  |
| 1073                                                                                                         | 35.3          | 1133               | 26.6          | 1193         | 82.9          |  |
| 1074                                                                                                         | 39.5          | 1134               | 23.0          | 1194         | 83.4          |  |
| 1075                                                                                                         | 44.5          | 1135               | 19.4          | 1195         | 83.8          |  |
| 1076                                                                                                         | 49.3          | 1136               | 16.3          | 1196         | 84.2          |  |
| 1077                                                                                                         | 53.3          | 1137               | 14.6          | 1197         | 84.7          |  |
| 1078                                                                                                         | 56.4          | 1138               | 14.2          | 1198         | 85.2          |  |
| 1079                                                                                                         | 58.9          | 1139               | 14.3          | 1199         | 85.6          |  |
| 1080                                                                                                         | 61.2          | 1140               | 14.6          | 1200         | 86.3          |  |
| 1081                                                                                                         | 62.6          | 1141               | 15.1          | 1201         | 86.8          |  |
| 1082                                                                                                         | 63.0          | 1142               | 16.4          | 1202         | 87.4          |  |
|                                                                                                              | 55.0          | · · · <del>-</del> | 15.7          |              | ъ. т          |  |

| me in s      | speed in km/h | Time in s | 3 vehicles, phase High <sub>3-2</sub> speed in km/h | Time in s | speed in km/h |
|--------------|---------------|-----------|-----------------------------------------------------|-----------|---------------|
| 1203         | 88.0          | 1263      | 95.2                                                | 1323      | 76            |
| 1204         | 88.3          | 1264      | 95.0                                                | 1324      | 77            |
| 1205         | 88.7          | 1265      | 94.9                                                | 1325      | 79            |
| 1206         | 89.0          | 1266      | 94.7                                                | 1326      | 80            |
| 1207         | 89.3          | 1267      | 94.5                                                | 1327      | 80            |
| 1208         | 89.8          | 1268      | 94.4                                                | 1328      | 81            |
| 1209         | 90.2          | 1269      | 94.4                                                | 1329      | 81            |
| 1210         | 90.6          | 1270      | 94.3                                                | 1330      | 81            |
| 1211         | 91.0          | 1271      | 94.3                                                | 1331      | 81            |
| 1212         | 91.3          | 1272      | 94.1                                                | 1332      | 81            |
| 1213         | 91.6          | 1273      | 93.9                                                | 1333      | 80            |
| 1214         | 91.9          | 1274      | 93.4                                                | 1334      | 80            |
| 1215         | 92.2          | 1275      | 92.8                                                | 1335      | 80            |
| 1216         | 92.8          | 1276      | 92.0                                                | 1336      | 80            |
| 1217         | 93.1          | 1277      | 91.3                                                | 1337      | 79            |
| 1218         | 93.3          | 1278      | 90.6                                                | 1338      | 79            |
| 1219         | 93.5          | 1279      | 90.0                                                | 1339      | 79            |
| 1220         | 93.7          | 1280      | 89.3                                                | 1340      | 79            |
| 1221         | 93.7          | 1281      | 88.7                                                | 1341      | 79            |
| 1222         | 94.0          | 1282      | 88.1                                                | 1341      | 80            |
|              | 94.0          |           | 87.4                                                |           |               |
| 1223<br>1224 |               | 1283      |                                                     | 1343      | 80            |
|              | 94.3          | 1284      | 86.7                                                | 1344      | 80            |
| 1225         | 94.4          | 1285      | 86.0                                                | 1345      | 81            |
| 1226         | 94.6          | 1286      | 85.3                                                | 1346      | 81            |
| 1227         | 94.7          | 1287      | 84.7                                                | 1347      | 81            |
| 1228         | 94.8          | 1288      | 84.1                                                | 1348      | 81            |
| 1229         | 95.0          | 1289      | 83.5                                                | 1349      | 81            |
| 1230         | 95.1          | 1290      | 82.9                                                | 1350      | 80            |
| 1231         | 95.3          | 1291      | 82.3                                                | 1351      | 79            |
| 1232         | 95.4          | 1292      | 81.7                                                | 1352      | 78            |
| 1233         | 95.6          | 1293      | 81.1                                                | 1353      | 76            |
| 1234         | 95.7          | 1294      | 80.5                                                | 1354      | 75            |
| 1235         | 95.8          | 1295      | 79.9                                                | 1355      | 73            |
| 1236         | 96.0          | 1296      | 79.4                                                | 1356      | 72            |
| 1237         | 96.1          | 1297      | 79.1                                                | 1357      | 70            |
| 1238         | 96.3          | 1298      | 78.8                                                | 1358      | 68            |
| 1239         | 96.4          | 1299      | 78.5                                                | 1359      | 66            |
| 1240         | 96.6          | 1300      | 78.2                                                | 1360      | 63            |
| 1241         | 96.8          | 1301      | 77.9                                                | 1361      | 61            |
| 1242         | 97.0          | 1302      | 77.6                                                | 1362      | 60            |
| 1243         | 97.2          | 1303      | 77.3                                                | 1363      | 59            |
| 1244         | 97.3          | 1304      | 77.0                                                | 1364      | 60            |
| 1245         | 97.4          | 1305      | 76.7                                                | 1365      | 61            |
| 1246         | 97.4          | 1306      | 76.0                                                | 1366      | 62            |
| 1247         | 97.4          | 1307      | 76.0                                                | 1367      | 62            |
| 1248         | 97.4          | 1308      | 76.0                                                | 1368      | 61            |
| 1249         | 97.3          | 1309      | 75.9                                                | 1369      | 60            |
| 1250         | 97.3          | 1310      | 75.9                                                | 1370      | 58            |
| 1251         | 97.3          | 1311      | 75.8                                                | 1371      | 57            |
| 1252         | 97.3          | 1312      | 75.7                                                | 1372      | 57            |
| 1253         | 97.2          | 1313      | 75.5                                                | 1373      | 57            |
| 1254         | 97.1          | 1314      | 75.2                                                | 1374      | 57            |
| 1255         | 97.0          | 1315      | 75.0                                                | 1375      | 56            |
| 1256         | 96.9          | 1316      | 74.7                                                | 1376      | 54            |
| 1257         | 96.7          | 1317      | 74.1                                                | 1377      | 50            |
| 1258         | 96.4          | 1318      | 73.7                                                | 1378      | 45            |
| 1259         | 96.1          | 1319      | 73.3                                                | 1379      | 40            |
| 1260         | 95.7          | 1320      | 73.5                                                | 1380      | 34            |
| 1261         | 95.7          | 1321      | 74.0                                                | 1381      | 29            |
| 1262         | 95.3          | 1321      | 74.9                                                | 1382      | 27            |

|           |               | WLTC class | 3 vehicles, phase High <sub>3-2</sub> | !         |               |
|-----------|---------------|------------|---------------------------------------|-----------|---------------|
| Time in s | speed in km/h | Time in s  | speed in km/h                         | Time in s | speed in km/h |
| 1383      | 29.3          | 1443       | 18.3                                  |           |               |
| 1384      | 32.9          | 1444       | 18.0                                  |           |               |
| 1385      | 35.6          | 1445       | 18.3                                  |           |               |
| 1386      | 36.7          | 1446       | 18.5                                  |           |               |
| 1387      | 37.6          | 1447       | 17.9                                  |           |               |
| 1388      | 39.4          | 1448       | 15.0                                  |           |               |
| 1389      | 42.5          | 1449       | 9.9                                   |           |               |
| 1390      | 46.5          | 1450       | 4.6                                   |           |               |
| 1391      | 50.2          | 1451       | 1.2                                   |           |               |
| 1392      | 52.8          | 1452       | 0.0                                   |           |               |
| 1393      | 54.3          | 1453       | 0.0                                   |           |               |
| 1394      | 54.9          | 1454       | 0.0                                   |           |               |
| 1395      | 54.9          | 1455       | 0.0                                   |           |               |
| 1396      | 54.7          | 1456       | 0.0                                   |           |               |
| 1397      | 54.1          | 1457       | 0.0                                   |           |               |
| 1398      | 53.2          | 1458       | 0.0                                   |           |               |
| 1399      | 52.1          | 1459       | 0.0                                   |           |               |
| 1400      | 50.7          | 1460       | 0.0                                   |           |               |
| 1401      | 49.1          | 1461       | 0.0                                   |           |               |
| 1402      | 47.4          | 1462       | 0.0                                   |           |               |
| 1403      | 45.2          | 1463       | 0.0                                   |           |               |
| 1404      | 41.8          | 1464       | 0.0                                   |           |               |
| 1405      | 36.5          | 1465       | 0.0                                   |           |               |
| 1406      | 31.2          | 1466       | 0.0                                   |           |               |
| 1407      | 27.6          | 1467       | 0.0                                   |           |               |
| 1408      | 26.9          | 1468       | 0.0                                   |           |               |
| 1409      | 27.3          | 1469       | 0.0                                   |           |               |
| 1410      | 27.5          | 1470       | 0.0                                   |           |               |
| 1411      | 27.4          | 1471       | 0.0                                   |           |               |
| 1412      | 27.1          | 1472       | 0.0                                   |           |               |
| 1413      | 26.7          | 1473       | 0.0                                   |           |               |
| 1414      | 26.8          | 1474       | 0.0                                   |           |               |
| 1415      | 28.2          | 1475       | 0.0                                   |           |               |
| 1416      | 31.1          | 1476       | 0.0                                   |           |               |
| 1417      | 34.8          | 1477       | 0.0                                   |           |               |
| 1418      | 38.4          |            |                                       |           |               |
| 1419      | 40.9          |            |                                       |           |               |
| 1420      | 41.7          |            |                                       |           |               |
| 1421      | 40.9          |            |                                       |           |               |
| 1422      | 38.3          |            |                                       |           |               |
| 1423      | 35.3          |            |                                       |           |               |
| 1424      | 34.3          |            |                                       |           |               |
| 1425      | 34.6          |            |                                       |           |               |
| 1426      | 36.3          |            |                                       |           |               |
| 1427      | 39.5          |            |                                       |           |               |
| 1428      | 41.8          |            |                                       |           |               |
| 1429      | 42.5          |            |                                       |           |               |
| 1430      | 41.9          |            |                                       |           |               |
| 1431      | 40.1          |            |                                       |           |               |
| 1432      | 36.6          |            |                                       |           |               |
| 1433      | 31.3          |            |                                       |           |               |
| 1434      | 26.0          |            |                                       |           |               |
| 1435      | 20.6          |            |                                       |           |               |
| 1436      | 19.1          |            |                                       |           |               |
| 1437      | 19.7          |            |                                       |           |               |
| 1438      | 21.1          |            |                                       |           |               |
| 1439      | 22.0          |            |                                       |           |               |
| 1440      | 22.1          |            |                                       |           |               |
| 1441      | 21.4          |            |                                       |           |               |
| 1442      | 19.6          |            |                                       |           |               |

Figure 12: WLTC, Class 3 vehicles, phase Extra High<sub>3</sub>

| Time in s    | speed in km/h | Time in s    | vehicles, phase Extra Hig<br>speed in km/h | Time in s    | speed in km/h  |
|--------------|---------------|--------------|--------------------------------------------|--------------|----------------|
| -            |               |              | •                                          |              | •              |
| 1478<br>1479 | 0.0           | 1538         | 68.4<br>71.6                               | 1598         | 112.2          |
| 1479         | 2.2           | 1539<br>1540 | 74.9                                       | 1599<br>1600 | 111.4<br>110.5 |
| 1481         | 6.3           | 1541         | 78.4                                       | 1600         |                |
| 1482         | 7.9           | 1542         | 81.8                                       | 1602         | 109.5<br>108.5 |
| 1483         | 9.2           | 1543         | 84.9                                       | 1603         | 108.3          |
| 1484         | 10.4          | 1544         | 87.4                                       | 1604         | 107.1          |
| 1485         | 11.5          | 1545         | 89.0                                       | 1605         | 106.6          |
| 1486         | 12.9          | 1546         | 90.0                                       | 1606         | 106.4          |
| 1487         | 14.7          | 1547         | 90.6                                       | 1607         | 106.2          |
| 1488         | 17.0          | 1548         | 91.0                                       | 1608         | 106.2          |
| 1489         | 19.8          | 1549         | 91.5                                       | 1609         | 106.2          |
| 1490         | 23.1          | 1550         | 92.0                                       | 1610         | 106.4          |
| 1491         | 26.7          | 1551         | 92.7                                       | 1611         | 106.5          |
| 1492         | 30.5          | 1552         | 93.4                                       | 1612         | 106.8          |
| 1493         | 34.1          | 1553         | 94.2                                       | 1613         | 107.2          |
| 1494         | 37.5          | 1554         | 94.9                                       | 1614         | 107.8          |
| 1495         | 40.6          | 1555         | 95.7                                       | 1615         | 108.5          |
| 1496         | 43.3          | 1556         | 96.6                                       | 1616         | 109.4          |
| 1497         | 45.7          | 1557         | 97.7                                       | 1617         | 110.5          |
| 1498         | 47.7          | 1558         | 98.9                                       | 1618         | 111.7          |
| 1499         | 49.3          | 1559         | 100.4                                      | 1619         | 113.0          |
| 1500         | 50.5          | 1560         | 102.0                                      | 1620         | 114.1          |
| 1501         | 51.3          | 1561         | 103.6                                      | 1621         | 115.1          |
| 1502         | 52.1          | 1562         | 105.2                                      | 1622         | 115.9          |
| 1503         | 52.7          | 1563         | 106.8                                      | 1623         | 116.5          |
| 1504         | 53.4          | 1564         | 108.5                                      | 1624         | 116.7          |
| 1505         | 54.0          | 1565         | 110.2                                      | 1625         | 116.6          |
| 1506         | 54.5          | 1566         | 111.9                                      | 1626         | 116.2          |
| 1507         | 55.0          | 1567         | 113.7                                      | 1627         | 115.2          |
| 1508         | 55.6          | 1568         | 115.3                                      | 1628         | 113.8          |
| 1509         | 56.3          | 1569         | 116.8                                      | 1629         | 112.0          |
| 1510         | 57.2          | 1570         | 118.2                                      | 1630         | 110.1          |
| 1511         | 58.5          | 1571         | 119.5                                      | 1631         | 108.3          |
| 1512         | 60.2          | 1572         | 120.7                                      | 1632         | 107.0          |
| 1513         | 62.3          | 1573         | 121.8                                      | 1633         | 106.1          |
| 1514         | 64.7          | 1574         | 122.6                                      | 1634         | 105.8          |
| 1515         | 67.1          | 1575         | 123.2                                      | 1635         | 105.7          |
| 1516         | 69.2          | 1576         | 123.6                                      | 1636         | 105.7          |
| 1517         | 70.7          | 1577         | 123.7                                      | 1637         | 105.6          |
| 1518         | 71.9          | 1578         | 123.6                                      | 1638         | 105.3          |
| 1519         | 72.7          | 1579         | 123.3                                      | 1639         | 104.9          |
| 1520         | 73.4          | 1580         | 123.0                                      | 1640         | 104.4          |
| 1521         | 73.8          | 1581         | 122.5                                      | 1641         | 104.0          |
| 1522         | 74.1          | 1582         | 122.1                                      | 1642         | 103.8          |
| 1523         | 74.0          | 1583         | 121.5                                      | 1643         | 103.9          |
| 1524         | 73.6          | 1584         | 120.8                                      | 1644         | 104.4          |
| 1525         | 72.5          | 1585         | 120.0                                      | 1645         | 105.1          |
| 1526         | 70.8          | 1586         | 119.1                                      | 1646         | 106.1          |
| 1527         | 68.6          | 1587         | 118.1                                      | 1647         | 107.2          |
| 1528         | 66.2          | 1588         | 117.1                                      | 1648         | 108.5          |
| 1529         | 64.0          | 1589         | 116.2                                      | 1649         | 109.9          |
| 1530         | 62.2          | 1590         | 115.5                                      | 1650         | 111.3          |
| 1531         | 60.9          | 1591         | 114.9                                      | 1651         | 112.7          |
| 1532         | 60.2          | 1592         | 114.5                                      | 1652         | 113.9          |
| 1533         | 60.0          | 1593         | 114.1                                      | 1653         | 115.0          |
| 1534         | 60.4          | 1594         | 113.9                                      | 1654         | 116.0          |
| 1535         | 61.4          | 1595         | 113.7                                      | 1655         | 116.8          |
| 1536         | 63.2          | 1596         | 113.3                                      | 1656         | 117.6<br>118.4 |
| 1537         | 65.6          | 1597         | 112.9                                      | 1657         |                |

|           | WI            | TC class 3 | vehicles, phase Extra High | ղ <sub>3</sub> |               |
|-----------|---------------|------------|----------------------------|----------------|---------------|
| Time in s | speed in km/h | Time in s  | speed in km/h              | Time in s      | speed in km/h |
| 1658      | 119.2         | 1718       | 129.0                      | 1778           | 49.7          |
| 1659      | 120.0         | 1719       | 129.5                      | 1779           | 46.8          |
| 1660      | 120.8         | 1720       | 130.1                      | 1780           | 43.5          |
| 1661      | 121.6         | 1721       | 130.6                      | 1781           | 39.9          |
| 1662      | 122.3         | 1722       | 131.0                      | 1782           | 36.4          |
| 1663      | 123.1         | 1723       | 131.2                      | 1783           | 33.2          |
| 1664      | 123.8         | 1724       | 131.3                      | 1784           | 30.5          |
| 1665      | 124.4         | 1725       | 131.2                      | 1785           | 28.3          |
| 1666      | 125.0         | 1726       | 130.7                      | 1786           | 26.3          |
| 1667      | 125.4         | 1727       | 129.8                      | 1787           | 24.4          |
| 1668      | 125.8         | 1728       | 128.4                      | 1788           | 22.5          |
| 1669      | 126.1         | 1729       | 126.5                      | 1789           | 20.5          |
| 1670      | 126.4         | 1730       | 124.1                      | 1790           | 18.2          |
| 1671      | 126.6         | 1731       | 121.6                      | 1791           | 15.5          |
| 1672      | 126.7         | 1732       | 119.0                      | 1792           | 12.3          |
| 1673      | 126.8         | 1733       | 116.5                      | 1793           | 8.7           |
| 1674      | 126.9         | 1734       | 114.1                      | 1794           | 5.2           |
| 1675      | 126.9         | 1735       | 111.8                      | 1795           | 0.0           |
| 1676      | 126.9         | 1736       | 109.5                      | 1796           | 0.0           |
| 1677      | 126.8         | 1737       | 107.1                      | 1797           | 0.0           |
| 1678      | 126.6         | 1738       | 104.8                      | 1798           | 0.0           |
| 1679      | 126.3         | 1739       | 102.5                      | 1799           | 0.0           |
| 1680      | 126.0         | 1740       | 100.4                      | 1800           | 0.0           |
| 1681      | 125.7         | 1741       | 98.6                       |                |               |
| 1682      | 125.6         | 1742       | 97.2                       |                |               |
| 1683      | 125.6         | 1743       | 95.9                       |                |               |
| 1684      | 125.8         | 1744       | 94.8                       |                |               |
| 1685      | 126.2         | 1745       | 93.8                       |                |               |
| 1686      | 126.6         | 1746       | 92.8                       |                |               |
| 1687      | 127.0         | 1747       | 91.8                       |                |               |
| 1688      | 127.4         | 1748       | 91.0                       |                |               |
| 1689      | 127.6         | 1749       | 90.2                       |                |               |
| 1690      | 127.8         | 1750       | 89.6                       |                |               |
| 1691      | 127.9         | 1751       | 89.1                       |                |               |
| 1692      | 128.0         | 1752       | 88.6                       |                |               |
| 1693      | 128.1         | 1753       | 88.1                       |                |               |
| 1694      | 128.2         | 1754       | 87.6                       |                |               |
| 1695      | 128.3         | 1755       | 87.1                       |                |               |
| 1696      | 128.4         | 1756       | 86.6                       |                |               |
| 1697      | 128.5         | 1757       | 86.1                       |                |               |
| 1698      | 128.6         | 1758       | 85.5                       |                |               |
| 1699      | 128.6         | 1759       | 85.0                       |                |               |
| 1700      | 128.5         | 1760       | 84.4                       |                |               |
| 1701      | 128.3         | 1761       | 83.8                       | <u> </u>       |               |
| 1702      | 128.1         | 1762       | 83.2                       | +              |               |
| 1703      | 127.9         | 1763       | 82.6                       | +              |               |
| 1704      | 127.6         | 1764       | 82.0                       |                |               |
| 1705      | 127.4         | 1765       | 81.3                       |                |               |
| 1706      | 127.2         | 1766       | 80.4                       |                |               |
| 1707      | 127.0         | 1767       | 79.1                       |                |               |
| 1708      | 126.9         | 1768       | 77.4                       |                |               |
| 1709      | 126.8         | 1769       | 75.1                       |                |               |
| 1710      | 126.7         | 1770       | 72.3                       | +              |               |
| 1711      | 126.8         | 1771       | 69.1                       |                |               |
| 1711      | 126.9         | 1771       | 65.9                       | +              |               |
| 1712      | 127.1         | 1772       | 62.7                       |                |               |
| 1713      | 127.1         | 1773       | 59.7                       |                |               |
| 1714      | 127.7         | 1774       | 57.0                       |                |               |
|           | +             |            | -                          |                |               |
| 1716      | 128.1         | 1776       | 54.6                       |                |               |

#### 7. Provisions for vehicles that cannot follow the speed trace

#### 7.1 General remarks

During the validation phase of the cycle development some vehicles with Pmr values close to the borderlines of the vehicle classes (see paragraph 2 of this Annex) had problems to follow the cycle speed trace within the tolerances ( $\pm$ 0 km/h,  $\pm$ 1 s). For such vehicles the cycle trace needs to be downscaled for those sections where driveability problems will occur.

The downscaling approach was developed based on an analysis of results of extensive modelling work. The downscaling factor is based on the ratio between the maximum required power of the cycle phases where the downscaling has to be applied and the rated power of the vehicle. The maximum required power within the cycle occurs at times with a combination of high vehicle speed and high acceleration values. That means that the road load coefficients as well as the test mass are considered.

### 7.2 Downscaling procedure

## 7.2.1 Downscaling procedure for class 1 vehicles

Since the driveability problems are exclusively related to the medium speed phase of the class 1 cycle, the downscaling is related to those sections of the medium speed phase, where the driveability problems occur (see Figure 3).

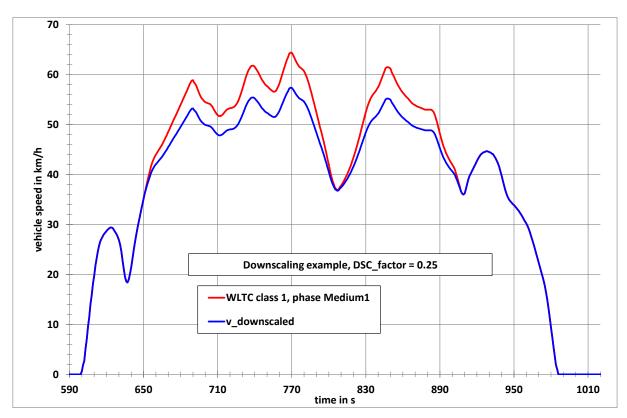



Figure 13: Downscaled medium speed phase of the class 1 WLTC

For the class 1 cycle the downscaling period is the time period between second 651 and second 906. Within this time period the acceleration for the original cycle is calculated using the following equation:

$$a\_orig\_i = (v\_i+1 - v\_i)/3.6$$
 Equation 1

where:

- v\_i is the vehicle speed, km/h;
- i is the time between 651 and 906 s.

The downscaling is first applied in the time period between second 651 and 848. Second 848 is the time where the maximum speed of the extra high speed phase is reached. The downscaled speed trace is then calculated using the following equation:

$$v_dsc_i+1 = v_dsc_i+a_orig_i*(1-dsc_factor)*3.6$$
 Equation 2 with  $i=651$  to  $848$ .  $v_dsc_i=v_orig_i$  for  $i=651$ .

In order to meet the original vehicle speed at second 907 a correction factor for the deceleration is calculated using the following equation:

$$f_{corr_dec} = (v_{dsc_848 - 36,7}) / (v_{orig_848 - 36,7})$$
 Equation 3

where 36,7 km/h is the original vehicle speed at second 907.

The downscaled vehicle speed between 849 and 906 s is then calculated using the following equation:

$$v\_dsc\_i = v\_dsc\_i-1 + a\_orig\_i-1 * f\_corr\_dec * 3.6$$
 Equation 4 with  $i=849$  to 906.

## 7.2.2 Downscaling procedure for class 2 vehicles

Since the driveability problems are exclusively related to the extra high speed phases of the class 2 and class 3 cycles, the downscaling is related to those sections of the extra high speed phases, where the driveability problems occur (see Figure 14).

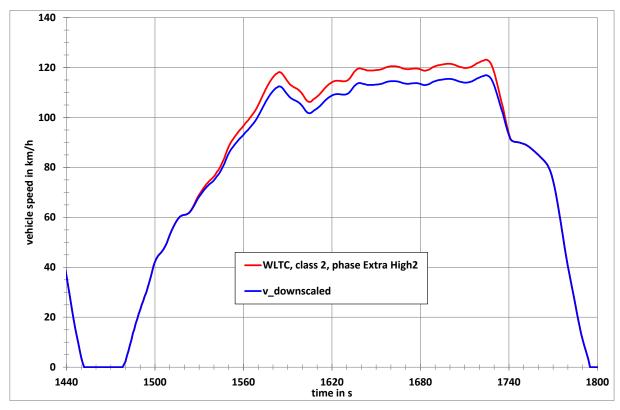



Figure 14: Downscaled extra high speed phase of the class 2 WLTC

For the class 2 cycle the downscaling period is the time period between second 1520 and second 1742. Within this time period the acceleration for the original cycle is calculated using the following equation:

$$a\_orig\_i = (v\_i+1 - v\_i)/3.6$$

Equation 5

where:

v\_i is the vehicle speed, km/h;

i is the time between 1520 and 1742 s.

The downscaling is first applied in the time period between second 1520 and 1724. Second 1724 is the time where the maximum speed of the extra high speed phase is reached. The downscaled speed trace is then calculated using the following equation:

$$v_dsc_i+1 = v_dsc_i + a_orig_i * (1 - dsc_factor) * 3.6$$

Equation 6

with i = 1520 to 1724.  $v_dsc_i = v_orig_i$  for i = 1520.

In order to meet the original vehicle speed at second 1743 a correction factor for the deceleration is calculated using the following equation:

$$f_{corr_dec} = (v_{dsc_1725} - 90.4) / (v_{orig_1725} - 90.4)$$

Equation 7

90,4 km/h is the original vehicle speed at second 1743.

The downscaled vehicle speed between 1726 and 1742 s is then calculated using the following equation:

$$v_dsc_i = v_dsc_{i-1} + a_orig_{i-1} * f_corr_dec * 3.6$$

Equation 8

with i = 1726 to 1742.

#### 7.2.3 Downscaling procedure for class 3 vehicles

Figure 15 shows an example for a downscaled extra high speed phase of the class 3 WLTC.

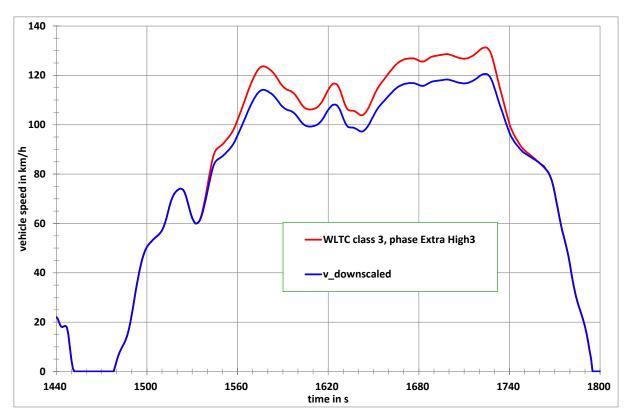



Figure 15: Downscaled extra high speed phase of the class 3 WLTC

For the class 3 cycle this is the period between second 1533 and second 1763. Within this time period the acceleration for the original cycle is calculated using the following equation:

$$a_{orig_i} = (v_{i+1} - v_{i})/3.6$$
 Equation 9

where:

v\_i is the vehicle speed, km/h;

i is the time between 1533 and 1762 s.

The downscaling is first applied in the time period between second 1533 and 1724. Second 1724 is the time where the maximum speed of the extra high speed phase is reached. The downscaled speed trace is then calculated using the following equation:

$$v\_dsc\_i+1 = v\_dsc\_i + a\_orig\_i * (1 - dsc\_factor) * 3.6$$
 Equation 10 with  $i = 1533$  to 1723.  $v\_dsc\_i = v\_orig\_i$  for  $i = 1533$ .

In order to meet the original vehicle speed at second 1763 a correction factor for the deceleration is calculated using the following equation:

$$f_{corr_dec} = (v_{dsc_1724} - 82.6) / (v_{orig_1724} - 82.6)$$
 Equation 11

82.6 km/h is the original vehicle speed at second 1763.

The downscaled vehicle speed between 1725 and 1762 s is then calculated using the following equation:

$$v\_dsc\_i = v\_dsc\_i-1 + a\_orig\_i-1 * f\_corr\_dec * 3.6$$
 Equation 12 with  $i = 1725$  to 1762.

## 7.3 Determination of the downscaling factor

The downscaling factor  $f_{dsc}$  is a function of the ratio between the maximum required power of the cycle phases where the downscaling has to be applied and the rated power of the vehicle  $(P_{rated})$ .

This ratio is named  $r_{max}$ , the maximum required power is named  $P_{req, max}$ . It is related to a specific time i in the cycle trace.

 $P_{req, max, i}$  in kW is calculated from the driving resistance coefficients  $f_0$ ,  $f_1$ ,  $f_2$  and the test mass  $m_{test}$  as follows:

$$\begin{split} P_{\text{req, max, i}} &= (f_0 * v_i + f_1 * v_i^2 + f_2 * v_i^3 + 1.1 * m_{\text{test}} * v_i * a_i)/3600 \\ \text{with } f_0 \text{ in N, } f_1 \text{ in N/(km/h)} \text{ and } f_2 \text{ in N/(km/h)}^2, \, m_{\text{test}} \text{ in kg} \end{split}$$
 The cycle time i where the maximum power is required is

- 764 s for class 1,
- 1574 s for class 2 and
- 1566 s for class 3

The corresponding vehicle speed values v<sub>i</sub> and acceleration values a<sub>i</sub> are as follows:

- $v_i = 61.4 \text{ km/h}, a_i = 0.22 \text{ m/s}^2 \text{ for class } 1$ ,
- $v_i = 109.9 \text{ km/h}$ ,  $a_i = 0.36 \text{ m/s}^2 \text{ for class 2}$ ,
- $v_i = 111.9 \text{ km/h}$ ,  $a_i = 0.50 \text{ m/s}^2 \text{ for class } 3$ ,

The driving resistance coefficients  $f_0$ ,  $f_1$  and  $f_2$  have to be determined by coastdown measurements or an equivalent method.

 $r_{max}$  is calculated using the following equation:

$$r_{\text{max}} = P_{\text{reg, max, i}} / P_{\text{rated}}$$
 Equation 14

The downscaling factor  $f_{dsc}$  is calculated using the following equation:

$$\begin{split} f_{dsc} &= 0, \text{ if } r_{max} < r_0 \\ a_1 * r_{max} + b_1, \text{ if } r_{max} >= r_0 \end{split} \qquad \text{Equation 15}$$

The calculation parameter/coefficients  $r_0$ ,  $a_1$  and  $b_1$  are as follows:.

- $r_0 = 1.053$ ,  $a_1 = 0.5403$ ,  $b_1 = -0.5385$  for class 1
- $r_0 = 1.022$ ,  $a_1 = 0.532$ ,  $b_1 = -0.5133$  for class 2
- $r_0 = 1.024$ ,  $a_1 = 0.63$ ,  $b_1 = -0.615$  for class 3.

The  $r_0$  values are chosen so that the downscaling starts with  $f_{dsc} = 3\%$ .

Vehicles with extremely low  $v_{max}$  values resulting from speed limiters rather than from engine power limitation do not require downscaling. These limiters could consist of very short gearing of the transmission in combination with an engine speed limiter or other electronic devices that limit  $v_{max}$  at a speed lower than the max. speed that would be determined by the power curve. The following equation determines the thresholds in terms of  $v_{max}$  for such vehicles.

If

$$v_{max} < a_2 * r_{max} + b_2$$
 Equation 16

no downscaling shall be applied for class 2 and class 3 vehicles.  $v_{max}$  is the maximum speed of the vehicle in km/h.

The values for the coefficients  $a_2$  and  $b_2$  are as follows:

- $a_2 = -42.24$ ,  $b_2 = 153.93$  for class 2,
- $a_2 = -62.5$ ,  $b_2 = 181.75$  for class 3.

For class 1 vehicles, no threshold could be determined.

If a vehicle is tested under different configurations in terms of test mass and driving resistance coefficients, the worst case (highest  $P_{req, max, i}$  value) has to be used for the determination of the downscaling factor and the resulting downscaled cycle shall be used for all measurements. If the maximum speed of the vehicle is lower than the maximum speed of the downscaled cycle, the vehicle shall be driven with its maximum speed in those cycle periods where the cycle speed is higher than the maximum speed of the vehicle.

If the unlikely situation occurs that the vehicle cannot follow the speed trace of the downscaled cycle within the tolerance for specific periods, it shall be driven with the accelerator pedal fully engaged during these periods.

# ANNEX 2: GEAR SELECTION AND SHIFT POINT DETERMINATION FOR VEHICLES EQUIPPED WITH MANUAL TRANSMISSIONS

# 1. General Approach

- 1.1. The shifting procedures described in this Annex shall apply to vehicles equipped with manual transmissions.
- 1.2. The prescribed gears and shifting points are based on the balance between the power required for overcoming driving resistance and acceleration, and the power provided by the engine in all possible gears at a specific cycle phase.
- 1.3. The calculation to determine the gears to use shall be based on normalised engine speeds (normalised to the span between idling speed and rated engine speed) and normalised full load power curves (normalised to rated power) versus normalised engine speed.

#### 2. Required Data

The following data is required to calculate the gears to be used when driving the cycle on a chassis dynamometer:

- (a) P<sub>rated</sub> the maximum rated engine power as declared by the manufacturer.
- (b) s, the rated engine speed at which an engine develops its maximum power. If the maximum power is developed over an engine speed range, s is determined by the mean of this range.
- (c) n<sub>idle</sub>, idling speed as defined in Annex 1 of Regulation No. 83
- (d)  $ng_{max}$ , the number of forward gears
- (e)  $n_{min\_drive}$ , minimum engine speed for gears I > 2 when the vehicle is in motipon. The minimum value is determined by the following equation:

$$n_{\min \text{ drive}} = n_{idle} + (0.125) \times (s - n_{idle}) \tag{1}$$

Higher values may be used if requested by the manufacturer.

- (f)  $ndv_i$ , the ratio obtained by dividing n in min<sup>-1</sup> by v in km/h for each gear i, i = 1 to  $ng_{max}$ .
- (g) m<sub>t</sub>, test mass of the vehicle in kg.
- (h)  $f_0$ ,  $f_1$ ,  $f_2$ , driving resistance coefficients as defined in Annex 4 in N, N/(km/h), and N/(km/h)<sup>2</sup> respectively.
- (i)  $P_{\text{wot}}(n_{\text{norm}})/P_{\text{rated}}$  is the full load power curve, normalised to rated power and (rated engine speed idling speed),  $n_{\text{norm}} = (n n_{\text{idle}})/(s n_{\text{idle}})$ .
- 3. Calculations of required power, engine speeds, available power, and possible gear to be used

#### 3.1. Calculation of required power

For every second j of the cycle trace, the power required to overcome driving resistance and to accelerate shall be calculated using the following equation:

$$P_{required,j} = (f_0 \times v_j + f_1 \times (v_j)^2 + f_2 \times (v_j)^3)/3600 + ((kr \times a_j) \times v_j \times m_t))/3600 \qquad (2)$$

where:

f<sub>0</sub> is the road load coefficient, N;

 $f_1$  is the road load parameter dependent on velocity, N/(km/h);

 $f_2$  is the road load parameter based on the square of velocity,  $N/(km/h)^2$ ;

 $P_{required,j}$  is the required power in kW at second j;  $v_i$  is the vehicle speed at second j, km/h;

 $a_i$  is the vehicle acceleration at second j, m/s²,  $a_i = (v_{i+1} - v_i)/3.6$ ;

m<sub>t</sub> is the vehicle test mass, kg;

kr is a factor taking the inertial resistances of the drivetrain during

acceleration into account and is set to 1.1.

# 3.2. Determination of engine speeds

For each  $v_j \le 1$  km/h, the engine speed is set to  $n_{idle}$  and the gear lever is placed in neutral with the clutch engaged.

For each  $v_j \ge 1$  km/h of the cycle trace and each gear i, i = 1 to  $ng_{max}$ , the engine speed  $n_{i,j}$  is calculated using the following equation:

$$n_{i,j} = ndv_i \times v_j \tag{3}$$

All gears i for which  $n_{min} \le n_{i,j} \le n_{max}$  are possible gears to be used for driving the cycle trace at  $v_i$ .

$$\begin{array}{rcl} & n_{max} & = 1.2 \times (s-n_{idle}) + n_{idle}. \\ \text{If } i > 2, & n_{min} & = n_{min\_drive}, \\ \text{If } i = 2 \text{ and } ndv_2 \times v_j \geq 0.9 \times n_{idle}, \\ & n_{min} & = max(1.15 \times n_{idle}; 0.03*(s-nidle) + nidle), \\ \text{If } ndv_2 \times v_j < max(1.15 \times n_{idle}; 0.03*(s-nidle) + nidle), \text{ the clutch shall be disengaged.} \\ \text{If } i = 1 & n_{min} & = n_{idle} \\ \text{If } ndv_1 \times v_i < n_{idle}, \text{ the clutch shall be disengaged.} \end{array}$$

## 3.3. Calculation of available power

The available power for each possible gear i and each vehicle speed value of the cycle trace  $v_j$  shall be calculated using the following equation:

$$P_{available,i,j} = P_{norm\_wot}(n\_norm_{i,j}) \times P_n \times SM$$
 (4)

where:

 $n_{norm\_i}$ ,  $j = (ndv_i \times v_j - n_{idle})/(s - n_{idle})$ ,  $P_{rated}$  is the rated power, kW;

 $P_{norm\_wot}$  is the percentage of rated power available at  $n_{norm\_i,j}$  at full load

condition from the normalised full load power curve;

SM is a safety margin accounting for the difference between stationary full load condition power curve and the power available during transient conditions. SM is set to 0.9;

n<sub>idle</sub> is the idling speed, min<sup>-1</sup>; s is the rated engine speed 3.4. Determination of possible gears to be used

The possible gears to be used are determined by the following conditions:

- (1)  $n_{min} \leq n_{i,j} \leq n_{max}$
- (2)  $P_{available,i,j} \ge P_{required,j}$

The initial gear to be used for each second j of the cycle trace is the maximum final possible gear i\_max. When starting from standstill, only the 1<sup>st</sup> gear shall be used.

4. Additional requirements for corrections and/or modifications of gear use

The initial gear selection shall be checked and modified in order to avoid too frequent gear-shifts and to ensure driveability and practicality.

Corrections and/or modifications shall be made according to the following requirements:

- (a) First gear shall be selected 1 second before beginning an acceleration phase from standstill with the clutch disengaged. Vehicle speeds below 1 km/h imply that the vehicle is standing still.
- (b) Gears shall not be skipped during acceleration phases. Gears used during accelerations and decelerations must be used for a period of at least 3 seconds.
  - E.g. a gear sequence 1, 1, 2, 2, 3, 3, 3, 3 shall be replaced by 1, 1, 1, 2, 2, 2, 3, 3, 3
- (c) Gears may be skipped during deceleration phases. For the last phases of a deceleration to a stop, the clutch may be either disengaged or the gear lever placed in neutral and the clutch left engaged.
- (d) There shall be no gearshift during transition from an acceleration phase to a deceleration phase. E.g., if  $v_j < v_{j+1} > v_{j+2}$  and the gear for the time sequence j and j+1 is i, gear i is also kept for the time j+2, even if the initial gear for j+2 would be i+1.
- (e) If a gear i is used for a time sequence of 1 to 5 s and the gear before this sequence is the same as the gear after this sequence, e.g. i-1, the gear use for this sequence shall be corrected to i-1.

Example:

- (1) a gear sequence i-1, i, i-1 is replaced by i-1, i-1, i-1
- (2) a gear sequence i-1, i, i, i-1 is replaced by i-1, i-1, i-1, i-1
- (3) a gear sequence i-1, i, i, i, i-1 is replaced by i-1, i-1, i-1, i-1, i-1
- (4) a gear sequence i-1, i, i, i, i, i-1 is replaced by i-1, i-1, i-1, i-1, i-1, i-1,
- (5) a gear sequence i-1, i, i, i, i, i, i-1 is replaced by i-1, i-1, i-1, i-1, i-1, i-1, i-1.

For all cases (1) to (5),  $g_{min} \le i$  must be fulfilled.

- (f) a gear sequence i, i-1, i, shall be replaced by i, i, i, if the following conditions are fulfilled:
  - (1) engine speed does not drop below  $n_{min}$  and
  - (2) the sequence does not occur more often than 4 times each for the low, medium and high speed cycle phases and not more than 3 times for the extra high speed phase.

Requirement (2) is necessary as the available power will drop below the required power when the gear i-1 is replaced by i. This should not occur too frequently.

(g) If during an acceleration phase a lower gear is required at a higher vehicle speed, the higher gears before shall be corrected to the lower gear, if the lower gear is required for at least 2 s.

Example:  $v_j < v_{j+1} < v_{j+2} < v_{j+3} < v_{j+4} < v_{j+5} < v_{j+6}$ . The originally calculated gear use is 2, 3, 3, 3, 2, 2, 3. In this case the gear use will be corrected to 2, 2, 2, 2, 2, 2, 3.

Since the above modifications may create new gear use sequences which are in conflict with these requirements, the gear sequences shall be checked twice.

# ANNEX 3: REFERENCE FUELS

The reference fuel specifications will be established in Phase III of the WLTP process. The rest of this Annex will remain intentionally blank until this process has been completed.

#### ANNEX 4: ROAD AND DYNAMOMETER LOAD

#### 1. Scope

This Annex describes the determination of the road load of a test vehicle and the transfer of that road load to a chassis dynamometer. Road load can be determined using coastdown or torque meter methods.

## 2. Terms and definitions

For the purpose of this document, the terms and definitions given in ISO 3833 and in B.3. of this GTR apply.

# 3. Required overall measurement accuracy

The required overall measurement accuracy shall be as follows:

- a) vehicle speed:  $\pm 0.5$  km/h or  $\pm 1$  per cent, whichever is greater;
- b) time accuracy: min.  $\pm$  1ms; time resolution: min.  $\pm$  0.01 s
- c) wheel torque:  $\pm 3$  Nm or  $\pm 0.5$  per cent, whichever is greater;
- d) wind speed:  $\pm 0.3$  m/s
- e) wind direction:  $\pm 3^{\circ}$ ;
- f) atmospheric temperature:  $\pm 1 \text{ K}$ ;
- g) atmospheric pressure:  $\pm 0.3$  kPa;
- h) vehicle mass:  $\pm 10 \text{ kg}$ ; ( $\pm 20 \text{ kg}$  for vehicles > 4000 kg)
- i) tyre pressure:  $\pm$  5 kPa;
- j) product of the aerodynamic drag coefficient and frontal projected area (S \*  $C_d$ ):  $\pm 2$  per cent;
- k) chassis dynamometer roller speed:  $\pm$  0.5 km/h or  $\pm$  1 per cent, whichever is greater:
- l) chassis dynamometer force:  $\pm$  10 N or  $\pm$  0.1 per cent of full scale, whichever is greater.

#### 4. Road load measurement on road

## 4.1. Requirements for road test

## 4.1.1. Atmospheric conditions for road test

#### 4.1.1.1. Wind

The average wind speed over the test road shall not exceed 10 m/s. Wind gusts shall not exceed 14 m/s. The wind correction shall be conducted according to the applicable type of anemometry specified in Table 1. In order to decide the applicability of each anemometry type, the average wind speed shall be determined by continuous wind speed measurement, using a recognised meteorological instrument, at a location and height above the road level alongside the test road where the most representative wind conditions will be experienced. Wind correction may be waived when the average wind speed is 3 m/s or less.

| Type of                                                           | Average wind speed, m/s       |                             |                |  |  |
|-------------------------------------------------------------------|-------------------------------|-----------------------------|----------------|--|--|
| anemometry                                                        | Absolute wind speed $v \le 5$ |                             | Absolute wind  |  |  |
|                                                                   | Crosswind Crosswind           |                             | speed          |  |  |
|                                                                   | component                     | component (v <sub>c</sub> ) | $5 < v \le 10$ |  |  |
|                                                                   | $(v_c)$                       | $3 < v_c \le 5$             |                |  |  |
|                                                                   | $v_c \le 3$                   |                             |                |  |  |
| Stationary ane-                                                   | Applicable                    | Not applicable              | Not applicable |  |  |
| mometry                                                           |                               |                             |                |  |  |
| Onboard anemome-                                                  | Applicable                    | Applicable                  | Applicable     |  |  |
| try                                                               |                               |                             |                |  |  |
| NOTE: Stationary anomamotry is recommended when the absolute wind |                               |                             |                |  |  |

NOTE: Stationary anemometry is recommended when the absolute wind speed is less than 1 m/s.

Table 1 — Applicable anemometry depending on average wind speed and cross-wind component

## 4.1.1.2. Atmospheric temperature

The atmospheric temperature should be within the range of 278 up to and including 308 K. At its option, a manufacturer may choose to perform coastdowns between [274] and [278] K.

#### 4.1.2. Test road

The road surface shall be flat, clean, dry and free of obstacles or wind barriers that might impede the measurement of the running resistance, and its texture and composition shall be representative of current urban and highway road surfaces. The test-road longitudinal slope shall not exceed  $\pm$  1 per cent. The local slope between any points 3 m apart shall not deviate more than  $\pm$  0.5 per cent from this longitudinal slope. If tests in opposite directions cannot be performed at the same part of the test track (e.g. on an oval test track with an obligatory driving direction), the sum of the longitudinal slopes of the parallel test track segments shall be between 0 and an upward slope of 0.1 per cent. The maximum cross-sectional camber of the test road shall be 1.5 per cent.

# 4.2. Preparation for road test

## 4.2.1. Test vehicle

[The test vehicle shall conform in all its components with the production series, or, if the vehicle is different from the production series, a full description shall be given in the test report.]

# NOTE: The following section (§4.2.1.1.) is under development

#### [4.2.1.1. Test vehicle selection]

- 4.2.1.1.1. The vehicle selected for road load determination for which approval is sought shall be fitted with the worst case combination of permanently installed factory options leading to the highest vehicle air resistance. Permanently installed factory options are those which would be expected to be used under normal driving conditions.
- 4.2.1.1.1. The vehicle selected for road load determination shall be fitted with the worst case combination of permanently installed factory options, i.e. having the highest air resistance of the vehicle family Options that are intended to increase the carrying capacity and/or use the towing capacity of the vehicle must not be fitted if they are not permanently installed during

normal driving conditions. The options excluded from the road load determination shall be listed in the test report.

- 4.2.1.1.3. Moveable aerodynamic body parts shall be fixed in the most unfavourable position for the duration of the road load test unless it is obvious that the favourable position is representative for normal driving conditions.
- 4.2.1.1.3. Moveable aerodynamic body parts shall be operated as representative under normal driving conditions.
- 4.2.1.1.3. Moveable aerodynamic body parts shall operate as intended under normal driving conditions.

("normal driving conditions" means: a vehicle with TMH driven through a WLTC cycle at temperatures between [274 and 308] K

- 4.2.1.1.4. For the selected tyre, the wheel with the highest expected air drag shall be used.
- 4.2.1.1.5. Before and after the road load determination procedure, the selected vehicle shall be weighed, including the test driver and equipment, to determine the average weight m (see §4.3.1.4.4). The minimum weight of the vehicle shall be equal to or higher than the target test mass (TMH or TML, calculated according to §4.2.1.1.5.1 and §4.2.1.1.7.5.1) at the beginning of the road load determination procedure. For all further calculations, the average weight m shall be used.
- 4.2.1.1.5. Before and after the road load determination procedure, the selected vehicle shall be weighed, including the test driver and equipment, to determine the average mass m (see \$4.3.1.4.4). The minimum mass of the vehicle shall be equal to or higher than the target test mass (TM<sub>H</sub> or TM<sub>L</sub>, calculated according to \$4.2.1.1.5.1 and \$4.2.1.1.7.5.1) at the start of the road load determination procedure.

For the calculation of the  $CO_2$  emissions at additional test masses regression in Annex 7, the actual test masses  $TM_{H,\ actual}$  and  $TM_{L,\ actual}$  will be applied, i.e. the average mass m for the respective test masses.

- 4.2.1.1.5.1.  $TM_H$  shall be calculated by adding (a) the unladen mass of the vehicle family UM, (b) the mass of all optional equipment available for the vehicle family  $OM_H$ , (c) 100 kilograms and (d) a variable mass. The mass in (d) shall be [15] per cent of the difference between the maximum laden mass LM and the sum of (a), (b) and (c) for category 1-1 and 1-2 vehicles. The mass in (d) shall be [28] per cent of the difference between the maximum laden mass LM and the sum of (a), (b) and (c) for category 2 vehicles.
- 4.2.1.1.6. The test vehicle configuration shall be recorded in the approval test report and shall be used for any subsequent testing.
- 4.2.1.1.7. At the request of the manufacturer, the vehicle may be tested again at a test mass  $TM_L$  [and at different road load settings ( $RL_{HH}$ ,  $RL_{HL}$  and  $RL_{LH}$ )] to determine the  $CO_2$  emission value for individual vehicles in the vehicle family according to the  $CO_2$  regression method in §3.2.3. Annex 7. These additional tests are allowed if  $OM_H$  for the vehicle family is 100 kg or higher. If OMH is lower than 100 kg, additional testing is allowed if  $OM_H$  is set to 100 kg. The vehicle shall fulfil the following criteria:
- 4.2.1.1.7.1. The vehicle shall have none of the available factory options for production vehicles installed which negatively influence air resistance.

- 4.2.1.1.7.2. Options that are designed to positively influence air resistance shall be installed.
- 4.2.1.1.7.3. Moveable aerodynamic body parts shall be fixed in their most favourable position for the duration of the road load test unless it is obvious that the favourable position is representative for normal driving conditions.
- 4.2.1.1.7.3. Moveable aerodynamic body parts shall be operated as representative under normal driving conditions.
- 4.2.1.1.7.3. Moveable aerodynamic body parts shall operate as intended under normal driving conditions.
- 4.2.1.1.7.4. For the selected tyre, the wheel with the expected lowest air drag shall be used.
- 4.2.1.1.7.5. The minimum weight of the selected vehicle including the test driver and equipment shall be equal to or higher than the  $TM_L$  as calculated according to §4.2.1.1.7.5.1. at the start of the road load determination procedure.
- 4.2.1.1.7.5.1.  $TM_L$  shall be calculated by adding (a) the unladen mass of an empty vehicle including its standard equipment, (b) 100 kilograms representing the mass of the driver, some luggage and non-OEM optional equipment and (c) a variable mass based on the heaviest vehicle.
- 4.2.1.1.7.5.1. TM<sub>L</sub> shall be calculated by subtracting the mass of all optional equipment available for the vehicle family OM<sub>H</sub> from TM<sub>H</sub>.
- 4.2.1.1.7.6. The test vehicle configuration shall be recorded in the approval test report and shall be used for any subsequent testing.

## NOTE: The following section (§4.2.1.2.) is under development

# [4.2.1.2. Test vehicle condition]

- 4.2.1.2.1. The test vehicle shall be suitably run-in for the purpose of the subsequent test for at least 10,000 but no more than 80,000 km.
- 4.2.1.2.1.1. At the request of the manufacturer, a vehicle with a minimum of 3,000 km may be used.
- 4.2.1.2.2. The vehicle shall conform to the manufacturer's intended production vehicle specifications regarding tyre pressures (§4.2.2.3.), wheel alignment, vehicle height, drivetrain and wheel bearing lubricants, and brake adjustment to avoid unrepresentative parasitic drag.
- 4.2.1.2.3. If an alignment parameter is adjustable (tracking, camber, caster), it shall be set to the nominal value for the manufacturer's intended production vehicle. In absence of a nominal value, it shall be set to the mean of the values recommended by the manufacturer. Such adjustable parameter(s) and set value shall be recorded in the test report.
- 4.2.1.2.4. During the road test, the engine bonnet, manually-operated moveable panels and all windows shall be closed.
- 4.2.1.2.5. If the determination of dynamometer settings cannot meet the criteria described in paragraphs 7.1.3. or 7.2.3. due to non-reproducible forces, the vehicle shall be equipped with a vehicle coastdown mode. The coastdown mode shall be approved and recorded by the responsible authority.

4.2.1.2.6. If a vehicle is equipped with a vehicle coastdown mode, it shall be engaged both during road load determination and on the chassis dynamometer.

# [4.2.2. Tyres]

# NOTE: Section §4.2.2. is under development

# 4.2.2.1. Tyre selection

The selection of tyres shall be based on their rolling resistances as measured using the appropriate technical procedure of the contracting party and categorised according to the rolling resistance classes in the table below. From the range of tyres that will be offered on the production vehicle, a tyre shall be selected from the highest rolling resistance class. If multiple tyre types are offered in the highest rolling resistance class, the widest tyre shall be selected. The same tyre type will be used for road load determination at test masses  $TM_L$  and  $TM_H$ .

| Class | Rolling Resistance (RR) - kg/tonne |  |  |
|-------|------------------------------------|--|--|
| 1     | $RR \le 6.5$                       |  |  |
| 2     | $6.5 < RR \le 7.7$                 |  |  |
| 3     | $7.7 < RR \le 9.0$                 |  |  |
| 4     | $9.0 < RR \le 10.5$                |  |  |
| 5     | $10.5 < RR \le 12.0$               |  |  |
| 6     | RR > 12.0                          |  |  |

## 4.2.2.2. Tyre condition

The tyres used for the test shall:

- (a) not be older than 2 years after production date.
- (b) not be specially conditioned or treated (e.g. heated or artificially aged), with the exception of grinding in the original shape of the tread,
- (c) shall be run-in on a road for at least 200 kilometers before road load determination,
- (d) shall have a constant tread depth before the test between 100 and 80 per cent of the original tread depth over the full tread width of the tyre,
- (e) after measurement of the tread depth, driving distance shall be limited to 500 kilometers. If 500 kilometers are exceeded, the tread depth shall be remeasured.

#### 4.2.2.3. Tyre pressure

The front and rear tyres shall be inflated to the lower limit of the tyre pressure range for the selected tyre, as specified by the vehicle manufacturer.

#### 4.2.2.3.1. Tyre-pressure adjustment

If the difference between ambient and soak temperature is more than 5 K, the tyre pressure shall be adjusted as follows:

- (a) the tyres shall be soaked for more than 4 h at 10 per cent above the target pressure.
- (b) prior to testing, the tyre pressure shall be reduced to the inflation pressure as specified in 4.2.2.3., adjusted for difference between the soaking environment temperature and the ambient test temperature at a rate of 0.8 kPa per 1 K using the following equation:

$$\Delta P_t = 0.8 \text{ x } (T_{\text{soak}} - T_{\text{amb}})$$

where:

 $\Delta P_t$  is the tyre pressure adjustment, kPa,

0.8 is the pressure adjustment factor, kPa/K,

 $T_{soak}$  is the tyre soaking temperature, K,

T<sub>amb</sub> is the test ambient temperature, K.

(c) between the pressure adjustment and the vehicle warm-up the tires will be kept at ambient temperature and shielded from external heat sources including sun radiation.

#### 4.2.3. Instrumentation

Any instruments, especially for those installed outside the vehicle, shall be installed on the vehicle in such a manner as to minimise effects on the aerodynamic characteristics of the vehicle.

# 4.2.4. Vehicle warm-up

#### [4.2.4.1. On the road

#### 4.2.4.1.1. Cold vehicle

The vehicle shall be driven at a steady speed (if possible) of 120 km/h until stable condition are reached. Vehicles that are speed limited to below 120 km/h shall be driven at [90 %] of their respective  $v_{max}$ . It is recommended to warm up the vehicle for at least 20 min.

## 4.2.4.1.2. Warmed-up vehicle

The vehicle shall be driven at 90 % of its  $v_{max}$  until stable conditions are reached. If the manufacturer develops a different warm-up cycle/procedure and equivalency can be shown, the responsible authority shall be notified.]

## 4.2.4.1.3. Criteria for stable condition

These measurements shall be carried out in both directions until a minimum of three consecutive pairs of figures have been obtained which satisfy the statistical accuracy p, in per cent, using the equation in §4.3.1.4.2. of this Annex.

- 4.2.5. Before warm-up, the vehicle shall be decelerated with the clutch disengaged by moderate braking from 80 to 20 km/h within 5 to 10 seconds. After this braking, there shall be no further manual adjustment of the braking system.
- 4.3. Measurement and calculation of total resistance by the coastdown method The total resistance shall be determined by using the multi-segment (§4.3.1.) or on-board anemometer (§4.3.2.) method.

#### 4.3.1. Multi-segment method

# 4.3.1.1. Selection of speed points for road load curve determination

In order to obtain a road load curve as a function of vehicle speed, a minimum of six speed points,  $v_j$  (j = 1, 2, etc.) shall be selected. The highest speed point shall not be lower than the highest reference speed, and the lowest speed point shall not be higher than the lowest reference speed. The interval between each speed point shall not be greater than 20 km/h.

#### 4.3.1.2. Data collection

During the test, elapsed time and vehicle speed shall be measured and recorded at a maximum of 0.2 s intervals, and wind speed and wind direction shall be measured by stationary anemometry at a maximum of 1.0 s intervals.

## 4.3.1.3. Vehicle coastdown procedure

- [4.3.1.3.1 Following warming up, and immediately prior to each test measurement, the vehicle shall be driven at the highest reference speed for no more than 1 min, if necessary. The vehicle shall be accelerated to at least 5 km/h above the speed at which the coastdown time measurement begins  $(V_i + \Delta V)$  and the coastdown shall begin immediately.
- 4.3.1.3.1 Following the vehicle warm-up procedure (4.2.4.), and immediately prior to each test measurement, the vehicle maybe driven at the highest reference speed up to a maximum of 1 minute. The vehicle shall be accelerated to at least 5 km/h above the speed at which the coastdown time measurement begins  $(v_i + \Delta v)$  and the coastdown shall begin immediately.]
- 4.3.1.3.2. During coastdown, the transmission shall be in neutral, and the engine shall run at idle. For vehicles with manual transmissions, the clutch shall be engaged. Steering wheel movement shall be avoided as much as possible, and the vehicle brakes shall not be operated until the end of the coastdown.
- 4.3.1.3.3. The test shall be repeated. Coastdowns shall be performed at the same speeds and under the same conditions.
- 4.3.1.3.4. Although it is recommended that each coastdown run be performed without interruption, split runs are permitted if data cannot be collected in a continuous way for the entire speed range. For split runs, care shall be taken so that vehicle conditions remain as stable as possible at each split point.
- 4.3.1.4. Determination of total resistance by coastdown time measurement
- 4.3.1.4.1. The coastdown time corresponding to the velocity  $v_i$  as the elapsed time from the vehicle velocity  $(v_i + \Delta v)$  to  $(v_i - \Delta v)$  shall be measured. It is recommended that  $[\Delta v = 5 \text{ km/h}]$ with the option of  $\Delta v = 10$  km/h when the vehicle velocity is more than 60 km/h, and 5 km/h when the vehicle velocity is 60 km/h or less.
- 4.3.1.4.2. These measurements shall be carried out in both directions until a minimum of three consecutive pairs of figures have been obtained which satisfy the statistical accuracy p, in per cent, defined below.

$$p = \frac{t*s}{\sqrt{n}} * \frac{100}{\Delta T_j} \le 3 \text{ per cent}$$

where:

is the statistical accuracy; p

is the number of pairs of measurements;

is the mean coastdown time at velocity  $v_j$ , in seconds, given by the equation:  $\Delta T_j = \frac{1}{n} \sum_{i=1}^n \Delta T_{ji}$  $\Delta T_i$ 

$$\Delta T_{j} = \frac{1}{n} \sum_{i=1}^{n} \Delta T_{ji}$$

 $\Delta T_{ji}$  is the harmonised average coastdown time of the i<sup>th</sup> pair of measurements at velocity  $v_i$ , in seconds, given by the equation:

$$\Delta T_{ji} = \frac{2}{\left(\frac{1}{\Delta T_{iai}}\right) + \left(\frac{1}{\Delta T_{ibi}}\right)}$$

 $\Delta T_{jai}$  and  $\Delta T_{jbi}$  are the coastdown times of the  $i^{th}$  measurement at speed  $V_j$  in each direction, respectively, s;

 $\sigma$  is standard deviation, s, defined by:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\Delta T_{ji} - \Delta T_{j})^{2}}$$

t is a coefficient given in Table 2 below.

| t   | n | t/√n | t   | n  | $t/\sqrt{n}$ |
|-----|---|------|-----|----|--------------|
| 4.3 | 3 | 2.48 | 2.2 | 10 | 0.73         |
| 3.2 | 4 | 1.60 | 2.2 | 11 | 0.66         |
| 2.8 | 5 | 1.25 | 2.2 | 12 | 0.64         |
| 2.6 | 6 | 1.06 | 2.2 | 13 | 0.61         |
| 2.5 | 7 | 0.94 | 2.2 | 14 | 0.59         |
| 2.4 | 8 | 0.85 | 2.2 | 15 | 0.57         |
| 2.3 | 9 | 0.77 |     |    |              |

Table 2

[4.3.1.4.3. If during a measurement in one direction any (a) external factor or (b) driver action occurs which influences the road load test, that measurement and the paired measurement in the opposite direction shall be rejected.]

4.3.1.4.4. The total resistances,  $F_{ja}$  and  $F_{jb}$  at velocity  $v_j$  in directions a and b, in newtons, are determined by the equations:

$$F_{ja} = -\frac{1}{3.6} \times (m + m_r) \times \frac{2 \times \Delta v}{\Delta t_{ja}}$$

$$F_{jb} = -\frac{1}{3.6} \times (m + m_r) \times \frac{2 \times \Delta v}{\Delta t_{ib}}$$

where:

Fig is the total resistance at velocity (j) in direction a, N;

Fib is the total resistance at velocity (j) in direction b, N;

m is the average of the test vehicle masses at the beginning and end of road load determination, kg;

 $[m_r]$  is the equivalent effective mass of all the wheels and vehicle components rotating with the wheels during coastdown on theroad, in kilograms (kg);  $m_r$  shall be measured or calculated using an appropriate technique. Alternatively,  $m_r$  may be estimated to be 3 per cent of the unladen vehicle mass (UM) for the vehicle family];

 $\Delta t_{ia}$  and  $\Delta t_{ib}$  are the mean coastdown times in directions a and b, respectively,

corresponding to velocity  $v_i$ , in seconds (s), given by the equations:

$$\Delta t_{ja} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{jai}$$

$$\Delta t_{jb} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{jbi}$$

## 4.3.1.4.5. The total resistance curve shall be determined as follows.

The following regression curve shall be fit to the data sets  $(v_j, F_{ja})$  and  $(v_j, F_{jb})$  corresponding to all the speed points  $v_i$  (j = 1, 2, etc.) and direction (a, b) to determine  $f_0$ ,  $f_1$  and  $f_2$ :

$$F_a = f_{0a} + f_{1a}v + f_{2a}v^2$$

$$F_b = f_{0b} + f_{1b}v + f_{2b}v^2$$

where:

 $F_a$  and  $F_b$  are the total resistances in each direction, N;

 $f_{0a}$  and  $f_{0b}$  are constant terms in each direction, N;

 $f_{1a}$  and  $f_{1b}$  are the first-order term coefficients of the vehicle speed in each

direction, N·h/km;

 $f_{2a}$  and  $f_{2b}$  are the second-order term coefficients of the vehicle speed in each

direction,  $N \cdot (h/km)^2$ ;

v is vehicle velocity, km/h.

The average total resistance  $F_{avg}$  shall be calculated by:

$$F_{\text{avg}} = f_0 + f_1 v + f_2 v^2$$

where the coefficients  $f_0$ ,  $f_1$  and  $f_2$  shall be calculated using the following equations:

$$f_0 = \frac{f_{0a} + f_{0b}}{2}$$

$$f_1 = \frac{f_{1a} + f_{1b}}{2}$$

$$f_2 = \frac{f_{2a} + f_{2b}}{2}$$

where:

 $f_0$ ,  $f_1$  and  $f_2$  are the average coefficients.

4.3.1.4.5.1. As an alternative to the above calculation, the following equation may be applied to compute the average total resistance, where the harmonised average of the alternate coastdown time shall be used instead of the average of alternate total resistance.

$$F_j = -\frac{1}{3.6} \times (m + m_r) \times \frac{2 \times \Delta v}{\Delta T_j}$$

where:

 $\Delta t_j$  is the harmonised average of alternate coastdown time measurements at velocity  $v_i$ , in seconds (s), given by the equation:

$$\Delta t_{j} = \frac{2}{\frac{1}{\Delta t_{ja}} + \frac{1}{\Delta t_{jb}}}$$

where:

 $\Delta t_{ja}$  and  $\Delta t_{jb}$  are the coastdown times at velocity  $v_j$  in each direction, respectively, in seconds (s).

The coefficients  $f_0$ ,  $f_1$  and  $f_2$  in the total resistance equation shall be calculated with regression analysis.

4.3.2. On-board anemometer-based coastdown method

This method is applicable to a wind speed range up to 10 m/s on a test road as given in Table 1 of this Annex.

4.3.2.1. Selection of speed range for road load curve determination

The test speed range as specified in 4.3.1.1. shall be selected.

#### 4.3.2.2. Data collection

The following data shall be measured and recorded at a maximum of 0.2 s intervals during the test.

- a) elapsed time;
- b) vehicle speed (measured by on-board anemometry);
- c) wind speed and direction (measured by on-board anemometry).

# 4.4.3. Vehicle coastdown procedure

Vehicle coastdown shall be conducted as specified in 4.3.1.3.1. to 4.3.1.3.4. with an onboard anemometer installed on the vehicle. The anemometer shall be installed in a position such that the effect on the operating characteristics of the vehicle is minimised. It is recommended to install the anemometer at the vehicle's forward aerodynamic stagnation point and approximately 2 m in front of it. Before the coastdown, the anemometer shall be installed on the vehicle and calibrated as specified by the manufacturer.

4.3.2.4. Determination of coefficients a<sub>mech</sub>, b<sub>mech</sub> and c<sub>mech</sub>

Each coefficient shall be calculated by the following equation with multi-regression analysis, using coastdown time and wind data.

$$-\frac{1}{3.6} \times (m + m_r) \times \frac{dv}{dt} = a_{mech} + b_{mech}v + c_{mech}v^2 + \frac{1}{2} \times \rho s v_r^2 \times (a_0 + a_1\theta + a_2\theta^2 + a_3\theta^3 + a_4\theta^4)$$

where:

m is the test vehicle mass, kg;

m<sub>r</sub> is the equivalent effective mass of all the wheels and vehicle components rotating with the wheels during coastdown on the road,kg; m<sub>r</sub> should be measured or calculated using an appropriate technique; as an alternative, m<sub>r</sub> may be estimated to be 3per cent of the unladen vehicle mass;

dv/dt is acceleration, (km/h)/s;

a<sub>mech</sub> is a first order coefficient of mechanical drag, N;

b<sub>mech</sub> is a second order coefficient of mechanical drag, N/(km/h); c<sub>mech</sub> is a third order coefficient of mechanical drag, N/(km/h)<sup>2</sup>;

v is vehicle velocity, km/h;

v<sub>r</sub> is relative wind velocity, km/h;

 $\rho$  is air density, kg/m<sup>3</sup>;

S is the projected frontal area of the vehicle, m<sup>2</sup>;

 $a_{i\ (i=0\ to\ 4)}$  are the aerodynamic drag coefficients as a function of yaw angle, degrees<sup>-n</sup>;

 $\theta$  is the yaw-angle apparent wind relative to the direction of vehicle travel, degrees.

If the wind velocity is close to 0 km/h, the equation theoretically cannot separate  $c_{mech}$  and (1/2) x  $a_0 \rho$  S appropriately. Therefore, a constrained analysis, where  $a_0$  is fixed if it is previously determined, for example in a wind tunnel, or  $c_{mech}$  is assumed to be zero, may be employed.

4.3.2.5. Determination of total resistance using coastdown measurements The total resistance, F, shall be calculated where all the wind effects are eliminated, by the following equation with the coefficients obtained in 4.4.4.

$$F = a_{mech} + b_{mech}v + \left(c_{mech} + \frac{1}{2} \times a_{\theta}\rho S\right) \times v^2$$

4.4. Measurement of running resistance by the torque meter method As an alternative to the coastdown methods, the torque meter method may also be used.

#### 4.4.1. Installation of torque meter

A wheel torque meter shall be installed on each driven wheel.

## 4.4.2. Procedure and data sampling

#### 4.4.2.1. Start of data collection

Data collection may be started following warm-up and stabilisation of the vehicle at the velocity  $v_i$ , where the running resistance is to be measured.

#### 4.4.2.2. Data collection

At least 10 data sets of velocity, torque and time over a period of at least 5 s shall be recorded.

## 4.4.2.3. Velocity deviation

The deviation from the mean velocity shall be within the values in Table 3.

Table 3

| Time period, | Velocity deviation, |  |
|--------------|---------------------|--|
| seconds      | km/h                |  |
| 5            | ± 0.2               |  |
| 10           | ± 0.4               |  |
| 15           | ± 0.6               |  |
| 20           | ± 0.8               |  |
| 25           | ± 1.0               |  |
| 30           | ± 1.2               |  |

## 4.4.3. Calculation of mean velocity and mean torque

## 4.4.3.1. Calculation process

Mean velocity  $v_{jm}$ ,(km/h) and mean torque  $C_{jm}$ , (N·m) over a time period, shall be calculated as follows:

$$v_{jm} = \frac{1}{k} \sum_{i=1}^{k} v_{ji}$$

and

$$C_{jm} = \frac{1}{k} \sum_{i=1}^k C_{ji} - C_{js}$$

where:

v<sub>ii</sub> is vehicle velocity of the i<sup>th</sup> data set, km/h;

k is the number of data sets;

C<sub>ii</sub> is torque of the i<sup>th</sup> data set, Nm;

C<sub>is</sub> is the compensation term for velocity drift, Nm, given by the following equation:

$$C_{is} = (m + m_r) * \alpha_i r_i$$

( $C_{js}$  shall be no greater than 5 per cent of the mean torque before compensation, and may be neglected if  $\alpha_j$  is no greater than  $\pm~0.005~m/s^2$ ) where:

m and  $m_r$  are the test vehicle mass and the equivalent effective mass, respectively, kg,

defined in 4.3.1.4.4;

r<sub>i</sub> is the dynamic radius of the tyre, m, given by equation:

$$r_{j} = \frac{1}{3.6} \times \frac{v_{jm}}{2 \times \pi N}$$

where:

N is the rotational frequency of the driven tyre, s<sup>-1</sup>

 $\alpha_i$  is the mean acceleration, m/s<sup>2</sup> which shall be calculated by the equation:

$$\alpha_{j} = \frac{1}{3.6} \times \frac{k \sum_{i=1}^{k} t_{i} v_{ji} - \sum_{i=1}^{k} t_{i} \sum_{i=1}^{k} v_{ji}}{k \sum_{i=1}^{k} t_{i}^{2} - (\sum_{i=1}^{k} t_{i})^{2}}$$

 $t_i$  is the time at which the i<sup>th</sup> data set was sampled, s.

## 4.4.3.2. Accuracy of measurement

These measurements shall be carried out in both directions until a minimum of four consecutive figures have been obtained which satisfy accuracy p, in per cent, below. The validity of the data shall be decided in accordance with 4.3.1.4.2.

$$\rho = \frac{ts}{\sqrt{k}} \times \frac{100}{\overline{C_1}} \le 3 \text{ per cent}$$

where:

k is the number of data sets;

 $C_i$  is the running resistance at the velocity  $v_i$ , Nm, given by the equation:

$$\overline{C}_{j} = \frac{1}{k} \sum_{i=1}^{k} C_{jmi}$$

where:

 $C_{jmi}$  is the average torque of the  $i^{th}$  pair of data sets at velocity  $v_j$ , Nm, given by the equation:

$$C_{jmi} = \frac{1}{2} \times \left( C_{jmai} + C_{jmbi} \right)$$

where

 $C_{jmai}$  and  $C_{jmbi}$  are the mean torques of the  $i^{th}$  data sets at velocity  $v_j$  determined in 4.5.3.1 for each direction, a and b respectively, Nm

s is the standard deviation, Nm, defined by the equation:

$$s = \sqrt{\frac{1}{k-1} \sum_{i=1}^k (C_{jmi} - \overline{C}_j)^2}$$

t is the coefficient given by replacing n in Table 2 with k.

## 4.4.3.3. Validity of the measured average velocity

The average velocity  $v_{jmi}$ , shall not deviate by more than  $\pm 2$  km/h from its mean,  $\overline{\boldsymbol{v}_j}$ ·  $v_{jmi}$  and  $\overline{\boldsymbol{v}_l}$ · shall be calculated as follows:

$$\overline{v_j} = \frac{1}{k} \sum_{i=1}^k v_{jmi}$$

$$v_{jmi} = \frac{1}{2} \times (v_{jmai} + v_{jmbi})$$

where

 $v_{jmai}$  and  $v_{jmbi}$  are the mean speeds of the i<sup>th</sup> pair of data sets at velocity  $v_{j}$  determined in 4.4.3.1 for each direction, a and b respectively, km/h.

# 4.4.4. Running resistance curve determination

The following regression curve shall be fitted to all the data pairs  $(v_{jm}, C_{jma})$  and  $(v_{jm}, C_{jmb})$  for both directions a and b at all speed points  $v_j$  (j = 1, 2, etc.) described in 4.3.1.1. to determine  $c_{0a}$ ,  $c_{0b}$ ,  $c_{1a}$ ,  $c_{1b}$ ,  $c_{2a}$  and  $c_{2b}$ :

$$C_a = c_{0a} + c_{1a}v + c_{2a}v^2$$

$$C_b = c_{0b} + c_{1b}v + c_{2b}v^2$$

where:

 $C_a$  and  $C_b$  are the running resistances in each direction, Nm;

 $c_{0a}$  and  $c_{0b}$  are constant terms in each direction, Nm;

 $c_{1a}$  are  $c_{1b}$  are the coefficients of the first-order term in each

direction, Nm(h/km);  $c_1$  may be assumed to be zero, if the value of  $c_1V$  is no

greater than 3 per cent of C at the reference speed(s); in this case, the

coefficients  $c_0$  and  $c_2$  shall be recalculated;

 $c_{2a}$  and  $c_{2b}$  are the coefficients of the second-order term in each direction, Nm(h/km)<sup>2</sup>;

v is vehicle velocity, km/h.

The average total torque equation is calculated by the following equation:

$$C_{avg} = c_0 + c_1 v + c_2 v^2$$

where the average coefficients  $c_0$ ,  $c_1$  and  $c_2$  shall be calculated using the following equations:

$$c_0 = \frac{c_{0a} + c_{0b}}{2}$$
  $c_1 = \frac{c_{1a} + c_{1b}}{2}$   $c_2 = \frac{c_{2a} + c_{2b}}{2}$ 

## 4.5. Correction to reference conditions

#### 4.5.1. Determination of correction factor for air resistance

The correction factor for air resistance K<sub>2</sub> shall be determined as follows:

$$K_2 = \frac{T}{293} \times \frac{100}{\rho}$$

where:

T is the mean atmospheric temperature, K;

ρ is the mean atmospheric pressure, kPa.

## 4.5.2. Determination of correction factor for rolling resistance

The correction factor,  $K_0$ , for rolling resistance, in reciprocal Kelvins, may be determined based on empirical data for the particular vehicle and tyre test, or may be assumed as follows:

$$K_0 = 8.6 \times 10^{-3} \times K^{-1}$$

## 4.5.3. Wind correction

- 4.5.3.1. Wind correction, for absolute wind speed alongside the test road, shall be made by subtracting the difference that cannot be cancelled by alternate runs from the constant term  $f_0$  given in 4.3.1.4.5, or from  $c_0$  given in 4.4.4.
- 4.5.3.2. The wind correction shall not apply in the on-board-anemometer-based coastdown method ( $\S4.3.2$ .) as the wind correction is made during the series of data sampling and subsequent analysis. The wind correction resistance  $w_1$  for the coastdown method or  $w_2$  for the torque meter method shall be calculated by the equations:

$$w_1 = 3.6^2 \text{ x } f_2 v_w^2$$
 or  $w_2 = 3.6^2 \text{ x } c_2 v_w^2$ 

where:

w<sub>1</sub> is the wind correction resistance, N;

is the coefficient of the aerodynamic term determined in  $\S 4.3.1.4.5$ ;

v<sub>w</sub> is the average wind speed alongside the test road during the test, m/s;

w<sub>2</sub> is the wind correction resistance, N;

c is the coefficient of the aerodynamic term determined in §4.4.4.

#### 4.5.4. Road load curve correction

4.5.4.1. The curve determined in 4.3.1.4.5. shall be corrected to reference conditions as follows:

$$F^* = ((f_0 - w_1) + f_1 v) \times (1 + K_0 (T - 293)) + K_2 f_2 v^2$$

where:

F\* is the corrected total resistance, N;

 $f_0$  is the constant term, N;

 $f_1$  is the coefficient of the first-order term, N·(h/km);

is the coefficient of the second-order term,  $N \cdot (h/km)^2$ ;

 $K_0$  is the correction factor for rolling resistance as defined in §4.5.2.;

 $K_2$  is the correction factor for air resistance as defined in §4.5.1.;

v is vehicle velocity, km/h;

 $w_1$  is the wind correction resistance as defined in §4.5.3.

4.5.4.2. The curve determined in 4.3.2.5. shall be corrected to reference conditions as follows:

$$F^* = (a_{\text{mech}} + b_{\text{mech}}v + c_{\text{mech}}v^2) \times (1 + K_0(T - 293)) + \frac{1}{2} \times K_2 a_0 \rho S v^2$$

where:

F\* is the corrected total resistance, N;

a<sub>mech</sub> is the coefficient of mechanical drag, N;

b<sub>mech</sub> is the coefficient of mechanical drag, N/(km/h);

c<sub>mech</sub> is the coefficient of mechanical drag, N/(km/h)<sup>2</sup>;

 $\rho$  is air density, kg/m<sup>3</sup>;

S is the projected frontal area of the vehicle, m<sup>2</sup>;

a<sub>0</sub> is the coefficient for aerodynamic drag, as a function of yaw angle;

 $K_0$  is the correction factor for rolling resistance as defined in §4.5.2.;

 $K_2$  is the correction factor for air resistance as defined in §4.6.1.1.;

v is vehicle velocity, km/h.

4.5.4.3. The curve determined in 4.4.4. shall be corrected to reference conditions as follows:

$$C^* = ((c_0 - w_1) + c_1 v) \times (1 + K_0 (T - 293)) + K_2 c_2 \rho v^2$$

where:

C\* is the corrected total running resistance, Nm;

 $c_0$  is the constant term, Nm;

is the coefficient of the first-order term, Nm (h/km);

is the coefficient of the second-order term,  $Nm \cdot (h/km)^2$ ;

 $K_0$  is the correction factor for rolling resistance as defined in §4.5.2.;

K<sub>2</sub> is the correction factor for air resistance as defined in §4.5.1.;

v is vehicle velocity, km/h;

w<sub>2</sub> is the wind correction resistance as defined in §4.5.3..

- 5. [Road load measurement using a combination of a wind tunnel and chassis dynamometer]
- 6. Transferring road load to a chassis dynamometer
- 6.1. Preparation for chassis dynamometer test
- 6.1.1. Laboratory condition

#### 6.1.1.1. Roller

The chassis dynamometer roller(s) shall be clean, dry and free from foreign material which might cause tyre slippage. For chassis dynamometers with multiple rollers, the dynamometer shall be run in the same coupled or uncoupled state as the subsequent Type I test. Chassis dynamometer speed shall be measured from the roller coupled to the power-absorption unit.

## 6.1.1.2. Room temperature

The laboratory atmospheric temperature shall be at a set point of  $296 \pm 5$  K as the standard condition, unless otherwise required by the subsequent test.

## 6.2. Preparation of chassis dynamometer

# 6.2.1. Inertia mass setting

The equivalent inertia mass of the chassis dynamometer shall be set in accordance with the vehicle mass or vehicle mass category.

#### 6.2.1. Inertia mass setting

The inertia mass of the chassis dynamometer shall be set to the actual test mass used at the corresponding road load determination, increased by 50% of  $m_r$  in case the non-driven wheels are not driven by the chassis dynamometer. If the chassis dynamometer is not capable to meet this setting, the next higher inertia setting shall be applied.

# 6.2.2. Warming up the chassis dynamometer

The chassis dynamometer shall be warmed up in accordance with the dynamometer manufacturer's recommendations, or as appropriate, so that friction losses of the dynamometer can be stabilised.

# 6.3. Vehicle preparation

# 6.3.1. Tyre pressure adjustment

The tyre pressure shall be set to no more than 50 per cent (see §4.2.2.3.) above the lower limit of the tyre pressure range for the selected tyre, as specified by the vehicle manufacturer, and shall be recorded in the test report.

- 6.3.2. If the determination of dynamometer settings cannot meet the criteria described in paragraphs 7.1.3. due to non-reproducible forces, the vehicle shall be equipped with a vehicle coastdown mode. The coasting mode shall be approved and recorded by the responsible authority.
- 6.3.2.1. If a vehicle is equipped with a vehicle coastdown mode, it shall be engaged both [during road load determination] and on the chassis dynamometer.

## 6.3.3. Vehicle setting

The tested vehicle shall be installed on the chassis dynamometer roller in a straight position and restrained in a safe manner. In case of a single roller, the tyre contact point shall be within  $\pm$  25 mm or  $\pm$  2 per cent of the roller diameter, whichever is smaller, measured from the top of the roller.

# 6.3.4. Vehicle warming up

[The power-absorption unit of the chassis dynamometer shall be set as specified in 7.1.1.1. or 7.2.1.1., so that an adequate load will be applied to the test vehicle during warming up.

Prior to the test, the vehicle shall be warmed up appropriately until normal vehicle operating temperatures have been reached. This condition is deemed to be fulfilled when three consecutive coastdowns are completed within the given tolerance of Annex/chapter [XXX]. The dynamometer load for the vehicle warm-up shall be set as described in 7.1.1.1.

It is recommended that the vehicle should be driven at the most appropriate reference speed for a period of 30 min. During this warming up period, the vehicle speed shall not exceed the highest reference speed.]

#### 6.3.4.1. Cold and warm vehicles

- 6.3.4.1.1. Warm up the vehicle at the steady speed used to stabilise for road load determination. It is recommended to warm-up a cold vehicle for at least 20 minutes.
- 6.3.4.1.2. If the manufacturer develops a different warm up cycle/procedure and equivalency can be shown, it shall be notified to the responsible authority.

#### 6.3.4.2. Criteria for stable condition

6.3.4.2.1. Two consecutive coastdowns within a tolerance of  $\pm$  10 N after a regression of the coastdown times.

# 7. Chassis dynamometer load setting

# 7.1. Chassis dynamometer setting by coastdown method

This method is applicable when the road load is determined using the coastdown method as specified in 4.3.

## 7.1.1. Initial load setting

For a chassis dynamometer with coefficient control, the chassis dynamometer power absorption unit shall be adjusted with the arbitrary initial coefficients,  $A_d$ ,  $B_d$  and  $C_d$  of the following equation:

$$F_d = A_d + B_d v + C_d v^2$$

where:

F<sub>d</sub> is the chassis dynamometer setting load, N;

v is the speed of the chassis dynamometer roller, km/h.

The following are recommended coefficients to be used for the initial load setting:

a)  $A_d = 0.5 \text{ x } A_t$ ,  $B_d = 0.2 \text{ x } B_t$ ,  $C_d = C_t$ , for single-axis chassis dynamometers, or

$$Ad = 0.1 \times A_t$$
,  $B_d = 0.2 \times B_t$ ,  $C_d = C_t$ , for dual-axis chassis dynamometers,

where A<sub>t</sub>, B<sub>t</sub> and C<sub>t</sub> are the target road load coefficients;

b) empirical values, such as those used for the setting for a similar type of vehicle. For a chassis dynamometer of polygonal control, adequate load values at each speed point shall be set to the chassis dynamometer power-absorption unit.

#### 7.1.2. Coastdown

The coastdown test on the chassis dynamometer shall be performed once with the procedure given in 4.3.1.3.1 and 4.3.1.3.2. Then proceed to 7.1.3.

#### 7.1.3. Verification

7.1.3.1. The target road load value shall be calculated using the target road load coefficient  $A_t$ ,  $B_t$  and  $C_t$  for each reference speed  $V_i$ .

$$F_{tj} = A_t + B_t v_j + C_t v_j^2$$

where

 $F_{tj}$  is the target road load at reference speed  $v_j$ , in newtons (N);

v<sub>i</sub> is the j<sup>th</sup> reference speed, in kilometres per hour (km/h).

7.1.3.2. The error,  $\varepsilon_j$ , in per cent of the simulated road load  $F_{sj}$ , shall be calculated using the method specified in Appendix I of this Annex for target road load  $F_{tj}$  at each reference speed  $v_j$ , using the following equation:

$$\varepsilon_{j} = \frac{F_{sj-F_{tj}}}{F_{tj}} \times 100$$

 $F_{mj}$ , obtained in Appendix I section 1.1, may be used in the above equation instead of  $F_{sj}$ . Verify whether errors at all reference speeds satisfy the following error criteria in two consecutive coastdown runs, unless otherwise specified by regulations:

$$[\epsilon_j \le 3 \text{ per cent for } v_j \ge 50 \text{ km/h}$$
  
 $\square_i \le 2 \text{ per cent for } v_i \ge 50 \text{ km/h}$ 

$$\epsilon_j \le 5$$
 per cent for 20 km/h <  $v_j < 50$  km/h   
  $\Box_i \le 3$  per cent for 20 km/h <  $v_i < 50$  km/h

$$\varepsilon_{\rm j} \le 10$$
 per cent for  $v_{\rm j} = 20$  km/h]

If an error at any reference speed does not satisfy the criteria, 7.1.4. shall be used to adjust the chassis dynamometer load setting.

## 7.1.4. Adjustment

Adjust the chassis dynamometer setting load in accordance with the procedure specified in Appendix 2, section 1 of this Annex. 7.1.2. and 7.1.3. shall be repeated.

## 7.2. Chassis dynamometer load setting using torque meter method

This method is applicable when the road load is determined using the torque meter method, as specified in section 4.4.

## 7.2.1. Initial load setting

For a chassis dynamometer of coefficient control, the chassis dynamometer power absorption unit shall be adjusted with the arbitrary initial coefficients,  $A_d$ ,  $B_d$  and  $C_d$ , of the following equation:

$$F_d = A_d + B_d v + C_d v^2$$

where

 $\begin{array}{ll} F_d & \text{is the chassis dynamometer setting load, N;} \\ v & \text{is the speed of the chassis dynamometer roller, km/h.} \end{array}$ 

The following coefficients are recommended for the initial load setting:

a) 
$$A_d = 0.5 \times a_t/r'$$
,  $B_d = 0.2 \times b_t/r'$ ,  $C_d = c_t/r'$ , for single-axis chassis dynamometers, or  $A_d = 0.1 \times a_t/r'$ ,  $B_d = 0.2 \times b_t/r'$ ,  $C_d = c_t/r'$ , for dual-axis chassis dynamometers,

where:

 $a_t$ ,  $b_t$  and  $c_t$  are the coefficients for the target torque;

r' is the dynamic radius of the tyre on the chassis dynamometer, in

metres (m) that is obtained by averaging the  $r_j$  values calculated in Appendix I section 2.1;

b) empirical values, such as those used for the setting for a similar type of vehicle.

For a chassis dynamometer of polygonal control, adequate load values at each speed point shall be set for the chassis dynamometer power-absorption unit.

#### 7.2.2. Wheel torque measurement

The torque measurement test on the chassis dynamometer shall be performed with the procedure defined in 4.4.2. The torque meter(s) shall be identical with the one(s) used in the preceding road test.

#### 7.2.3. Verification

7.2.3.1. The target road load value shall be calculated using the target torque coefficients  $a_t$ ,  $b_t$ , and  $c_t$  for each reference speed  $v_j$ .

$$F_{tj} = \frac{a_t + b_t * V_j + c_t * V_{j^2}}{r'}$$

where

 $F_{tj}$  is the target road load at reference speed  $v_j$ , N;

v<sub>j</sub> is the j<sup>th</sup> reference speed, km/h;

r' is the dynamic radius of the tyre on the chassis dynamometer, m, that is obtained by averaging the r<sub>i</sub>' values calculated in Appendix I section 2.1 of this Annex.

7.2.3.2. The error,  $\varepsilon_j$ , in per cent of the simulated road load  $F_{si}$  shall be calculated.  $F_{sj}$  is determined according to the method specified in Appendix I section 2, for target road load  $F_{tj}$  at each reference speed  $v_i$ .

$$\varepsilon_{\rm j} = \frac{F_{\rm sj} - F_{\rm tj}}{F_{\rm ti}} \times 100$$

 $C_j$  m/r' obtained in Appendix I section 2.1 and 7.2.3.1., respectively, may be used in the above equation instead of  $F_{sj}$ .

Verify whether errors at all reference speeds satisfy the following error criteria in two consecutive coastdown runs, unless otherwise specified by regulations.

$$\epsilon_j \leq 3$$
 per cent for  $V_j \geq 50$  km/h  $[\epsilon_j \leq 2$  per cent for  $V_j \geq 50$  km/h]

$$\begin{aligned} \epsilon_j &\leq 5 \text{ per cent for } 20 \text{ km/h} \leq V_j < 50 \text{ km/h} \\ [\epsilon_j &\leq 3 \text{ per cent for } 20 \text{ km/h} \leq V_j < 50 \text{ km/h}] \end{aligned}$$

$$\begin{aligned} \epsilon_j \leq &10 \text{ per cent for } V_j = 20 \text{ km/h} \\ [\epsilon_j \leq &10 \text{ per cent for } V_j = 20 \text{ km/h}] \end{aligned}$$

If the error at any reference speed does not satisfy the criteria, then proceed to 7.2.1.4 for the adjustment of the chassis dynamometer setting load.

## 7.2.3.3. Adjustment

The chassis dynamometer setting load shall be adjusted according to the procedure specified in Appendix 2 section 2. Paragraphs 7.2.2 and 7.2.3. shall be repeated.

NOTE: The following section (§7.3.) is under development

7.3. Dynamometer preparation for settings derived from a running resistance table

#### 7.3.1. Specified speed for the chassis dynamometer

The running resistance on the chassis dynamometer shall be verified at the specified speed v. At least four specified speeds should be verified. The range of specified speed points (the interval between the maximum and minimum points) shall extend either side of the reference speed or the reference speed range, if there is more than one reference speed, by at least  $\Delta v$ . The specified speed points, including the reference speed point(s), shall be no greater than 20 km/h apart and the interval of specified speeds should be the same.

# 7.3.2. Verification of chassis dynamometer

Immediately after the initial setting, the coastdown time on the chassis dynamometer corresponding to the specified speed shall be measured. The vehicle shall not be set up on the chassis dynamometer during the coastdown time measurement. When the chassis dynamome-

ter speed exceeds the maximum speed of the test cycle, the coastdown time measurement shall start.

The measurement shall be carried out at least three times, and the mean coastdown time  $\Delta t E$  shall be calculated from the results.

The set running resistance force  $F_E(v_j)$  at the specified speed on the chassis dynamometer shall be calculated by the following equation:

$$F_E(v_j) = \frac{1}{3.6} \times m_i \times \frac{2 \times \Delta v}{\Delta t_E}$$

The setting error  $\varepsilon$  at the specified speed is calculated by the following equation:

$$\varepsilon = \frac{\left| F_E(v_j) - F_T \right|}{F_T} \times 100$$

The chassis dynamometer shall be readjusted if the setting error does not satisfy the following criteria:

$$\begin{split} & [\epsilon \leq 2 \text{ per cent for } v \geq 50 \text{ km/h} \\ & \epsilon \leq 3 \text{ per cent for } 30 \text{ km/h} \leq v \leq 50 \text{ km/h} \\ & \epsilon \leq 10 \text{ per cent for } v \leq 30 \text{ km/h}] \end{split}$$

The procedure described above shall be repeated until the setting error satisfies the criteria. The chassis dynamometer setting and the observed errors shall be recorded. An example of the record form is given in Annex 10.

## 7.3.3. Chassis dynamometer setting based on [provisional] running resistance table

| Test Mass | Power and load<br>absorbed by the<br>dynamometer at 80 km/h |     | Coefficients |          |           |
|-----------|-------------------------------------------------------------|-----|--------------|----------|-----------|
| (TM)      |                                                             |     | а            | b        | С         |
| Kg        | kW                                                          | N   | N            | N/(km/h) | N/(km/h)² |
| 1400      | 10,6                                                        | 478 | 114,0        | 0,1      | 0,0556    |
| 1500      | 10,7                                                        | 484 | 120,0        | 0,1      | 0,0556    |
| 1600      | 10,9                                                        | 492 | 126,0        | 0,1      | 0,0559    |
| 1700      | 11,2                                                        | 502 | 132,0        | 0,1      | 0,0566    |
| 1800      | 11,4                                                        | 515 | 138,0        | 0,1      | 0,0577    |
| 1900      | 11,8                                                        | 530 | 144,0        | 0,1      | 0,0591    |
| 2000      | 12,2                                                        | 547 | 150,0        | 0,1      | 0,0608    |
| 2100      | 12,6                                                        | 567 | 156,0        | 0,1      | 0,0629    |
| 2200      | 13,1                                                        | 588 | 162,0        | 0,1      | 0,0654    |
| 2300      | 13,6                                                        | 612 | 168,0        | 0,1      | 0,0682    |
| 2400      | 14,2                                                        | 638 | 174,0        | 0,1      | 0,0713    |
| 2500      | 14,8                                                        | 667 | 180,0        | 0,1      | 0,0748    |
| 2600      | 15,5                                                        | 697 | 186,0        | 0,1      | 0,0787    |
| 2700      | 16,2                                                        | 730 | 192,0        | 0,1      | 0,0829    |
| 2800      | 17,0                                                        | 765 | 198,0        | 0,1      | 0,0874    |
| 2900      | 17,8                                                        | 803 | 204,0        | 0,1      | 0,0923    |
| 3000      | 18,7                                                        | 842 | 210,0        | 0,1      | 0,0975    |
| 3100      | 19,6                                                        | 884 | 216,0        | 0,1      | 0,1031    |
| 3200      | 20,6                                                        | 928 | 222,0        | 0,1      | 0,1091    |
| 3300      | 21,7                                                        | 974 | 228,0        | 0,1      | 0,1154    |

## Appendix I

Calculation of road load for the dynamometer test

- 1. Calculation of simulated road load using the coastdown method When the road load is measured by the coastdown method as specified in 4.3of this Annex, calculation of the simulated road load  $F_{sj}$  for each reference speed  $v_j$ , in kilometres per hour, shall be conducted as described in 1.1. to 1.3. of this Appendix.
- 1.1. The measured road load shall be calculated using the following equation:

$$F_{mj} = \frac{1}{3.6} \times (m_d + m'_r) \times \frac{2 \times \Delta v}{\Delta T_i}$$

where

 $F_{mj}$  is the measured road load for each reference speed  $v_j$ , N;

m<sub>d</sub> is the equivalent inertia-mass of the chassis dynamometer, kg;

m'<sub>r</sub> is the equivalent effective mass of drive wheels and vehicle components rotating with the wheels during coastdown on the dynamometer, kg; m'<sub>r</sub> may be measured or calculated by an appropriate technique. As an alternative, m'<sub>r</sub> may be estimated as 3 per cent of the unladen vehicle mass for a permanent four-wheel-drive vehicle, and 1.5 per cent of the unladen vehicle mass for a two-wheel drive vehicle:

 $\Delta T_j$  is the coastdown time corresponding to speed Vj, s.

1.2. The coefficients  $A_s$ ,  $B_s$  and  $C_s$  of the following approximate equation shall be determined using least-square regression using the calculated  $F_{mj}$ :

$$F_s = A_s + B_s v + C_s v^2$$

1.3. The simulated road load for each reference speed  $v_j$  shall be determined using the following equation, using the calculated  $A_s$ ,  $B_s$  and  $C_s$ :

$$F_{sj} = A_s + B_s v_j + C_s v_j^2$$

- 2. Calculation of simulated road load using the torque meter method When the road load is measured by the torque meter method as specified in 4.4., calculation of the simulated road load  $F_{sj}$  for each reference speed  $V_j$ , in kilometres per hour, shall be conducted as described in 2.1. to 2.3. of this appendix.
- 2.1. The mean speed  $V_{jm}$ , in kilometres per hour, and the mean torque  $C_{jm}$ , in newton-metres, for each reference speed  $V_i$  shall be calculated using the following equations:

$$v_{jm} = \frac{1}{k \sum_{i=1}^k v_{ji}}$$

and

$$C_{jm} = \frac{1}{k} \sum_{i=1}^{k} C_{ji} - C_{jc}$$

where:

 $v_{ii}$  is the vehicle speed of the i<sup>th</sup> data set, km/h;

K is the number of data sets;

C<sub>ii</sub> is the torque of the i<sup>th</sup> data set, Nm;

C<sub>ic</sub> is the compensation term for the speed drift, Nm, given by the following equation:

$$C_{jc} = (m_d + m_r') \alpha_j r'_j$$

 $C_{jc}$  shall be no greater than 5 per cent of the mean torque before compensation, and may be neglected if  $|\alpha_j|$  is no greater than 0,005 m/s<sup>2</sup>.

 $m_d$  and  $m_r'$  are the equivalent inertia mass of the chassis dynamometer and the equivalent effective mass of drive wheels and vehicle components rotating with the wheel during coastdown on the chassis dynamometer, respectively, both in kilograms (kg), as defined in section 1 of this Appendix;

 $\alpha_j$  is the mean acceleration, in metres per second squared (m/s<sup>2</sup>), which shall be calculated by the equation:

$$\alpha_{j} = \frac{1}{3.6} \times \frac{k \sum_{i=1}^{k} t_{i} v_{ij} - \sum_{i=1}^{k} t_{i} \sum_{i=1}^{k} v_{ji}}{k \sum_{i=1}^{k} t_{i}^{2} - (k \sum_{i=1}^{k} t_{i})^{2}}$$

where

 $t_i$  is the time at which the  $i^{th}$  data set was sampled, s;

 $r'_{j}$  is the dynamic radius of the tyre, m, given by the equation:

$$\mathbf{r}_{\mathbf{j}}' = \frac{1}{3.6} \times \frac{\mathbf{v}_{\mathbf{jm}}}{2 \times \pi \mathbf{N}}$$

N is the rotational frequency of the driven tyre, s<sup>-1</sup>.

2.2. The coefficients  $a_s$ ,  $b_s$  and  $c_s$  of the following approximate equation shall be determined by the least-square regression shall be calculated using the calculated  $v_{j\,m}$  and the  $C_{j\,m}$ .

$$F_s = \frac{f_s}{r'} = \frac{a_s + b_s v + c_s v^2}{r'}$$

2.3. The simulated road load for each reference speed  $v_j$  shall be determined using the following equation and the calculated  $a_s$ ,  $b_s$  and  $c_s$ :

$$F_{sj} = \frac{f_{sj}}{r'} = \frac{a_s + b_s v_j + c_s v_j^2}{r'}$$

## Appendix II

Adjustment of chassis dynamometer load setting

1. Adjustment of chassis dynamometer load setting using the coastdown method The chassis dynamometer load setting shall be adjusted using the following equations:

$$\begin{split} F^*_{dj} &= F_{dj} - F_j \\ &= F_{dj} - F_{sj} + F_{tj} \\ &= (A_d + B_d v_j + C_d v_j^2) - (A_s + B_s v_j + C_s v_j^2) + (A_t + B_t v_j + C_t v_j^2) \\ &= (A_d + A_t - A_s) + (B_d + B_t + B_s) \ v_j + (C_d + C_t - C_s) \ v_j^2 \\ & \therefore \ A_d^* = A_d + A_t - A_s \\ & \therefore \ B_d^* = B_d + B_t - B_s \\ & \therefore \ C_d^* = C_d + C_t - C_s \end{split}$$

where

F<sub>d i</sub>\* is the new chassis dynamometer setting load, N;

 $F_i$  is the adjustment road load, which is equal to  $F_{si}$  -  $F_{ti}$ , N;

 $F_{sj}$  is the simulated road load at reference speed  $v_j$ , N;

 $F_{ti}$  is the target road load at reference speed  $v_i$ , N;

A<sub>d</sub>\*, B<sub>d</sub>\* and C<sub>d</sub>\* are the new chassis dynamometer setting coefficients.

2. Adjustment of chassis dynamometer load setting using the torque meter method The chassis dynamometer load setting shall be adjusted using the following equation:

$$\begin{split} F^*_{dj} &= F_{dj} - F_{ej}/r' \\ &= F_{dj} - F_{sj} + F_{tj}/r' \\ &= (A_d + B_d v_j + C_d v_j^2) - (a_s + b_s v_j + c_s v_j^2)/r' + (a_t + b_t v_j + c_t v_j^2)/r' \\ &= \{A_d + (a_t - a_s)/r' \} + \{B_d + (b_t + b_s)/r' \} v_j + \{C_d + (c_t - c_s)/r' \} v_j^2 \\ & \therefore A_d^* = A_d + (a_t - a_s)/r' \\ & \therefore B_d^* = B_d + (b_t - b_s)/r' \\ & \therefore C_d^* = C_d + (c_t - c_s)/r' \end{split}$$

where

F\*<sub>di</sub> is the new chassis dynamometer setting load, N;

 $f_{ej}$  is the adjustment road load, which is equal to  $f_{sj}$  -  $f_{tj}$ , N;

 $f_{si}$  is the simulated road load at reference speed  $v_i$ , N;

 $f_{tj}$  is the target road load at reference speed  $v_j$ , N;

A<sub>d</sub>\*, B<sub>d</sub>\* and C<sub>d</sub>\*are the new chassis dynamometer setting coefficients.

r' is the dynamic radius of the tyre on the chassis dynamometer, m, that is obtained by averaging the  $r'_{j}$  values calculated in Appendix 1, section 2.1.

#### ANNEX 5: TEST EQUIPMENT AND CALIBRATIONS

- 1.0 Test bench specifications and settings
- 1.1 Cooling fan specifications
- 1.1.1. A current of air of variable speed shall be blown towards the vehicle. The set point of the linear velocity of the air at the blower outlet shall be equal to the corresponding roller speed above roller speeds of 5 km/h. The deviation of the linear velocity of the air at the blower outlet shall remain within  $\pm$  5 km/h or  $\pm$  10 % of the corresponding roller speed, whichever is greater.
- 1.1.2. The above mentioned air velocity shall be determined as an averaged value of a number of measuring points which:
- (a) for fans with rectangular outlets, are located at the centre of each rectangle dividing the whole of the fan outlet into 9 areas (dividing both horizontal and vertical sides of the fan outlet into 3 equal parts). The centre area shall not be measured (as shown in the diagram below).

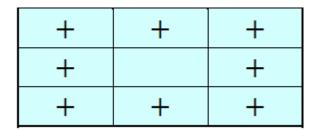



Figure 1: Fan with rectangular outlet

(b) for circular fan outlets, the outlet shall be divided into 8 equal sections by vertical, horizontal and 45° lines. The measurement points lie on the radial centre line of each arc (22.5°) at a radius of two thirds of the total (as shown in the diagram below).

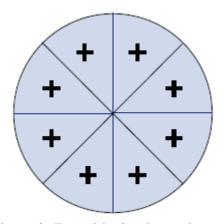



Figure 2: Fan with circular outlet

These measurements shall be made with no vehicle or other obstruction in front of the fan. The device used to measure the linear velocity of the air shall be located between 0 and 20 cm from the air outlet.

- 1.1.3. The final selection of the fan shall have the following characteristics:
- (a) an area of at least 0.3 m<sup>2</sup>, and,
- (b) a width/diameter of at least 0.8 m
- 1.1.4. The position of the fan shall be as follows:
- (a) height of the lower edge above ground: approximately 20 cm;
- (b) distance from the front of the vehicle: approximately 30 cm.
- 1.1.5. The height and lateral position of the cooling fan may be modified at the request of the manufacturer and if considered appropriate by the responsible authority.
- 1.1.6. In the cases described above, the cooling fan position (height and distance) shall be recorded in the approval test report and shall be used for any subsequent testing.
- 2.0. Chassis dynamometer
- 2.1. General requirements
- 2.1.1. The dynamometer shall be capable of simulating road load with at least three road load parameters that can be adjusted to shape the load curve.
- 2.1.2. Dynamometers with electric inertia simulation shall be demonstrated to be equivalent to mechanical inertia systems.
- 2.1.3. The chassis dynamometer may have one or two rollers. In the case of twin-roll dynamometers, the rollers shall be permanently coupled or the front roller shall-drive, directly or indirectly, any inertial masses and the power absorption device.
- 2.2. Specific requirements

The following specific requirements relate to the dynamometer manufacturer's specifications.

- 2.2.1. The roll run-out shall be less than 0.25 mm at all measured locations.
- 2.2.2. The roller diameter shall be within  $\pm$  1.0 mm of the specified nominal value at all measurement locations.
- 2.2.3. The dynamometer shall have a time measurement system for use in determining acceleration rates and for measuring vehicle/dynamometer coastdown times. This time measurement system shall have an accuracy of at least  $\pm$  0.001 per cent.
- 2.2.4. The dynamometer shall have a speed measurement system with an accuracy of at least + 0.080 km/h.
- 2.2.5. The dynamometer shall have a response time (90% response to a tractive effort step change) of less than 100 ms with instantaneous accelerations which are at least  $3\text{m/s}^2$ .
- 2.2.6. The base inertia weight of the dynamometer shall be stated by the dynamometer vendor, and must be confirmed to within  $\pm$  0.5 per cent for each measured base inertia and  $\pm$  0.2

per cent relative to any mean value by dynamic derivation from trials at constant acceleration, deceleration and force.

- 2.2.7. Roller speed shall be recorded at a frequency of not less than 1 Hz.
- 2.3. Additional specific requirements for 4WD chassis dynamometers
- 2.3.1. The 4WD control system shall be designed such that the following requirements are met when tested with a vehicle driven over the WLTP driving cycle:
- 2.3.1.1. Road load simulation shall be applied such that operation in 4WD mode reproduces the same proportioning of forces as would be encountered when driving the vehicle on a smooth, dry, level road surface.
- 2.3.1.2. All roll speeds shall be synchronous to within  $\pm$  0.16 km/h. This may be assessed by applying a 1s moving average filter to roll speed data acquired at 20 Hz. This has to be checked for new dynamometer instalment and after major repair or maintenance
- 2.3.1.3. The difference in distance between front and rear rolls shall be less than 0.1 m in any 200 ms time period. If it can be demonstrated that this criteria is met, then the speed synchronicity requirement above is not required.
- 2.3.1.4. The difference in distance covered by the front and rear rolls shall be less than 0.2 per cent of the driven distance over the WLTC.
- 2.4. Chassis dynamometer calibration

### 2.4.1. Force measurement system.

The accuracy and linearity of the force transducer shall be at least  $\pm$  10 N for all measured increments. This shall be verified upon initial installation, after major maintenance and within 370 days before testing.

### 2.4.2. Parasitic loss calibration.

The dynamometer's parasitic losses shall be measured and updated if any measured value differs from the current loss curve by more than 2.5 N. This shall be verified upon initial installation, after major maintenance and within 35 days before testing.

- 2.4.3. The dynamometer performance shall be verified by performing an unloaded coastdown test upon initial installation, after major maintenance, and within 7 days before testing. The average coastdown force error shall be less than 10 N or 2 per cent (whatever is greater) at each measured point (10 km/h speed intervals) over the 20 130 km/h speed range.
- 3.0 Exhaust gas dilution system
- 3.1. System specification
- 3.1.1. Overview
- 3.1.1.1. A full-flow exhaust dilution system shall be used. This requires that the vehicle exhaust be continuously diluted with ambient air under controlled conditions using a constant volume sampler. A critical flow venturi (CFV) or multiple critical flow venturis arranged in

parallel, a positive displacement pump (PDP), a subsonic venturi (SSV), or an ultrasonic flow meter (USM) may be used. The total volume of the mixture of exhaust and dilution air shall be measured and a continuously proportional sample of the volume shall be collected for analysis. The quantities of exhaust gas species are determined from the sample concentrations, corrected for the species content of the ambient air and the totalised flow over the test period.

- 3.1.1.2. The exhaust dilution system shall consist of a connecting tube, a mixing chamber and dilution tunnel, dilution air conditioning, a suction device and a flow measurement device. Sampling probes shall be fitted in the dilution tunnel as specified in paragraphs 4.1., 4.2. and 4.3.
- 3.1.1.3. The mixing chamber described in 3.1.1.2. shall be a vessel such as that illustrated in Figure 3 in which vehicle exhaust gases and the dilution air are combined so as to produce a homogeneous mixture at the at the sampling position.

# 3.2. General requirements

- 3.2.1. The vehicle exhaust gases shall be diluted with a sufficient amount of ambient air to prevent any water condensation in the sampling and measuring system at all conditions which may occur during a test.
- 3.2.2. The mixture of air and exhaust gases shall be homogeneous at the point where the sampling probes are located (§3.3.3. below). The sampling probes shall extract representative samples of the diluted exhaust gas.
- 3.2.3. The system shall enable the total volume of the diluted exhaust gases to be measured.
- 3.2.4. The sampling system shall be gas-tight. The design of the variable-dilution sampling system and the materials used in its construction shall be such that they do not affect the species concentration in the diluted exhaust gases. Should any component in the system (heat exchanger, cyclone separator, suction device, etc.) change the concentration of any of the exhaust gas species in the diluted exhaust gases and the fault cannot be corrected, sampling for that species shall be carried out upstream from that component.
- 3.2.5. All parts of the dilution system in contact with raw and diluted exhaust gas shall be designed to minimise deposition or alteration of the particulates or particles. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.
- 3.2.6. If the vehicle being tested is equipped with an exhaust pipe comprising several branches, the connecting tubes shall be connected as near as possible to the vehicle without adversely affecting its operation.

# 3.3. Specific requirements

### 3.3.1. Connection to vehicle exhaust

3.3.1.1. The start of the connecting tube should be specified as the exit of the tailpipe. The end of the connecting tube should be specified as the sample point, or first point of dilution. For

multiple tailpipe configurations where all the tailpipes are combined, the start of the connecting tube may be taken at the last joint of where all the tailpipes are combined.

- 3.3.1.2. The connecting tube between the vehicle and dilution system shall be designed so as to minimize heat loss.
- 3.3.1.3. The connecting tube between the sample point and the dilution system shall satisfy the following requirements:
- (a) shall be less than 3.6 m long, or less than 6.1 m long if heat-insulated. Its internal diameter may not exceed 105 mm; the insulating materials shall have a thickness of at least 25mm and thermal conductivity not exceeding  $0.1 \text{ W/m}^{-1}\text{K}^{-1}$  at  $400^{\circ}\text{C}$ . Optionally, the tube may be heated to a temperature above the dew point. This may be assumed to be achieved if the tube is heated to  $70^{\circ}\text{C}$ ;
- (b) shall not cause the static pressure at the exhaust outlets on the vehicle being tested to differ by more than  $\pm 0.75$  kPa at 50 km/h, or more than  $\pm 1.25$  kPa or the whole duration of the test from the static pressures recorded when nothing is connected to the vehicle exhaust outlets. The pressure shall be measured in the exhaust outlet or in an extension having the same diameter, as near as possible to the end of the pipe. Sampling systems capable of maintaining the static pressure to within  $\pm 0.25$  kPa may be used if a written request from a manufacturer to the responsible authority substantiates the need for the closer tolerance;
- (c) no component of the connecting tube shall be of a material which might affect the gaseous or solid composition of the exhaust gas. To avoid generation of any particles from elastomer connectors, elastomers employed shall be as thermally stable as possible and shall not be used to bridge the connection between the vehicle exhaust and the connecting tube.

# 3.3.2. Dilution air conditioning

- 3.3.2.1. The dilution air used for the primary dilution of the exhaust in the CVS tunnel shall be passed through a medium capable of reducing particles in the most penetrating particle size of the filter material by  $\geq 99.95$  [> 99.97] per cent, or through a filter of at least class H13 of EN 1822:2009. This represents the specification of High Efficiency Particulate Air (HEPA) filters. The dilution air may optionally be charcoal scrubbed before being passed to the HEPA filter. It is recommended that an additional coarse particle filter be situated before the HEPA filter and after the charcoal scrubber, if used.
- 3.3.2.2. At the vehicle manufacturer's request, the dilution air may be sampled according to good engineering practice to determine the tunnel contribution to background particulate mass levels, which can then be subtracted from the values measured in the diluted exhaust. See 1.2.1.4. in Annex 6 "Test Procedures".

### 3.3.3. Dilution tunnel

- 3.3.3.1. Provision shall be made for the vehicle exhaust gases and the dilution air to be mixed. A mixing orifice may be used.
- 3.3.3.2. The homogeneity of the mixture in any cross-section at the location of the sampling probe shall not vary by more than  $\pm$  2 per cent from the average of the values obtained for at least five points located at equal intervals on the diameter of the gas stream.

- 3.3.3.4. For particulate and particle emissions sampling, a dilution tunnel shall be used which:
- (a) consists of a straight tube of electrically-conductive material, which shall be earthed;
- (b) shall cause turbulent flow (Reynolds number  $\geq 4000$ ) and be of sufficient length to cause complete mixing of the exhaust and dilution air;
- (c) shall be at least 200 mm in diameter;
- (d) may be insulated.
- 3.3.4. Suction device
- 3.3.4.1. This device may have a range of fixed speeds to ensure sufficient flow to prevent any water condensation. This result is obtained if the flow is either:
- (a) twice as high as the maximum flow of exhaust gas produced by accelerations of the driving cycle; or
- (b) sufficient to ensure that the  $CO_2$  concentration in the dilute exhaust sample bag is less than 3 per cent by volume for petrol and diesel, less than 2.2 per cent by volume for LPG and less than 1.5 per cent by volume for NG/biomethane.
- 3.3.4.2. Compliance with the above requirements may not be necessary if the CVS system is designed to inhibit condensation by such techniques, or combination of techniques, as:
- (a) reducing water content in the dilution air (dilution air dehumidification)
- (b) heating of the CVS dilution air and of all components up to the diluted exhaust flow measurement device, and optionally, the bag sampling system including the sample bags and also the system for the measurement of the bag concentrations.
- In such cases, the selection of the CVS flow rate for the test shall be justified by showing that condensation of water cannot occur at any point within the CVS, bag sampling or analytical system.
- 3.3.5. Volume measurement in the primary dilution system
- 3.3.5.1. The method of measuring total dilute exhaust volume incorporated in the constant volume sampler shall be such that measurement is accurate to  $\pm$  2 per cent under all operating conditions. If the device cannot compensate for variations in the temperature of the mixture of exhaust gases and dilution air at the measuring point, a heat exchanger shall be used to maintain the temperature to within  $\pm$  6 K of the specified operating temperature for a PDP-CVS,  $\pm$  11 K for a CFV CVS,  $\pm$  6 K for a USM CVS, and  $\pm$  11 K for an SSV CVS.
- 3.3.5.2. If necessary, some form of protection for the volume measuring device may be used e.g. a cyclone separator, bulk stream filter, etc.
- 3.3.5.3. A temperature sensor shall be installed immediately before the volume measuring device. This temperature sensor shall have an accuracy and a precision of  $\pm 1$  K and a response time of 0.1 s at 62 per cent of a given temperature variation (value measured in silicone oil).
- 3.3.5.4. Measurement of the pressure difference from atmospheric pressure shall be taken upstream from and, if necessary, downstream from the volume measuring device.

3.3.5.5. The pressure measurements shall have a precision and an accuracy of  $\pm 0.4$  kPa during the test.

# 3.3.6. Recommended system description

Figures 3 is a schematic drawing of exhaust dilution systems which meet the requirements of this Annex.

The following components are recommended:

- (a) a dilution air filter, which can be preheated if necessary. This filter shall consist of the following filters in sequence: an optional activated charcoal filter (inlet side), and a HEPA filter (outlet side). It is recommended that an additional coarse particle filter is situated before the HEPA filter and after the charcoal filter, if used. The purpose of the charcoal filter is to reduce and stabilize the hydrocarbon concentrations of ambient emissions in the dilution air;
- (b) a connecting tube by which vehicle exhaust is admitted into a dilution tunnel;
- (c) an optional heat exchanger as described in §3.3.5.1;
- (d) a mixing chamber in which exhaust gas and air are mixed homogeneously, and which may be located close to the vehicle so that the length of the connecting tube is minimized;
- (e) a dilution tunnel from which particulates and particles are sampled;
- (f) some form of protection for the measurement system may be used e.g. a cyclone separator, bulk stream filter, etc.;
- (g) a suction device of sufficient capacity to handle the total volume of diluted exhaust gas.

Since various configurations can produce accurate results, exact conformity with these figures is not essential. Additional components such as instruments, valves, solenoids and switches may be used to provide additional information and co-ordinate the functions of the component system.

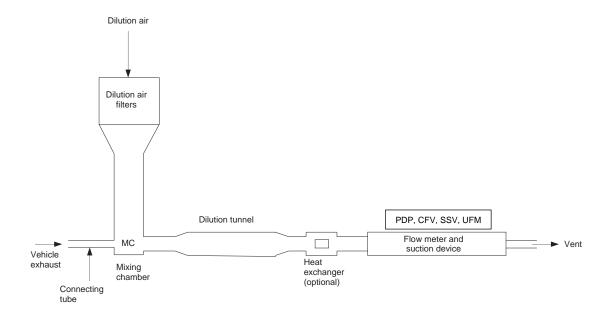



Figure 3: Exhaust Dilution System

# 3.3.6.1. Positive displacement pump (PDP)

- 3.3.6.1.1. A positive displacement pump (PDP) full flow dilution system satisfies the requirements of this Annex by metering the flow of gas through the pump at constant temperature and pressure. The total volume is measured by counting the revolutions made by the calibrated positive displacement pump. The proportional sample is achieved by sampling with pump, flow-meter and flow control valve at a constant flow rate.
- 3.3.6.1.2. A positive displacement pump (PDP) produces a constant-volume flow of the air/exhaust gas mixture. The PDP revolutions, together with associated temperature and pressure measurement are used to determine the flow rate.

#### 3.3.6.2. Critical flow venturi (CFV)

- 3.3.6.2.1. The use of a critical flow venturi (CFV) for the full-flow dilution system is based on the principles of flow mechanics for critical flow. The variable mixture flow rate of dilution and exhaust gas is maintained at sonic velocity which is directly proportional to the square root of the gas temperature. Flow is continually monitored, computed and integrated throughout the test.
- 3.3.6.2.2. The use of an additional critical flow sampling venturi ensures the proportionality of the gas samples taken from the dilution tunnel. As both pressure and temperature are equal at the two venturi inlets, the volume of the gas flow diverted for sampling is proportional to the total volume of diluted exhaust-gas mixture produced, and thus the requirements of this Annex are met.
- 3.3.6.2.3. A measuring critical flow venturi tube (CFV) shall measure the flow volume of the diluted exhaust gas.

### 3.3.6.3. Subsonic flow venturi (SSV)

3.3.6.3.1. The use of a subsonic venturi (SSV) for a full-flow dilution system is based on the principles of flow mechanics. The variable mixture flow rate of dilution and exhaust gas is maintained at a subsonic velocity which is calculated from the physical dimensions of the subsonic venturi and measurement of the absolute temperature and pressure at the venturi inlet and the pressure in the throat of the venturi. Flow is continually monitored, computed and integrated throughout the test.

# 3.3.6.3.2. A measuring SSV shall measure the flow volume of the diluted exhaust gas.

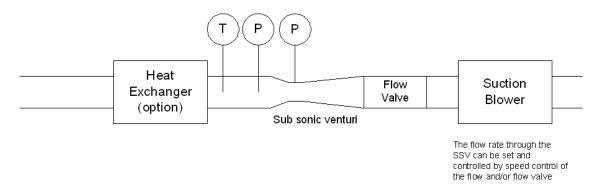



Figure 4: Schematic of a supersonic venture tube (SSV)

# 3.3.6.4. Ultrasonic flow meter (USM)

3.3.6.4.1. A USM measures the velocity of the diluted exhaust gas using ultra-sonic transmitters/detectors as in Figure 5. The gas velocity is converted to standard volumetric flow using a calibration factor for the tube diameter with real time corrections for the diluted exhaust temperature and absolute pressure.

# 3.3.6.4.2. Components of the system include:

(a) a suction device fitted with speed control, flow valve or other method for setting the CVS flow rate and also for maintaining constant volumetric flow at standard conditions;

# (b) a USM;

- (c) temperature (T) and pressure (P) measurement devices required for flow correction;
- (d) an optional heat exchanger for controlling the temperature of the diluted exhaust to the USM. If installed, the heat exchanger should be capable of controlling the temperature of the diluted exhaust to that specified in 3.3.5.1. Throughout the test, the temperature of the air/exhaust gas mixture measured at a point immediately upstream of the suction device shall be within  $\pm$  6 K of the average operating temperature during the test.

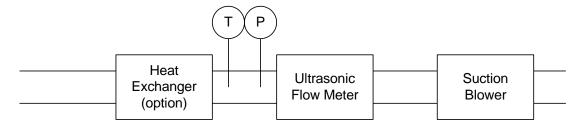



Figure 5: Schematic of an ultrasonic flow meter (USM)

# 3.3.6.4.3. The following conditions shall apply to the design and use of the USM type CVS:

- (a) the velocity of the diluted exhaust gas shall provide a Reynolds number higher than 4000 in order to maintain a consistent turbulent flow before the ultrasonic flow meter:
- (b) an ultrasonic flow meter shall be installed in a pipe of constant diameter with a length of 10 times the internal diameter upstream and 5 times the diameter downstream;
- (c) a temperature sensor for the diluted exhaust shall be installed immediately before the ultrasonic flow meter. This sensor shall have an accuracy and a precision of  $\pm 1$  K and a response time of 0.1 s at 62 per cent of a given temperature variation (value measured in silicone oil);
- (d) the absolute pressure of the diluted exhaust shall be measured immediately before the ultrasonic flow meter to an accuracy of less than  $\pm$  0.3 kPa;
- (e) if a heat exchanger is not installed upstream of the ultrasonic flow meter, the flow rate of the diluted exhaust, corrected to standard conditions shall be maintained at a constant level during the test. This may be achieved by control of the suction device, flow valve or other method.

### 3.4. CVS calibration procedure

# 3.4.1. General requirements

- 3.4.1.1. The CVS system shall be calibrated by using an accurate flow meter and a restricting device. The flow through the system shall be measured at various pressure readings and the control parameters of the system measured and related to the flows. The flow metering device shall be dynamic and suitable for the high flow rate encountered in constant volume sampler testing. The device shall be of certified accuracy traceable to an approved national or international standard.
- 3.4.1.1.1. Various types of flow meters may be used, e.g. calibrated venturi, laminar flow-meter, calibrated turbine-meter, provided that they are dynamic measurement systems and can meet the requirements of paragraph 3.3.5. of this Annex.
- 3.4.1.1.2. The following paragraphs give details of methods of calibrating PDP and CFV units, using a laminar flow meter, which gives the required accuracy, together with a statistical check on the calibration validity.

# 3.4.2. Calibration of a positive displacement pump (PDP)

- 3.4.2.1. The following calibration procedure outlines the equipment, the test configuration and the various parameters that are measured to establish the flow-rate of the CVS pump. All the parameters related to the pump are simultaneously measured with the parameters related to the flow-meter which is connected in series with the pump. The calculated flow rate (given in m³/min at pump inlet, absolute pressure and temperature) can then be plotted versus a correlation function that is the value of a specific combination of pump parameters. The linear equation that relates the pump flow and the correlation function is then determined. In the event that a CVS has a multiple speed drive, a calibration for each range used shall be performed.
- 3.4.2.2. This calibration procedure is based on the measurement of the absolute values of the pump and flow-meter parameters that relate the flow rate at each point. Three conditions shall be maintained to ensure the accuracy and integrity of the calibration curve:
- 3.4.2.2.1. The pump pressures shall be measured at tappings on the pump rather than at the external piping on the pump inlet and outlet. Pressure taps that are mounted at the top centre and bottom centre of the pump drive headplate are exposed to the actual pump cavity pressures, and therefore reflect the absolute pressure differentials;
- 3.4.2.2.2. Temperature stability shall be maintained during the calibration. The laminar flow-meter is sensitive to inlet temperature oscillations which cause the data points to be scattered. Gradual changes of  $\pm 1$  K in temperature are acceptable as long as they occur over a period of several minutes;
- 3.4.2.2.3. All connections between the flow-meter and the CVS pump shall be free of any leakage.
- 3.4.2.3. During an exhaust emission test, the measurement of these same pump parameters enables the user to calculate the flow rate from the calibration equation.
- 3.4.2.4. Figure 6 of this Annex shows one possible test set-up. Variations are permissible, provided that the responsibleauthority approves them as being of comparable accuracy. If the set-up shown in Figure 6 is used, the following data shall be found within the limits of accuracy given:

| Barometric pressure (corrected) (P <sub>b</sub> ) | $\pm$ 0.03 kPa           |
|---------------------------------------------------|--------------------------|
| Ambient temperature (T)                           | $\pm 0.2 \text{ K}$      |
| Air temperature at LFE (ETI)                      | $\pm 0.15 \text{ K}$     |
| Pressure depression upstream of LFE (EPI)         | $\pm 0.01 \text{ kPa}$   |
| Pressure drop across the LFE matrix (EDP)         | $\pm 0.0015 \text{ kPa}$ |
| Air temperature at CVS pump inlet (PTI)           | $\pm 0.2 \text{ K}$      |
| Air temperature at CVS pump outlet (PTO)          | $\pm 0.2 \text{ K}$      |
| Pressure depression at CVS pump inlet (PPI)       | $\pm 0.22 \text{ kPa}$   |
| Pressure head at CVS pump outlet (PPO)            | $\pm 0.22 \text{ kPa}$   |
| Pump revolutions during test period (n)           | $\pm 1 \text{ min}^{-1}$ |
| Elapsed time for period (minimum 250 s) (t)       | $\pm 0.1 \text{ s}$      |

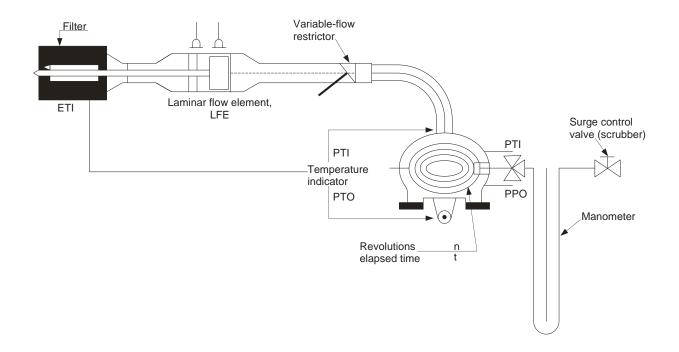



Figure 6: PDP Calibration Configuration

- 3.4.2.5. After the system has been connected as shown in Figure 6 of this Annex, the variable restrictor shall be set in the wide-open position and the CVS pump shall run for 20 minutes before starting the calibration.
- 3.4.2.5.1. The restrictor valve shall be reset to a more restricted condition in an increment of pump inlet depression (about 1 kPa) that will yield a minimum of six data points for the total calibration. The system shall be allowed to stabilize for three minutes and repeat the data acquisition.
- 3.4.2.5.2 The air flow rate (Q<sub>s</sub>) at each test point shall be calculated in standard m<sup>3</sup>/min from the flow-meter data using the manufacturer's prescribed method.
- 3.4.2.5.3. The air flow-rate shall then be converted to pump flow  $(V_0)$  in  $m^3$ /rev at absolute pump inlet temperature and pressure.

$$V_0 = \frac{Q_s}{n} \cdot \frac{T_p}{273.2} \cdot \frac{101.33}{P_p}$$

where:

 $V_0$  is pump flow rate at  $T_p$  and  $P_p$ ,  $m^3$ /rev;

 $Q_s$  is air flow at 101.325 kPa and 273.15 K, m<sup>3</sup>/min;

T<sub>p</sub> is pump inlet temperature, K;

P<sub>p</sub> is absolute pump inlet pressure, kPa;

N is pump speed, min<sup>-1</sup>.

3.4.2.5.4. To compensate for the interaction of pump speed pressure variations at the pump and the pump slip rate, the correlation function  $(x_0)$  between the pump speed (n), the pressure

differential from pump inlet to pump outlet and the absolute pump outlet pressure shall be calculated as follows:

$$x_0 = \frac{1}{n} \sqrt{\frac{\Delta P_p}{P_e}}$$

where:

 $x_0$  is the correlation function,

 $\Delta P_p$  is the pressure differential from pump inlet to pump outlet, kPa;

 $P_e = absolute outlet pressure (PPO + P_b), kPa.$ 

A linear least-square fit is performed to generate the calibration equations which have the equation:

$$V_0 = D_0 - M (x_0)$$
  
 $n = A - B (\Delta P_p)$ 

D<sub>0</sub>, M, A and B are the slope-intercept constants describing the lines.

- 3.4.2.6. A CVS system having multiple speeds shall be calibrated at each speed used. The calibration curves generated for the ranges shall be approximately parallel and the intercept values  $(D_0)$  shall increase as the pump flow range decreases.
- 3.4.2.7. The calculated values from the equation shall be within 0.5 per cent of the measured value of  $V_0$ . Values of M will vary from one pump to another. A calibration shall be performed at pump start-up and after major maintenance.
- 3.4.3. Calibration of a critical flow venturi (CFV)
- 3.4.3.1. Calibration of the CFV is based upon the flow equation for a critical venturi:

$$Q_s = \frac{K_v P}{\sqrt{T}}$$

where:

 $Q_s$  is the flow, m<sup>3</sup>/min;

K<sub>v</sub> is the calibration coefficient;

P is the absolute pressure,kPa;

T is the absolute temperature, K.

Gas flow is a function of inlet pressure and temperature.

The calibration procedure described below establishes the value of the calibration coefficient at measured values of pressure, temperature and air flow.

- 3.4.3.2. The manufacturer's recommended procedure shall be followed for calibrating electronic portions of the CFV.
- 3.4.3.3. Measurements for flow calibration of the critical flow venturi are required and the following data shall be found within the limits of precision given:

 $\begin{array}{ll} \text{Barometric pressure (corrected) (P_b)} & \pm 0.03 \text{ kPa,} \\ \text{LFE air temperature, flow-meter (ETI)} & \pm 0.15 \text{ K,} \\ \text{Pressure depression upstream of LFE (EPI)} & \pm 0.01 \text{ kPa,} \\ \text{Pressure drop across (EDP) LFE matrix} & \pm 0.0015 \text{ kPa,} \end{array}$ 

 $\begin{array}{ll} \mbox{Air flow } (Q_s) & \pm 0.5 \mbox{ per cent,} \\ \mbox{CFV inlet depression (PPI)} & \pm 0.02 \mbox{ kPa,} \\ \mbox{Temperature at venturi inlet } (T_v) & \pm 0.2 \mbox{ K.} \end{array}$ 

3.4.3.4. The equipment shall be set up as shown in Figure 7 and checked for leaks. Any leaks between the flow-measuring device and the critical flow venturi will seriously affect the accuracy of the calibration.

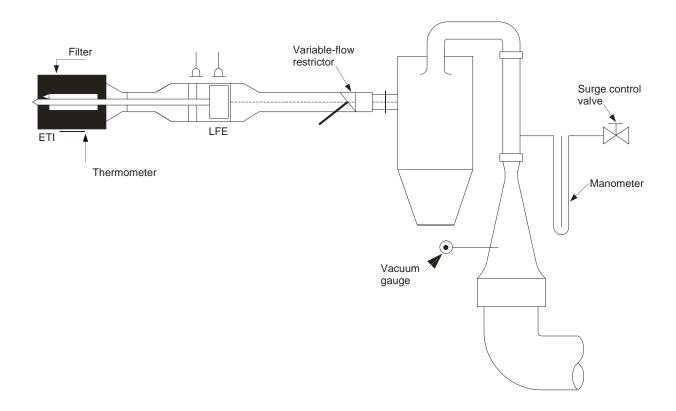



Figure 7: CFV Calibration Configuration

- 3.4.3.4.1. The variable-flow restrictor shall be set to the open position, the suction device shall be started and the system stabilized. Data from all instruments shall be recorded.
- 3.4.3.4.2. The flow restrictor shall be varied and at least eight readings across the critical flow range of the venturi shall be made.
- 3.4.3.4.3. The data recorded during the calibration shall be used in the following calculation:
- 3.4.3.4.3.1. The air flow-rate  $(Q_s)$  at each test point shall be calculated from the flow-meter data using the manufacturer's prescribed method.

Calculate values of the calibration coefficient for each test point:

$$K_{v} = \frac{Q_{s}\sqrt{T_{v}}}{P_{v}}$$

where:

 $Q_s$  is the flow rate, m<sup>3</sup>/min at 273.15 K and 101.325, kPa;

 $T_v$  is the temperature at the venturi inlet, K;

P<sub>v</sub> is the absolute pressure at the venturi inlet, kPa.

3.4.3.4.3.2.  $K_v$  shall be plotted as a function of venturi inlet pressure. For sonic flow,  $K_v$  will have a relatively constant value. As pressure decreases (vacuum increases), the venturi becomes unchoked and  $K_v$  decreases. The resultant  $K_v$  changes are not permissible.

3.4.3.4.3.3. For a minimum of eight points in the critical region, an average  $K_{\nu}$  and the standard deviation shall be calculated.

3.4.3.4.3.4. If the standard deviation exceeds 0.3 per cent of the average  $K_v$ , corrective action must be taken.

3.4.4. Calibration of a subsonic venturi (SSV)

3.4.4.1. Calibration of the SSV is based upon the flow equation for a subsonic venturi. Gas flow is a function of inlet pressure and temperature, pressure drop between the SSV inlet and throat.

3.4.4.2. Data analysis

3.4.4.2.1. The airflow rate ( $Q_{SSV}$ ) at each restriction setting (minimum 16 settings) shall be calculated in standard  $m^3/s$  from the flow meter data using the manufacturer's prescribed method. The discharge coefficient shall be calculated from the calibration data for each setting as follows:

$$C_{d} = \frac{Q_{SSV}}{d_{V}^{2} \times p_{p} \times \sqrt{\left\{\frac{1}{T} \times \left(r_{p}^{1.426} - r_{p}^{1.713}\right) \times \left(\frac{1}{1 - r_{D}^{4} \times r_{p}^{1.426}}\right)\right\}}}$$

where:

Q<sub>SSV</sub> is the airflow rate at standard conditions (101.325 kPa, 273.15 K), m<sup>3</sup>/s;

T is the temperature at the venturi inlet, K;

d<sub>V</sub> is the diameter of the SSV throat, m;

 $r_p$  is the ratio of the SSV throat to inlet absolute static pressure,  $1 - \frac{\Delta p}{p_p}$ 

 $r_D$  is the ratio of the SSV throat diameter,  $d_V$ , to the inlet pipe inner diameter D

To determine the range of subsonic flow,  $C_d$  shall be plotted as a function of Reynolds number Re, at the SSV throat. The Re at the SSV throat shall be calculated with the following equation:

$$Re = A_1 \times \frac{Q_{SSV}}{d_V \times \mu}$$

where:

$$\mu = \frac{b \times T^{1.5}}{S + T}$$

A<sub>1</sub> is 25.55152 in SI,  $\left(\frac{1}{m^3}\right)\left(\frac{min}{s}\right)\left(\frac{mm}{m}\right)$ ;

Q<sub>SSV</sub> is the airflow rate at standard conditions (101.325 kPa, 273.15 K), m<sup>3</sup>/s; d<sub>V</sub> is the diameter of the SSV throat, m; is the absolute or dynamic viscosity of the gas, kg/ms; b is 1.458 x 10<sup>6</sup> (empirical constant), kg/ms K<sup>0.5</sup>; S is 110.4 (empirical constant), K.

- 3.4.4.2.2. Because  $Q_{SSV}$  is an input to the Re equation, the calculations must be started with an initial guess for  $Q_{SSV}$  or  $C_d$  of the calibration venturi, and repeated until  $Q_{SSV}$  converges. The convergence method shall be accurate to 0.1 per cent of point or better.
- 3.4.4.2.3 For a minimum of sixteen points in the region of subsonic flow, the calculated values of  $C_d$  from the resulting calibration curve fit equation must be within  $\pm$  0.5 per cent of the measured  $C_d$  for each calibration point.
- 3.4.5. Calibration of an ultrasonic flow meter (UFM)
- 3.4.5.1. The UFM must be calibrated against a suitable reference flow meter.
- 3.4.5.2. The UFM must be calibrated in the CVS configuration as it will be used in the test cell (diluted exhaust piping, suction device) and checked for leaks. Refer to Figure 8.
- 3.4.5.3. A heater shall be installed to condition the calibration flow in the event that the UFM system does not include a heat exchanger.
- 3.4.5.4. For each CVS flow setting that will be used, the calibration shall be performed at temperatures from room temperature to the maximum that will be experienced during vehicle testing.
- 3.4.5.5. The manufacturer's recommended procedure shall be followed for calibrating the electronic portions of the UFM.
- 3.4.5.6. Measurements for flow calibration of the ultrasonic flow meter are required and the following data (in the case of the use of a laminar flow element) shall be found within the limits of precision given:

 $\begin{array}{lll} \mbox{(a) barometric pressure (corrected) $(P_b)$} & \pm 0.03 \ kPa, \\ \mbox{(b) LFE air temperature, flow-meter (ETI)} & \pm 0.15 \ K, \\ \mbox{(c) pressure depression upstream of LFE (EPI)} & \pm 0.01 \ kPa, \\ \mbox{(d) pressure drop across (EDP) LFE matrix} & \pm 0.0015 \ kPa, \\ \mbox{(e) air flow $(Q_s)$} & \pm 0.5 \ per \ cent, \\ \end{array}$ 

(f) UFM inlet depression ( $P_{act}$ )  $\pm 0.02$  kPa, (g) temperature at UFM inlet ( $T_{act}$ )  $\pm 0.2$  K.

#### 3.4.5.7. Procedure

3.4.5.7.1. The equipment shall be set up as shown in Figure 8 and checked for leaks. Any leaks between the flow-measuring device and the UFM will seriously affect the accuracy of the calibration.

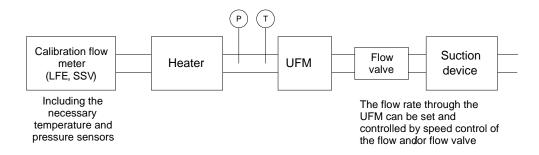



Figure 8: USM Calibration Configuration

- 3.4.5.7.2. The suction device shall be started. The suction device speed and/or the flow valve should be adjusted to provide the set flow for the validation and the system stabilised. Data from all instruments shall be recorded.
- 3.4.5.7.3. For UFM systems without heat exchanger, the heater shall be operated to increase the temperature of the calibration air, allowed to stabilise and data from all the instruments recorded. The temperature shall be increased in reasonable steps until the maximum expected diluted exhaust temperature expected during the emissions test is reached.
- 3.4.5.7.4. The heater shall then be turned off and the suction device speed and/or flow valve then be adjusted to the next flow setting that might be used for vehicle emissions testing and the calibration sequence repeated.
- 3.4.5.8. The data recorded during the calibration shall be used in the following calculations. The air flow-rate ( $Q_s$ ) at each test point is calculated from the flow-meter data using the manufacturer's prescribed method.

$$K_v = Q_{reference} / Q_s$$

where:

Q<sub>s</sub> is the air flow rate at standard conditions (101.325 kPa, 273.15 K), m<sup>3</sup>/s;

Q<sub>reference</sub> is the air flow rate of the calibration flow meter at standard conditions (101.325)

 $kPa, 273.15 \text{ K}), \text{ m}^3/\text{s};$ 

K<sub>v</sub> is the calibration coefficient.

For UFM systems without a heat exchanger,  $K_{\nu}$  shall be plotted as a function of  $T_{act}$ .

The maximum variation in  $K_v$  shall not exceed 0.3 per cent of the mean  $K_v$  value of all the measurements taken at the different temperatures.

# 3.5. System Verification Procedure

# 3.5.1. General Requirements

3.5.1.1. The total accuracy of the CVS sampling system and analytical system shall be determined by introducing a known mass of an emissions gas species into the system whilst it is being operated as if during a normal test and then analysing and calculating the emission gas species according to the equations in Annex 7 except that the density of propane shall be taken as 1.967 grams per litre at standard conditions. The CFO (3.5.1.1.1.) and gravimetric methods (3.5.1.1.2.) are known to give sufficient accuracy.

The maximum permissible deviation between the quantity of gas introduced and the quantity of gas measured is 2 per cent.

#### 3.5.1.1.1. CFO Method

The CFO method meters a constant flow of pure gas (CO, CO<sub>2</sub>, or C<sub>3</sub>H<sub>8</sub>) using a critical flow orifice device.

3.5.1.1.1.1 A known quantity of pure gas (CO, CO<sub>2</sub> or C<sub>3</sub>H<sub>8</sub>) shall be fed into the CVS system through the calibrated critical orifice. If the inlet pressure is high enough, the flow-rate (q), which is adjusted by means of the critical flow orifice, is independent of orifice outlet pressure (critical flow). If deviations exceed 2 per cent, the cause of the malfunction shall be determined and corrected. The CVS system shall be operated as in a normal exhaust emission test for 5 to 10 minutes. The gas collected in the sampling bag is analysed by the usual equipment and the results compared to the concentration of the gas samples which was known beforehand.

### 3.5.1.1.2. Gravimetric Method

The gravimetric method weighs a limited quantity of pure gas (CO, CO<sub>2</sub>, or C<sub>3</sub>H<sub>8</sub>).

- 3.5.1.1.2.1. The weight of a small cylinder filled with either carbon monoxide or propane shall determined with a precision of  $\pm$  0.01 g. For 5 to 10 minutes, the CVS system operates as in a normal exhaust emission test while CO or propane is injected into the system. The quantity of pure gas involved shall be determined by means of differential weighing. The gas accumulated in the bag shall be analysed by means of the equipment normally used for exhaust gas analysis. The results shall then compared to the concentration figures computed previously.
- 4.0 Emissions measurement equipment
- 4.1. Gaseous emissions measurement equipment
- 4.1.1. System overview
- 4.1.1.1. A continuously proportional sample of the diluted exhaust gases and the dilution air shall be collected for analysis.

- 4.1.1.2. Mass gaseous emissions shall be determined from the proportional sample concentrations and the total volume measured during the test. The sample concentrations shall be corrected to take account of the species content of the ambient air.
- 4.1.2. Sampling system requirements
- 4.1.2.1. The sample of dilute exhaust gases shall be taken upstream from the suction device.
- 4.1.2.1.1. With the exception of §4.1.3.1. (hydrocarbon sampling system), §4.2. (particulate mass emissions measurement equipment) and §4.3. (particulate number emissions measurement equipment), the dilute exhaust gas sample may be taken downstream of the conditioning devices (if any).
- 4.1.2.2. The sampling rate shall not fall below 5 litres per minute and shall not exceed 0.2 per cent of the flow rate of the dilute exhaust gases. An equivalent limit shall apply to constant-mass sampling systems.
- 4.1.2.3. A sample of the dilution air shall be taken near the ambient air inlet (after the filter if one is fitted).
- 4.1.2.4. The dilution air sample shall not be contaminated by exhaust gases from the mixing area.
- 4.1.2.5. The sampling rate for the dilution air shall be comparable to that used for the dilute exhaust gases.
- 4.1.2.6. The materials used for the sampling operations shall be such as not to change the concentration of the emissions species.
- 4.1.2.7. Filters may be used in order to extract the solid particles from the sample.
- 4.1.2.8. Any valve used to direct the exhaust gases shall be of a quick-adjustment, quick-acting type.
- 4.1.2.9. Quick-fastening, gas-tight connections may be used between three-way valves and the sampling bags, the connections sealing themselves automatically on the bag side. Other systems may be used for conveying the samples to the analyser (three-way stop valves, for example).
- 4.1.2.10. Sample storage
- 4.1.2.10.1. The gas samples shall be collected in sampling bags of sufficient capacity not to impede the sample flow.
- 4.1.2.10.2. The bag material shall be such as to affect neither the measurements themselves nor the chemical composition of the gas samples by more than  $\pm 2$  per cent after 20 minutes (e.g.: laminated polyethylene/polyamide films, or fluorinated polyhydrocarbons).
- 4.1.3. Sampling systems
- 4.1.3.1. Hydrocarbon sampling system (HFID)

- 4.1.3.1.1. The hydrocarbon sampling system shall consist of a heated sampling probe, line, filter and pump. The sample shall be taken upstream of the heat exchanger (if fitted). The sampling probe shall be installed at the same distance from the exhaust gas inlet as the particulate sampling probe, in such a way that neither interferes with samples taken by the other. It shall have a minimum internal diameter of 4 mm.
- 4.1.3.1.2. All heated parts shall be maintained at a temperature of 463 K (190 °C)  $\pm$  10 K by the heating system.
- 4.1.3.1.3. The average concentration of the measured hydrocarbons shall be determined by integration.
- 4.1.3.1.4. The heated sampling line shall be fitted with a heated filter ( $F_H$ ) 99 per cent efficient with particles  $\geq 0.3$  µm to extract any solid particles from the continuous flow of gas required for analysis.
- 4.1.3.1.5. The sampling system response time (from the probe to the analyser inlet) shall be no more than four seconds.
- 4.1.3.1.6. The HFID shall be used with a constant mass flow (heat exchanger) system to ensure a representative sample, unless compensation for varying CFV or CFO flow is made.
- 4.1.3.2. NO or NO<sub>2</sub> sampling system (if applicable)
- 4.1.3.2.1. A continuous sample flow of diluted exhaust gas shall be supplied to the analyser.
- 4.1.3.2.2. The average concentration of the NO or NO<sub>2</sub> shall be determined by integration.
- 4.1.3.2.3. The continuous NO or NO<sub>2</sub> measurement shall be used with a constant flow (heat exchanger) system to ensure a representative sample, unless compensation for varying CFV or CFO flow is made.
- 4.1.4. Analysers
- 4.1.4.1. General requirements for gas analysis
- 4.1.4.1.1. The analysers shall have a measuring range compatible with the accuracy required to measure the concentrations of the exhaust gas sample species.
- 4.1.4.1.2. If not defined otherwise, measurement errors shall not exceed  $\pm 2$  per cent (intrinsic error of analyser) disregarding the reference value for the calibration gases.
- 4.1.4.1.3. The ambient air sample shall be measured on the same analyser with an identical range.
- 4.1.4.1.4. No gas drying device shall be used before the analysers unless shown to have no effect on the species content of the gas stream.
- 4.1.4.2. Carbon monoxide (CO) and carbon dioxide (CO<sub>2</sub>) analysis
- 4.1.4.2.1. Analysers shall be of the non-dispersive infrared (NDIR) absorption type.

- 4.1.4.3. Hydrocarbons (HC) analysis for all fuels other than diesel fuel
- 4.1.4.3.1. The analyser shall be of the flame ionisation (FID) type calibrated with propane gas expressed equivalent to carbon atoms  $(C_1)$ .
- 4.1.4.4. Hydrocarbons (HC) analysis for diesel fuel and optionally for other fuels
- 4.1.4.4.1. The analyser shall be of the heated flame ionisation type with detector, valves, pipework, etc., heated to 463 K (190 °C)  $\pm 10$  K. It shall be calibrated with propane gas expressed equivalent to carbon atoms (C<sub>1</sub>).
- 4.1.4.5. Methane (CH<sub>4</sub>) analysis
- 4.1.4.5.1. The analyser shall be either a gas chromatograph combined with a flame ionisation detector (FID), or a flame ionisation detector (FID) with a non-methane cutter type, calibrated with methane gas expressed equivalent to carbon atoms  $(C_1)$ .
- 4.1.4.6. Nitrogen oxide (NO<sub>x</sub>) analysis
- 4.1.4.6.1. The analyser shall be either a chemiluminescent (CLA) or a non-dispersive ultraviolet resonance absorption (NDUV).
- 4.1.4.7. Nitrogen oxide (NO) analysis (where applicable)
- 4.1.4.7.1. The analyser shall be a chemiluminescent (CLA) or an ultra-violet resonance absorption (NDUV).
- 4.1.4.8. Nitrogen oxide (NO<sub>2</sub>) analysis (where applicable)
- 4.1.4.8.1. §4.1.4.8.1. An ultra-violet resonance absorption (NDUV) or QCL-IR analyser may be used to measure NO<sub>2</sub> concentrations of diluted exhaust.
- 4.1.4.9. Nitrous oxide (N<sub>2</sub>O) analysis with GC ECD (where applicable)
- 4.1.4.9.1. A gas chromatograph with an electron-capture detector (GC–ECD) may be used to measure  $N_2O$  concentrations of diluted exhaust by batch sampling from exhaust and ambient bags. Refer to §7.2. in this Annex.
- 4.1.4.10. Nitrous oxide (N<sub>2</sub>O) analysis with IR-absorption spectrometry (where applicable) The analyser shall be a laser infrared spectrometer defined as modulated high resolution narrow band infrared analyser. An NDIR or FTIR may also be used but water, CO and CO<sub>2</sub> interference must be taken into consideration.
- 4.1.4.10.1. If the analyser shows interference to compounds present in the sample, this interference can be corrected. Analysers must have combined interference that is within  $0.0 \pm 0.1$  ppm.
- 4.1.5. Recommended system descriptions
- 4.1.5.1. Figure 9 is a schematic drawing of the gaseous emissions sampling system.

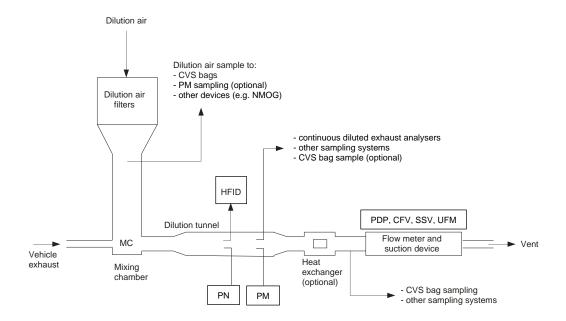



Figure 9: Gaseous Emissions Sampling System

- 4.1.5.2. The system components are as follows:
- 4.1.5.2.1. Two sampling probes for continuous sampling of the dilution air and of the diluted exhaust-gas/air mixture;
- 4.1.5.2.2. A filter to extract solid particles from the flows of gas collected for analysis;
- 4.1.5.2.3. Pumps to collect a constant flow of the dilution air as well as of the diluted exhaust-gas/air mixture during the test;
- 4.1.5.2.4. Flow controller to ensure a constant uniform flow of diluted exhaust gas and dilution air samples taken during the course of the test from sampling probes (PDP-CVS) and flow of the gas samples shall be such that, at the end of each test, the quantity of the samples is sufficient for analysis;
- 4.1.5.2.5. Flow meters for adjusting and monitoring the constant flow of diluted exhaust gas and dilution air samples during the test;
- 4.1.5.2.6. Quick-acting valves to divert a constant flow of gas samples into the sampling bags or to the outside vent;
- 4.1.5.2.7. Gas-tight, quick-lock coupling elements between the quick-acting valves and the sampling bags; the coupling shall close automatically on the sampling-bag side; as an alternative, other ways of transporting the samples to the analyser may be used (three-way stop-cocks, for instance);
- 4.1.5.2.8. Bags for collecting samples of the diluted exhaust gas and of the dilution air during the test;
- 4.1.5.2.9. A sampling critical flow venturi to take proportional samples of the diluted exhaust gas at sampling probe S<sub>2</sub> (CFV-CVS only);
- 4.1.5.2.10. Components for hydrocarbon sampling using an HFID:

Fh heated filter,

 $S_3$  sampling point close to the mixing chamber,

V<sub>h</sub> heated multi-way valve,

Q quick connector to allow the ambient air sample BA to be analysed on

the HFID,

HFID heated flame ionisation analyser,

R and I a means of integrating and recording instantaneous hydrocarbon con-

centrations,

L<sub>h</sub> heated sample line.

- 4.2. Particulate mass emissions measurement equipment
- 4.2.1. Specification
- 4.2.1.1. System overview
- 4.2.1.1.1. The particulate sampling unit shall consist of a sampling probe located in the dilution tunnel, a particle transfer tube, a filter holder(s), pump(s), flow rate regulators and measuring units.
- 4.2.1.1.2. A particle size pre-classifier (e.g. cyclone or impactor) may be used. In such case, it is recommended that it be employed upstream of the filter holder. However, a sampling probe, acting as an appropriate size-classification device such as that shown in Figure 10, is acceptable.
- 4.2.1.2. General requirements
- 4.2.1.2.1. The sampling probe for the test gas flow for particulates shall be so arranged within the dilution tract that a representative sample gas flow can be taken from the homogeneous air/exhaust mixture and shall be upstream of a heat exchanger (if any).
- 4.2.1.2.2. The particulate sample flow rate shall be proportional to the total mass flow of diluted exhaust gas in the dilution tunnel to within a tolerance of  $\pm$  5 per cent of the particulate sample flow rate. The verification of the proportionality of the PM sampling should be made during the commissioning of the system and as required by the responsible authority.
- 4.2.1.2.3. The sampled dilute exhaust gas shall be maintained at a temperature above 293 K ( $20^{\circ}$  C) and below 325 K ( $52^{\circ}$  C) within 20 cm upstream or downstream of the particulate filter face. Heating or insulation of components of the PM sampling system to achieve this is permissible.

In the event that the 52° C limit is exceeded during a test where periodic regeneration event does not occur, the CVS flow rate should be increased or double dilution should be applied (assuming that the CVS flow rate is already sufficient so as not to cause condensation within the CVS, sample bags or analytical system).

- 4.2.1.2.4. The particulate sample shall be collected on a single filter mounted within a holder in the sampled dilute exhaust gas flow.
- 4.2.1.2.5. All parts of the dilution system and the sampling system from the exhaust pipe up to

the filter holder, which are in contact with raw and diluted exhaust gas, shall be designed to minimise deposition or alteration of the particulates. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.

- 4.2.1.2.6. If it is not possible to compensate for variations in the flow rate, provision shall be made for a heat exchanger and a temperature control device as specified in §3.3.5.1. or §3.3.6.4.2. so as to ensure that the flow rate in the system is constant and the sampling rate accordingly proportional.
- 4.2.1.2.7. Temperatures required for the PM mass measurement should be measured with an accuracy of  $\pm 1$  deg C and a response time  $(t_{10} t_{90})$  of 15 seconds or less.
- 4.2.1.2.8. The PM sample flow from the dilution tunnel should be measured with an accuracy of  $\pm$  2.5 per cent of reading or  $\pm$  1.5 per cent full scale, whichever is the least.

The above accuracy of the PM sample flow from the CVS tunnel is also applicable where double dilution is used. Consequently, the measurement and control of the secondary dilution air flow and diluted exhaust flow rates through the PM filter must be of a higher accuracy.

- 4.2.1.2.9. All data channels required for the PM mass measurement shall be logged at a frequency of 1 Hz or faster. Typically these would include :
- (a) diluted exhaust temperature at the PM filter
- (b) PM sampling flow rate
- (c) PM secondary dilution air flow rate (if secondary dilution is used)
- (d) PM secondary dilution air temperature (if secondary dilution is used)
- 4.2.1.2.10. For double dilution systems, the accuracy of the diluted exhaust transferred from the dilution tunnel,  $V_{ep}$  in the equation is not measured directly but determined by differential flow measurement:

$$V_{ep} = V_{set} - V_{ssd}$$

where

V<sub>ep</sub> is the volume of diluted exhaust gas flowing through particulate filter under

standard conditions

V<sub>set</sub> is the volume of the double diluted exhaust gas passing through the particulate

collection filters

V<sub>ssd</sub> is the volume of secondary dilution air

The accuracy of the flow meters used for the measurement and control of the double diluted exhaust passing through the particulate collection filters and for the measurement/control of secondary dilution air shall be sufficient so that the differential volume  $(V_{ep})$  shall meet the accuracy and proportional sampling requirements specified for single dilution.

The requirement that no condensation of the exhaust gas should occur in the CVS dilution tunnel, diluted exhaust flow rate measurement system, CVS bag collection or analysis systems shall also apply in the case of double dilution systems.

4.2.1.2.11. Each flow meter used in a particulate sampling and double dilution system shall be subjected to a linearity verification as required by the instrument manufacturer.



Figure 10: Particulate Sampling System



Figure 11: Double Dilution Particulate Sampling System

### 4.2.1.3. Specific requirements

# 4.2.1.3.1. PM sampling probe

4.2.1.3.1.1. The sample probe shall deliver the particle-size classification performance described in paragraph 4.2.1.3.1.4. It is recommended that this performance be achieved by the use of a sharp-edged, open-ended probe facing directly into the direction of flow plus a preclassifier (cyclone impactor, etc.). An appropriate sampling probe, such as that indicated in Figure 12, may alternatively be used provided it achieves the preclassification performance described in paragraph 4.2.1.3.1.4.

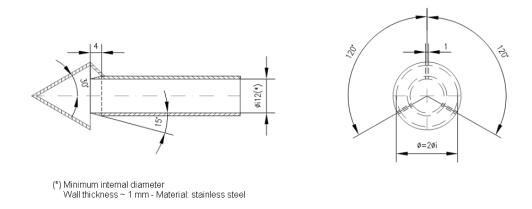



Figure 12: Alternative particulate sampling probe configuration

4.2.1.3.1.2. The sample probe shall be installed between 10 and 20 tunnel diameters downstream of the exhaust gas inlet to the tunnel and have an internal diameter of at least 8 mm. If more than one simultaneous sample is drawn from a single sample probe, the flow drawn from that probe shall be split into identical sub-flows to avoid sampling artifacts. If multiple probes are used, each probe shall be sharp-edged, open-ended and facing directly into the direction of flow. Probes shall be equally spaced around the central longitudinal axis of the dilution tunnel, with the spacing between probes at least 5 cm.

- 4.2.1.3.1.3. The distance from the sampling tip to the filter mount shall be at least five probe diameters, but shall not exceed 2,000 mm.
- 4.2.1.3.1.4. The pre-classifier (e.g. cyclone, impactor, etc.) shall be located upstream of the filter holder assembly. The pre-classifier 50 per cent cut point particle diameter shall be between 2.5  $\mu$ m and 10  $\mu$ m at the volumetric flow rate selected for sampling particulate mass emissions. The pre-classifier shall allow at least 99 per cent of the mass concentration of 1  $\mu$ m particles entering the pre-classifier to pass through the exit of the pre-classifier at the volumetric flow rate selected for sampling particulate mass emissions. However, a sampling probe, acting as an appropriate size-classification device, such as that shown in Figure 12, is acceptable as an alternative to a separate preclassifier.

### 4.2.1.3.2 Particle transfer tube (PTT)

4.2.1.3.2.1 Any bends in the PTT shall be smooth and have the largest possible curvarure radii.

- 4.2.1.3.3 Secondary dilution
- 4.2.1.3.3.1 As an option, the sample extracted from the CVS for the purpose of PM measurement may be diluted at a second stage, subject to the following requirements:
- 4.2.1.3.3.1.1. Secondary dilution air shall be filtered through a medium capable of reducing particles in the most penetrating particle size of the filter material by  $\geq$  99.95 per cent, or through a HEPA filter of at least class H13 of EN 1822:2009. The dilution air may optionally be charcoal scrubbed before being passed to the HEPA filter. It is recommended that an additional coarse particle filter is situated before the HEPA filter and after the charcoal scrubber, if used.
- 4.2.1.3.3.1.2. The secondary dilution air should be injected into the PTT as close to the outlet of the diluted exhaust from the dilution tunnel as possible.
- 4.2.1.3.3.1.3. The residence time from the point of secondary diluted air injection to the filter face shall be at least 0.25 seconds, but no longer than 5 seconds.
- 4.2.1.3.3.1.4. The diluted exhaust flow extracted from the dilution tunnel shall remain proportional to the CVS flow rate, as required for the single dilution method.
- 4.2.1.3.3.1.5. If the double diluted PM sample is returned to the CVS, the location of the sample return shall be selected so that it does not interfere with the extraction of other samples from the CVS.
- 4.2.1.3.4. Sample pump and flow meter
- 4.2.1.3.4.1. The sample gas flow measurement unit shall consist of pumps, gas flow regulators and flow measuring units.
- 4.2.1.3.4.2. The temperature of the gas flow in the flow meter may not fluctuate by more than  $\pm$  3 K except:
- (a) when the PM sampling flow meter has real time monitoring and flow control operating at 1 Hz or faster;
- (b) during regeneration tests on vehicles equipped with periodically regenerating aftertreatment devices.

In addition, the sample mass flow rate shall remain proportional to the total flow of diluted exhaust gas to within a tolerance of  $\pm$  5 per cent of the particulate sample mass flow rate. Should the volume of flow change unacceptably as a result of excessive filter loading, the test shall be invalidated. When it is repeated, the rate of flow shall be decreased.

- 4.2.1.3.5. Filter and filter holder
- 4.2.1.3.5.1. A valve shall be located downstream of the filter in the direction of flow. The valve shall open and close within 1 s of the start and end of test.
- 4.2.1.3.5.3. For a given test, the gas filter face velocity shall be set to a single value within the range 20 cm/s to 105 cm/s and should be set at the start of the test so that 105 cm/s will not be exceeded when the dilution system is being operated with sampling flow proportional to CVS

flow rate.

4.2.1.3.5.4. Fluorocarbon coated glass fibre filters or fluorocarbon membrane filters are required.

All filter types shall have a  $0.3 \mu m$  DOP (di-octylphthalate) or PAO (poly-alpha-olefin) CS 68649-12-7 or CS 68037-01-4 collection efficiency of at least 99 per cent at a gas filter face velocity of 5.33 cm/s measured according to one of the following standards:

- (1) U.S.A. Department of Defense Test Method Standard, MIL-STD-282 method 102.8: DOP-Smoke Penetration of Aerosol-Filter Element
- (2) U.S.A. Department of Defense Test Method Standard, MIL-STD-282 method 502.1.1: DOP-Smoke Penetration of Gas-Mask Canisters
- (3) Institute of Environmental Sciences and Technology, IEST-RP-CC021: Testing HEPA and ULPA Filter Media.
- 4.2.1.3.5.5. The filter holder assembly shall be of a design that provides an even flow distribution across the filter stain area. The filter shall be round and have a stain area of at least 1075 mm<sup>2</sup>.
- 4.2.2. Weighing chamber and analytical balance specifications
- 4.2.2.1. Weighing chamber conditions
- (a) The temperature of the chamber (or room) in which the particulate filters are conditioned and weighed shall be maintained to within 295 K  $\pm$  2 K (22 °C  $\pm$  2 °C, 22 °C  $\pm$  1 °C if possible) during all filter conditioning and weighing.
- (b) The humidity shall be maintained to a dew point of less than 283.5 K (10.5 °C) and a relative humidity of 45 per cent  $\pm$  8 per cent. For sensitive balances, it is recommended that the tolerance for the weighing chamber room air temperature be  $\pm$  1 K.
- (c) The levels of ambient contaminants in the chamber (or room) environment that would settle on the particulate filters during their stabilisation shall be minimised. Limited deviations from weighing room temperature and humidity specifications will be allowed provided their total duration does not exceed 30 minutes in any one filter conditioning period.
- (d) The weighing room should meet the required specifications prior to personal entrance into the weighing room.
- (e) During the weighing operation no deviations from the specified conditions are permitted.

### 4.2.2.2. Analytical balance

The analytical balance used to determine the filter weight shall meet the linearity verification criterion of table 1 below. This implies a precision (standard deviation) of at least 2  $\mu$ g and a resolution of at least 1  $\mu$ g (1 digit = 1  $\mu$ g).

| Measurement | Intercept b | Slope m     | Standard error<br>SEE | Coefficient of determination r <sup>2</sup> |
|-------------|-------------|-------------|-----------------------|---------------------------------------------|
| system      |             |             | SEE                   | determination i                             |
| PM Balance  | ≤ 1% max    | 0.99 - 1.01 | ≤ 1% max              | ≥ 0.998                                     |

Table 1. Analytical balance verification criteria

# 4.2.2.3. Elimination of static electricity effects

The effects of static electricity shall be nullified. This may be achieved by grounding the balance through placement upon an antistatic mat and neutralisation of the particulate filters prior to weighing using a polonium neutraliser or a device of similar effect. Alternatively nullification of static effects may be achieved through equalisation of the static charge.

### 4.2.2.4. Buoyancy correction

The sample and reference filter weights shall be corrected for their buoyancy in air. The buoyancy correction is a function of sampling filter density, air density and the density of the balance calibration weight, and does not account for the buoyancy of the PM itself.

If the density of the filter material is not known, the following densities shall be used:

- (a) PTFE coated glass fiber filter: 2,300 kg/m<sup>3</sup>
- (b) PTFE membrane filter: 2,144 kg/m<sup>3</sup>
- (c) PTFE membrane filter with polymethylpentene support ring: 920 kg/m<sup>3</sup>

For stainless steel calibration weights, a density of 8,000 kg/m³ shall be used. If the material of the calibration weight is different, its density must be known.

The following equation shall be used:

$$m_f = m_{uncorr} \times \left(\frac{1 - \frac{\rho_a}{\rho_w}}{1 - \frac{\rho_a}{\rho_f}}\right)$$

where:

$$\rho_a = \frac{p_b \times 28.836}{8.3144 \times T_a}$$

where:

m<sub>uncor</sub> is the uncorrected particulate sample mass, mg;

 $\rho_a$  is the density of the air, kg/m<sup>3</sup>;

 $\rho_{\rm w}$  is the density of balance calibration weight, kg/m<sup>3</sup>;  $\rho_{\rm f}$  is the density of the particulate sampling filter, kg/m<sup>3</sup>;

p<sub>b</sub> is the total atmospheric pressure, kPa;

T<sub>a</sub> is the air temperature in the balance environment, K.

### NOTE: The following section (§4.3.) is under review

- [4.3. Particle number emissions measurement equipment
- 4.3.1. Specification
- 4.3.1.1. System overview
- 4.3.1.1.1 The particle sampling system shall consist of a probe or sampling point extracting a sample from a homogenously mixed flow in a dilution system, a volatile particle remover (VPR) upstream of a particle number counter (PNC) and suitable transfer tubing.
- 4.3.1.1.2. It is recommended that a particle size pre-classifier (e.g. cyclone, impactor, etc.) be located prior to the inlet of the VPR. However, a sample probe acting as an appropriate size-classification device, such as that shown in Figure 12, is an acceptable alternative to the use of a particle size pre-classifier.

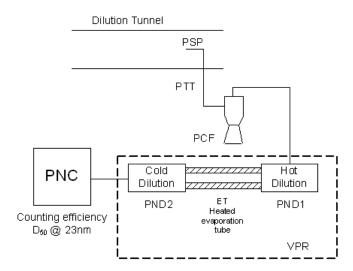



Figure 13: A recommended particle sampling system

### 4.3.1.2. General requirements

- 4.3.1.2.1. The particle sampling point shall be located within a dilution system. In the case of double dilution systems, the particle sampling point shall be located within the primary dilution system.
- 4.3.1.2.1.1. The sampling probe tip or particle sampling point (PSP) and particle transfer tube (PTT) together comprise the particle transfer system (PTS). The PTS conducts the sample from the dilution tunnel to the entrance of the VPR. The PTS shall meet the following conditions:
- (a) the sampling probe shall be installed 10 to 20 tunnel diameters downstream of the gas inlet, facing upstream into the tunnel gas flow with its axis at the tip parallel to that of the dilution tunnel;
- (b) the sampling probe shall be upstream of any conditioning device (e.g. heat exchanger);
- (c) the sampling probe shall be positioned within the dilution tract so that the sample is taken from a homogeneous diluent/exhaust mixture.

- 4.3.1.2.1.2. Sample gas drawn through the PTS shall meet the following conditions:
- (a) in the case of full flow dilution systems, it shall have a flow Reynolds number, Re, of < 1700;
- (b) in the case of double dilution dilution systems, it shall have a flow Reynolds number (Re) of < 1700 in the PTT i.e. downstream of the sampling probe or point;
- (c) shall have a residence time of  $\leq 3$  seconds.
- 4.3.1.2.1.3. Any other sampling configuration for the PTS for which equivalent particle penetration at 30 nm can be demonstrated will be considered acceptable.
- 4.3.1.2.1.4. The outlet tube (OT) conducting the diluted sample from the VPR to the inlet of the PNC shall have the following properties:
- (a) an internal diameter of  $\geq 4$ mm;
- (b) a sample gas flow residence time of  $\leq 0.8$  seconds.
- 4.3.1.2.1.5. Any other sampling configuration for the OT for which equivalent particle penetration at 30 nm can be demonstrated will be considered acceptable.
- 4.3.1.2.2. The VPR shall include devices for sample dilution and for volatile particle removal.
- 4.3.1.2.3. All parts of the dilution system and the sampling system from the exhaust pipe up to the PNC, which are in contact with raw and diluted exhaust gas, shall be designed to minimize deposition of the particles. All parts shall be made of electrically conductive materials that do not react with exhaust gas components, and shall be electrically grounded to prevent electrostatic effects.
- 4.3.1.2.4. The particle sampling system shall incorporate good aerosol sampling practice that includes the avoidance of sharp bends and abrupt changes in cross-section, the use of smooth internal surfaces and the minimisation of the length of the sampling line. Gradual changes in the cross-section are permissible.
- 4.3.1.3. Specific requirements
- 4.3.1.3.1. The particle sample shall not pass through a pump before passing through the PNC.
- 4.3.1.3.2. A sample pre-classifier is recommended.
- 4.3.1.3.3. The sample preconditioning unit shall:
- (a) be capable of diluting the sample in one or more stages to achieve a particle number concentration below the upper threshold of the single particle count mode of the PNC and a gas temperature below  $35\,^{\circ}\text{C}$  at the inlet to the PNC;
- (b) include an initial heated dilution stage which outputs a sample at a temperature of  $\geq 150$  °C and  $\leq 400$  °C, and dilutes by a factor of at least 10;

- (c) control heated stages to constant nominal operating temperatures, within the range  $\geq$  150°C and  $\leq$  400°C, to a tolerance of  $\pm$ 10 °C;
- (d) provide an indication of whether or not heated stages are at their correct operating temperatures;
- e) be designed to achieve a solid particle penetration efficiency of at least [70 per cent] for particles of 100nm electrical mobility diameter,
- (f) achieve a particle concentration reduction factor ( $f_r(d_i)$ ), as calculated below, for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than [30 per cent and 20 per cent] respectively higher, and no more than [5] per cent lower than that for particles of 100 nm electrical mobility diameter for the VPR as a whole;

The particle concentration reduction factor at each particle size (fr(di)) shall be calculated as follows:

$$f_r(d_i) = \frac{N_{in}(d_i)}{N_{out}(d_i)}$$

where:

 $N_{in}(d_i)$  is the upstream particle number concentration for particles of diameter  $d_i$ ;  $N_{out}(d_i)$  is the downstream particle number concentration for particles of diameter

d<sub>i</sub>;

d<sub>i</sub> is the particle electrical mobility diameter (30, 50 or 100 nm).

 $N_{in}(d_i)$  and  $N_{out}(d_i)$  shall be corrected to the same conditions.

The mean particle concentration reduction,  $\overline{f_r}$ , at a given dilution setting shall be calculated as follows:

$$\bar{f}_r = \frac{f_r (30 \text{ nm}) + f_r (50 \text{ nm}) + f_r (100 \text{ nm})}{3}$$

It is recommended that the VPR is calibrated and validated as a complete unit;

- (g) be designed according to good engineering practice to ensure particle concentration reduction factors are stable across a test;
- (h) also achieve > 99.0 per cent vaporisation of 30 nm tetracontane (CH<sub>3</sub>(CH<sub>2</sub>)<sub>38</sub>CH<sub>3</sub>) particles, with an inlet concentration of  $\geq$  10,000 cm<sup>-3</sup>, by means of heating and reduction of partial pressures of the tetracontane.

### 4.3.1.3.4. The PNC shall:

- (a) operate under full flow operating conditions;
- (b) have a counting accuracy of  $\pm 10$  per cent across the range 1 cm<sup>-3</sup> to the upper threshold of the single particle count mode of the PNC against a traceable standard. At concentrations be-

low 100 cm<sup>-3</sup> measurements averaged over extended sampling periods may be required to demonstrate the accuracy of the PNC with a high degree of statistical confidence;

- (c) have a readability of at least 0.1 particles cm<sup>-3</sup> at concentrations below 100 cm<sup>-3</sup>;
- (d) have a linear response to particle concentrations over the full measurement range in single particle count mode;
- (e) have a data reporting frequency equal to or greater than 0.5 Hz;
- (f) have a t<sub>90</sub> response time over the measured concentration range of less than 5 s;
- (g) incorporate a coincidence correction function up to a maximum 10 per cent correction, and may make use of an internal calibration factor as determined in [5.8.2.1.3.] but shall not make use of any other algorithm to correct for or define the counting efficiency;
- h) have counting efficiencies at the different particle sized as specified below:

| Particle size electrical mobility | CPC counting efficiency |  |
|-----------------------------------|-------------------------|--|
| diameter (nm)                     | (per cent)              |  |
| 23 ± 1                            | $50 \pm 12$             |  |
| $41 \pm 1$                        | > 90                    |  |

- 4.3.1.3.5. If the PNC makes use of a working liquid, it shall be replaced at the frequency specified by the instrument manufacturer.
- 4.3.1.3.6. Where they are not held at a known constant level at the point at which PNC flow rate is controlled, the pressure and/or temperature at inlet to the PNC shall be measured and reported for the purposes of correcting particle concentration measurements to standard conditions.
- 4.3.1.3.7. The sum of the residence time of the PTS, VPR and OT plus the  $t_{90}$  response time of the PNC shall be no greater than 20 s.
- 4.3.1.3.8. The transformation time of the entire particle number sampling system (PTS, VPR, OT and PNC) shall be determined by aerosol switching directly at the inlet of the PTS. The aerosol switching shall be done in less than 0.1 s. The aerosol used for the test shall cause a concentration change of at least 60 per cent full scale (FS).

The concentration trace shall be recorded. For time alignment of the particle number concentration and exhaust flow signals, the transformation time is defined as the time from the change  $(t_0)$  until the response is 50 per cent of the final reading  $(t_{50})$ .

# 4.3.1.4. Recommended system description

The following paragraph contains the recommended practice for measurement of particle number. However, any systems meeting the performance specifications in paragraphs 4.2.1.2. and 4.2.1.3. are acceptable.

# 4.3.1.4.1. Sampling system description

- 4.3.1.4.1.1. The particle sampling system shall consist of a sampling probe tip or particle sampling point in the dilution system, a particle transfer tube (PTT), a particle pre-classifier (PCF) and a volatile particle remover (VPR) upstream of the particle number concentration measurement (PNC) unit.
- 4.3.1.4.1.2. The VPR shall include devices for sample dilution (particle number diluters: PND<sub>1</sub> and PND<sub>2</sub>) and particle evaporation (evaporation tube, ET).
- 4.3.1.4.1.3. The sampling probe or sampling point for the test gas flow shall be so arranged within the dilution tract that a representative sample gas flow is taken from a homogeneous diluent/exhaust mixture.
- 4.3.1.4.1.4. The sum of the residence time of the system plus the  $t_{90}$  response time of the PNC shall be no greater than 20 s.
- 4.3.1.4.2. Particle transfer system (PTS)

The sampling probe tip or particle sampling point and particle transfer tube (PTT) together comprise the particle transfer system. The PTS conducts the sample from the dilution tunnel to the entrance to the first particle number diluter.

- 4.3.1.4.2.1. The PTS shall meet the following conditions:
- (a) the sampling probe shall be installed 10 to 20 tunnel diameters downstream of the gas inlet, facing upstream into the tunnel gas flow with its axis at the tip parallel to that of the dilution tunnel.
- (b) the sampling probe shall be positioned within the dilution tract so that the sample is taken from a homogeneous diluent/exhaust mixture.
- 4.3.1.4.2.2. Sample gas drawn through the PTS shall meet the following conditions:
- (a) have a flow Reynolds number (Re) of < 1700;
- (b) have a residence time in the PTS of  $\leq 3$  seconds.
- 4.3.1.4.2.3. Any other sampling configuration for the PTS for which equivalent particle penetration for particles of 30 nm electrical mobility diameter can be demonstrated will be considered acceptable.
- 4.3.1.4.2.4. The outlet tube (OT) conducting the diluted sample from the VPR to the inlet of the PNC shall have the following properties:
- (a) an internal diameter of  $\geq 4$  mm;
- (b) sample gas flow residence time of  $\leq 0.8$  seconds.
- 4.3.1.4.2.5. Any other sampling configuration for the OT for which equivalent particle penetration for particles of 30 nm electrical mobility diameter can be demonstrated will be considered acceptable.

- 4.3.1.4.3. Particle pre-classifier
- 4.3.1.4.3.1. The recommended particle pre-classifier shall be located upstream of the VPR.
- 4.3.1.4.3.2. The pre-classifier 50 per cent cut point particle diameter shall be between 2.5  $\mu$ m and 10  $\mu$ m at the volumetric flow rate selected for sampling particle number emissions.
- 4.3.1.4.3.3. The pre-classifier shall allow at least 99 per cent of the mass concentration of 1  $\mu$ m particles entering the pre-classifier to pass through the exit of the pre-classifier at the volumetric flow rate selected for sampling particle number emissions.
- 4.3.1.4.4. Volatile particle remover (VPR)
- 4.3.1.4.4.1. The VPR shall comprise one particle number diluter (PND<sub>1</sub>), an evaporation tube and a second diluter (PND<sub>2</sub>) in series. This dilution function is to reduce the number concentration of the sample entering the particle concentration measurement unit to less than the upper threshold of the single particle count mode of the PNC and to suppress nucleation within the sample.
- 4.3.1.4.4.2. The VPR shall provide an indication of whether or not PND<sub>1</sub> and the evaporation tube are at their correct operating temperatures.
- 4.3.1.4.4.3. The VPR shall achieve > 99.0 per cent vaporisation of 30 nm tetracontane (CH<sub>3</sub>(CH<sub>2</sub>)<sub>38</sub>CH<sub>3</sub>) particles, with an inlet concentration of  $\ge 10,000$  cm<sup>-3</sup>, by means of heating and reduction of partial pressures of the tetracontane.
- 4.3.1.4.4.4. The VPR shall be designed to achieve a solid particle penetration efficiency of at least [70 per cent] for particles of 100nm electrical mobility diameter.
- 4.3.1.4.4.5. The VPR shall also achieve a particle concentration reduction factor (fr) for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than [30 per cent and 20 per cent] respectively higher, and no more than 5 per cent lower than that for particles of 100 nm electrical mobility diameter for the VPR as a whole. It shall be designed according to good engineering practice to ensure particle concentration reduction factors are stable across a test.
- 4.3.1.4.5. First particle number dilution device (PND<sub>1</sub>)
- 4.3.1.4.5.1. The first particle number dilution device shall be specifically designed to dilute particle number concentration and operate at a (wall) temperature of 150 °C to 400 °C.
- 4.3.1.4.5.1.1. The wall temperature set point should be held at a constant nominal operating temperature, within this range, to a tolerance of  $\pm 10$  °C and not exceed the wall temperature of the ET described in § 4.3.1.4.6.
- 4.3.1.4.5.1.2. The diluter should be supplied with HEPA filtered dilution air and be capable of a dilution factor of 10 to 200 times.
- 4.3.1.4.6. Evaporation tube (ET)

- 4.3.1.4.6.1. The entire length of the ET shall be controlled to a wall temperature greater than or equal to that of the first particle number dilution device and the wall temperature held at a fixed nominal operating temperature of 350 °C, to a tolerance of  $\pm$  10 °C.
- 4.3.1.4.6.2. The residence time within the ET shall be in the range 0.25 0.4 seconds.
- 4.3.1.4.7. Second particle number dilution device (PND<sub>2</sub>)
- 4.3.1.4.7.1. PND<sub>2</sub> shall be specifically designed to dilute particle number concentration. The diluter shall be supplied with HEPA filtered dilution air and be capable of maintaining a single dilution factor within a range of 10 to 30 times.
- 4.3.1.4.7.2. The dilution factor of  $PND_2$  shall be selected in the range between 10 and 15 such that particle number concentration downstream of the second diluter is less than the upper threshold of the single particle count mode of the PNC and the gas temperature prior to entry to the PNC is < 35 °C.]
- 5.0 Calibration intervals and procedures

#### 5.1. Calibration intervals

| Instrument Checks                              | Interval                       | Criteria                     |
|------------------------------------------------|--------------------------------|------------------------------|
| Linearisation (calibration)                    | Every 6 months                 | ± 2 % of reading             |
| Mid Span                                       | Monthly                        | ± 2 %                        |
| CO NDIR:                                       | Monthly                        | -1 to 3 ppm                  |
| CO <sub>2</sub> /H <sub>2</sub> O interference |                                |                              |
| NO <sub>x</sub> converter check                | Monthly                        | > 95 %                       |
| CH <sub>4</sub> cutter check                   | Yearly                         | 98% of Ethane                |
| FID CH <sub>4</sub> response                   | Yearly                         | See 5.4.3.                   |
| FID air/fuel flow                              | At major maintenance           | According to instrument mfr. |
| NO/NO <sub>2</sub> NDUV:                       | At major maintenance           | According to instrument mfr. |
| H <sub>2</sub> O, HC interference              |                                |                              |
| Laser infrared spectrometers                   | Yearly or at major maintenance | According to instrument mfr. |
| (modulated high resolution                     |                                |                              |
| narrow band infrared analysers)                |                                |                              |
| GC methods                                     | See 7.2. and 7.3.              | See 7.2. and 7.3.            |
| FTIR                                           | See 7.1.5.2.                   | See 7.1.5.2.                 |
| Diode laser                                    | See 7.1.5.1.                   | See 7.1.5.1.                 |
| Microgram balance linearity                    | Yearly or at major maintenance | See 4.2.2.2.                 |

Table 2: Instrument Calibration Intervals

| CVS                | Interval       | Criteria  |
|--------------------|----------------|-----------|
| CFV Flow           | After Overhaul | ± 2 %     |
| Dilution Flow      | Yearly         | ± 2 %     |
| Temperature Sensor | Yearly         | ± 1 °C    |
| Pressure Sensor    | Yearly         | ± 0.4 kPa |
| Injection Check    | Weekly         | ± 2 %     |

Table 3: CVS Calibration Intervals

| Climate          | Interval       | Criteria                     |
|------------------|----------------|------------------------------|
| Temperature      | Yearly         | ± 1 °C                       |
| Moisture Dew     | Yearly         | ± 5 per cent RH              |
| Ambient pressure | Yearly         | ± 0.4 kPa                    |
| Wind Speed Fan   | After Overhaul | According to chapter 6.3.1.2 |

Table 4: Environmental data calibration intervals

# 5.2. Analyser calibration procedures

- 5.2.1. Each analyser shall be calibrated as specified by the instrument manufacturer or at least as often as described in Table 2.
- 5.2.2. Each normally used operating range shall be linearised by the following procedure:
- 5.2.2.1. The analyser linearisation curve shall be established by at least five calibration points spaced as uniformly as possible. The nominal concentration of the calibration gas of the highest concentration shall be not less than 80 per cent of the full scale.
- 5.2.2.2. The calibration gas concentration required may be obtained by means of a gas divider, diluting with purified  $N_2$  or with purified synthetic air. The accuracy of the mixing device shall be such that the concentrations of the diluted calibration gases may be determined to within  $\pm 2$  per cent.
- 5.2.2.3. The linearisation curve shall be calculated by the least squares method. If the resulting polynomial degree is greater than 3, the number of calibration points shall be at least equal to this polynomial degree plus 2.
- 5.2.2.4. The linearisation curve shall not differ by more than  $\pm 2$  per cent from the nominal value of each calibration gas.
- 5.2.2.5. From the trace of the linearisation curve and the linearisation points, it is possible to verify that the calibration has been carried out correctly. The different characteristic parameters of the analyser shall be indicated, particularly:
- (a) scale;
- (b) sensitivity;
- (c) zero point;
- (d) date of the linearisation.
- 5.2.2.6. If it can be shown to the satisfaction of the responsible authority that alternative technologies (e.g. computer, electronically controlled range switch, etc.) can give equivalent accuracy, these alternatives may be used.
- 5.3. Analyser zero and span verification procedure
- 5.3.1. Each normally used operating range shall be checked prior to each analysis in accordance with the following:
- 5.3.1.1. The calibration shall be checked by use of a zero gas and by use of a span gas that has a nominal value within 80 95 per cent of the supposed value to be analysed.

- 5.3.1.2. If, for the two points considered, the value found does not differ by more than  $\pm$  5 per cent of the full scale from the theoretical value, the adjustment parameters may be modified. Should this not be the case, a new calibration curve shall be established in accordance with paragraph 5.2. of this Annex.
- 5.3.1.3. After testing, zero gas and the same span gas are used for re-checking. The analysis is considered acceptable if the difference between the two measuring results is less than 2 per cent.
- 5.4. FID hydrocarbon response check procedure
- 5.4.1. Detector response optimisation

The FID shall be adjusted, as specified by the instrument manufacturer. Propane in air should be used, to optimise the response, on the most common operating range.

- 5.4.2. Calibration of the HC analyser
- 5.4.2.1. The analyser shall be calibrated using propane in air and purified synthetic air.
- 5.4.2.2. A calibration curve as described in paragraph 5.2.2.of this Annex shall be established.
- 5.4.3. Response factors of different hydrocarbons and recommended limits
- 5.4.3.1. The response factor  $(R_f)$ , for a particular hydrocarbon species is the ratio of the FID  $C_1$  reading to the gas cylinder concentration, expressed as ppm  $C_1$ .

The concentration of the test gas shall be at a level to give a response of approximately 80 per cent of full-scale deflection, for the operating range. The concentration shall be known to an accuracy of  $\pm$  2 per cent in reference to a gravimetric standard expressed in volume. In addition, the gas cylinder shall be pre-conditioned for 24 hours at a temperature between 293 K and 303 K (20 and 30 °C).

5.4.3.2. Response factors shall be determined when introducing an analyser into service and at major service intervals thereafter. The test gases to be used and the recommended response factors are:

 $\label{eq:methane and purified air:} 1.00 < R_f < 1.15$  Propylene and purified air:  $0.90 < R_f < 1.10$  Toluene and purified air:  $0.90 < R_f < 1.10$ 

These are relative to a response factor  $(R_f)$  of 1.00 for propane and purified air.

- 5.5. NO<sub>x</sub> converter efficiency test procedure
- 5.5.1. Using the test set up as shown in Figure 14 and procedure described below, the efficiency of converters for the conversion of NO<sub>2</sub> into NO shall be tested by means of an ozonator as follows:
- 5.5.1.1. The analyser shall be calibrated in the most common operating range following the manufacturer's specifications using zero and span gas (the NO content of which shall amount to approximately 80 per cent of the operating range and the  $NO_2$  concentration of the gas mixture shall be less than 5 per cent of the NO concentration). The  $NO_x$  analyser shall be in the NO mode so that the span gas does not pass through the converter. The indicated concentration shall be recorded.

- 5.5.1.2. Via a T-fitting, oxygen or synthetic air shall be added continuously to the span gas flow until the concentration indicated is approximately 10 per cent less than the indicated calibration concentration given in paragraph 5.5.1.1. above. The indicated concentration (c) shall be recorded. The ozonator shall be kept deactivated throughout this process.
- 5.5.1.3. The ozonator shall now be activated to generate enough ozone to bring the NO concentration down to 20 per cent (minimum 10 per cent) of the calibration concentration given in paragraph 5.5.1.1. above. The indicated concentration (d) shall be recorded.
- 5.5.1.4. The  $NO_x$  analyser shall then be switched to the  $NO_x$  mode, whereby the gas mixture (consisting of NO,  $NO_2$ ,  $O_2$  and  $N_2$ ) now passes through the converter. The indicated concentration (a) shall be recored.
- 5.5.1.5. The ozonator shall now be deactivated. The mixture of gases described in paragraph 5.5.1.2. above shall pass through the converter into the detector. The indicated concentration (b) shall be recorded.

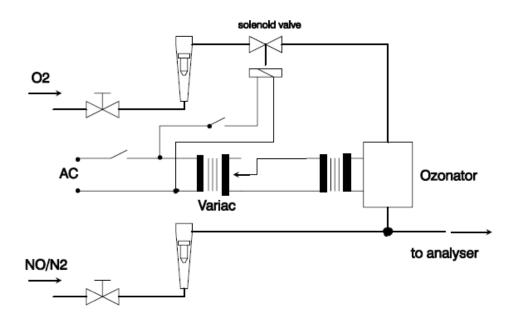



Figure 14: NOx Converter Efficiency Test Configuration

- 5.5.1.6. With the ozonator deactivated, the flow of oxygen or synthetic air shall be shut off. The  $NO_2$  reading of the analyser shall then be no more than 5 per cent above the figure given in paragraph 5.5.1.1. above.
- 5.5.1.7. The efficiency of the NO<sub>x</sub> converter shall be calculated as follows:

Efficiency (per cent) = 
$$\left(1 + \frac{a - b}{c - d}\right) \times 100$$

5.5.1.7.1. The efficiency of the converter shall not be less than 95 per cent. The efficiency of the converter shall be tested in the frequency defined in Table 2.

- 5.6. Calibration of the microgram balance
- 5.6.1. The calibration of the microgram balance used for particulate filter weighing shall be traceable to a national or international standard. The balance shall comply with the linearity requirements given in paragraph 4.2.2.2. The linearity verification shall be performed at least every 12 months or whenever a system repair or change is made that could influence the calibration.
- 5.7. Calibration and validation of the particle sampling system<sup>1</sup>
- 5.7.1. Calibration of the particle number counter
- 5.7.1.1. The responsible authority shall ensure the existence of a calibration certificate for the PNC demonstrating compliance with a traceable standard within a 13-month period prior to the emissions test. Between calibrations either the counting efficiency of the PNC should be monitored for deterioration or the PNC wick should be routinely changed every 6 months. PNC counting efficiency may be monitored against a reference PNC or against at least two other measurement PNCs. If the PNC reports particle concentrations within  $\pm$  5% of the average of the concentrations from the reference PNC, or group of three or more PNCs, then the PNC shall be considered stable, otherwise maintenance of the PNC is required. Where the PNC is monitored against two or more other measurement PNCs it is permissible to use a reference vehicle running sequentially in different test cells each with its own PNC.
- 5.7.1.2. The PNC shall also be recalibrated and a new calibration certificate issued following any major maintenance.
- 5.7.1.3. Calibration shall be traceable to a standard calibration method by comparing the response of the PNC under calibration with that of:
- (a) a calibrated aerosol electrometer when simultaneously sampling electrostatically classified calibration particles, or
- (b) a second PNC which has been directly calibrated by the above method.
- 5.7.1.3.1. In case §5.7.1.3.(a), calibration shall be undertaken using at least six standard concentrations spaced as uniformly as possible across the PNC's measurement range.
- 5.7.1.3.2. In case §5.7.1.3.(b), calibration shall be undertaken using at least six standard concentrations across the PNC's measurement range. At least 3 points shall be at concentrations below 1,000 cm<sup>-3</sup>, the remaining concentrations shall be linearly spaced between 1,000 cm<sup>-3</sup> and the maximum of the PNC's range in single particle count mode.
- 5.7.1.3.3. In cases §5.7.1.3.(a) and §5.7.1.3.(b), the selected points shall include a nominal zero concentration point produced by attaching HEPA filters of at least class H13 of EN 1822:2008, or equivalent performance, to the inlet of each instrument. With no calibration factor applied to the PNC under calibration, measured concentrations shall be within  $\pm$  10 per

http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/pmpFCP.ht

Example calibration/validation methods are available at:

cent of the standard concentration for each concentration, with the exception of the zero point, otherwise the PNC under calibration shall be rejected. The gradient from a linear regression of the two data sets shall be calculated and recorded. A calibration factor equal to the reciprocal of the gradient shall be applied to the PNC under calibration. Linearity of response is calculated as the square of the Pearson product moment correlation coefficient (R<sup>2</sup>) of the two data sets and shall be equal to or greater than 0.97. In calculating both the gradient and R<sup>2</sup> the linear regression shall be forced through the origin (zero concentration on both instruments).

5.7.1.4. Calibration shall also include a check, according to the requirements in paragraph 4.3.1.3.4.(h), on the PNC's detection efficiency with particles of 23 nm electrical mobility diameter. A check of the counting efficiency with 41 nm particles is not required.

5.7.2. Calibration/validation of the volatile particle remover

5.7.2.1. Calibration of the VPR's particle concentration reduction factors across its full range of dilution settings, at the instrument's fixed nominal operating temperatures, shall be required when the unit is new and following any major maintenance. The periodic validation requirement for the VPR's particle concentration reduction factor is limited to a check at a single setting, typical of that used for measurement on diesel particulate filter equipped vehicles. The responsible authority shall ensure the existence of a calibration or validation certificate for the volatile particle remover within a 6-month period prior to the emissions test. If the volatile particle remover incorporates temperature monitoring alarms, a 13 month validation interval shall be permissible.

It is recommended that the VPR is calibrated and validated as a complete unit.

The VPR shall be characterised for particle concentration reduction factor with solid particles of 30 nm, 50 nm and 100 nm electrical mobility diameter. Particle concentration reduction factors (f<sub>r</sub>(d)) for particles of 30 nm and 50 nm electrical mobility diameters shall be no more than 30 per cent and 20 per cent higher respectively, and no more than 5 per cent lower than that for particles of 100 nm electrical mobility diameter. For the purposes of validation, the mean particle concentration reduction factor shall be within  $\pm 10$  per cent of the mean particle concentration reduction factor  $(\bar{\mathbf{f}}_r)$  determined during the primary calibration of the VPR.

5.7.2.2. The test aerosol for these measurements shall be solid particles of 30, 50 and 100 nm electrical mobility diameter and a minimum concentration of 5,000 particles cm<sup>-3</sup> at the VPR inlet. As an option, a polydisperse aerosol with a modal concentration at 50 nm electrical mobility diameter may be used for validation. The test aerosol shall be thermally stable at the VPR operating temperatures. Particle concentrations shall be measured upstream and downstream of the components.

The particle concentration reduction factor for each monodisperse particle size  $(f_r(d_i))$  shall be calculated as follows:

$$f_r(d_i) = \frac{N_{in}(d_i)}{N_{out}(d_i)}$$

where:

 $N_{in}(d_i)$ is the upstream particle number concentration for particles of diameter d<sub>i</sub>;  $N_{out}(d_i)$ is the downstream particle number concentration for particles of diameter d<sub>i</sub>; is the particle electrical mobility diameter (30, 50 or 100 nm).

 $N_{in}(d_i)$  and  $N_{out}(d_i)$  shall be corrected to the same conditions.

The mean particle concentration reduction factor,  $(\overline{f_r})$ , at a given dilution setting shall be calculated as follows;

$$\overline{f_r} = \frac{f_r(30nm) + f_r(50nm) + f_r(100nm)}{3}$$

Where a polydisperse 50nm aerosol is used for validation, the mean particle concentration reduction factor  $(\overline{f_y})$  at the dilution setting used for validation shall be calculated as follows;

$$\overline{f_v} = \frac{N_{in}}{N_{out}}$$

where:

 $N_{in}$  is the upstream particle number concentration;  $N_{out}$  is the downstream particle number concentration

5.7.2.3. A validation certificate for the VPR demonstrating effective volatile particle removal efficiency within a 6 month period prior to the emissions test shall be presented upon request.

5.7.2.3.1. If the volatile particle remover incorporates temperature monitoring alarms, a 13 month validation interval shall be permissible.

5.7.2.3.2. The VPR shall demonstrate greater than 99.0 per cent removal of tetracontane (CH3(CH2)38CH3) particles of at least 30 nm electrical mobility diameter with an inlet concentration of  $\geq$  10,000 cm-3 when operated at its minimum dilution setting and manufacturers recommended operating temperature.

5.7.3. Particle number system check procedures

5.7.3.1. On a monthly basis, the flow into the particle counter shall report a measured value within 5 per cent of the particle counter nominal flow rate when checked with a calibrated flow meter.

- 6.0. Reference gases
- 6.1. Pure gases
- 6.1.1. All values in ppm mean V-ppm (vpm)
- 6.1.2. The following pure gases shall be available, if necessary, for calibration and operation:
- 6.1.2.1. Nitrogen: (purity:  $\leq$  1 ppm C,  $\leq$  1 ppm CO,  $\leq$  400 ppm CO<sub>2</sub>,  $\leq$  0.1 ppm NO, < 0.1 ppm NO<sub>2</sub>, < 0.1 ppm N<sub>2</sub>O, < 0,1 ppm NH<sub>3</sub>)
- 6.1.2.2. Synthetic air: (purity:  $\leq 1$  ppm C,  $\leq 1$  ppm CO,  $\leq 400$  ppm CO<sub>2</sub>,  $\leq 0.1$  ppm NO); oxygen content between 18 and 21 per cent volume;
- 6.1.2.3. Oxygen: (purity: > 99.5 per cent vol.  $O_2$ );

- 6.1.2.4. Hydrogen (and mixture containing helium): (purity:  $\leq 1$  ppm C,  $\leq 400$  ppm CO<sub>2</sub>);
- 6.1.2.5. Carbon monoxide: (minimum purity 99.5 per cent);
- 6.1.2.6. Propane: (minimum purity 99.5 per cent).
- 6.2. Calibration and span gases
- 6.2.1. The true concentration of a calibration gas shall be within  $\pm 1$  per cent of the stated figure or as given below :

Mixtures of gases having the following compositions shall be available with a bulk gas specifications according 6.1.2.1 or 6.1.2.2

- (a)  $C_3H_8$  in synthetic air (see paragraph 6.1.2.2. above);
  - (b) CO in nitrogen;
  - (c)  $CO_2$  in nitrogen.
  - (d) CH<sub>4</sub> in synthetic air
  - (e) NO in nitrogen (the amount of NO<sub>2</sub> contained in this calibration gas shall not exceed 5 per cent of the NO content).
  - (f)  $NO_2$  in nitrogen (tolerance  $\pm 2 \%$ )
  - (g)  $N_2O$  in nitrogen (tolerance  $\pm 2 \%$ )
  - (h)  $C_2H_5OH$  in synthetic air or nitrogen (tolerance  $\pm 2\%$ )
- 7.0 Additional sampling and analysis methods
- 7.1. Fourier transform infrared (FTIR) analyser
- 7.1.1. Measurement principle
- 7.1.1.1. An FTIR employs the broad waveband infrared spectroscopy principle. It allows simultaneous measurement of exhaust components whose standardized spectra are available in the instrument. The absorption spectrum (intensity/wavelength) is calculated from the measured interferogram (intensity/time) by means of the Fourier transform method.
- 7.1.1.2. The internal analyser sample stream up to the measurement cell and the cell itself shall be heated to the same temperature condition as defined in 10.1.1 (extractive sampling)
- 7.1.1.3. Measurement cross interference
- 7.1.1.3.1. The spectral resolution of the target wavelength shall be within 0.5 cm<sup>-1</sup> in order to minimize cross interference from other gases present in the exhaust gas.
- 7.1.1.3.2. Analyser response should not exceed  $\pm$  2 ppm at the maximum  $CO_2$  and  $H_2O$  concentration expected during the vehicle test.
- 7.2. Sampling and analysis methods for  $N_2O$
- 7.2.1. Gas chromatographic method
- 7.2.1.1 General description

Followed by the gas chromatographic separation,  $N_2O$  shall be analysed by an appropriate detector. This shall be an electron-capture detector (ECD).

#### 7.2.1.2. Sampling

From each phase of the test, a gas sample shall be taken from the corresponding diluted exhaust bag and dilution air bag for analysis. A single composite dilution background sample can be analysed instead (not possible for phase weighing).

# 7.2.1.2.1. Sample transfer

Secondary sample storage media may be used to transfer samples from the test cell to the GC lab. Good engineering judgement shall be used to avoid additional dilution when transferring the sample from sample bags to secondary sample bags.

# 7.2.1.2.1.1. Secondary sample storage media.

Gas volumes shall be stored in sufficiently clean containers that minimally off-gas or allow permeation of gases. Good engineering judgment shall be used to determine acceptable thresholds of storage media cleanliness and permeation. In order to clean a container, it may be repeatedly purged, evacuated and heated.

## 7.2.1.2.2. Sample storage

Secondary sample storage bags must be analysed within 24 hours and must be stored at room temperature.

#### 7.2.1.3. Instrumentation and apparatus

- 7.2.1.3.1. A gas chromatograph with an electron-capture detector (GC-ECD) may be used to measure  $N_2O$  concentrations of diluted exhaust for batch sampling.
- 7.2.1.3.2. The sample may be injected directly into the GC or an appropriate preconcentrator may be used. In case of preconcentration, this must be used for all necessary verifications and quality checks.
- 7.2.1.3.3. A packed or porous layer open tubular (PLOT) column phase of suitable polarity and length may be used to achieve adequate resolution of the  $N_2O$  peak for analysis.
- 7.2.1.3.4. Column temperature profile and carrier gas selection must be taken into consideration when setting up the method to achieve adequate  $N_2O$  peak resolution. Whenever possible, the operator must aim for baseline separated peaks.
- 7.2.1.3.5. Good engineering judgement shall be used to zero the instrument and to correct for drift.

Example: A span gas measurement may be performed before and after sample analysis without zeroing and using the average area counts of the pre-span and post-span measurements to generate a response factor (area counts/span gas concentration), which are then multiplied by the area counts from the sample to generate the sample concentration.

### 7.2.1.4. Reagents and material

All reagents, carrier and make up gases shall be of 99.995% purity. Make up gas shall be  $N_2$  or  $Ar/CH_4$ 

# 7.2.1.5. Peak integration procedure

- 7.2.1.5.1. Peak integrations are corrected as necessary in the data system. Any misplaced baseline segments are corrected in the reconstructed chromatogram.
- 7.2.1.5.2. Peak identifications provided by a computer shall be checked and corrected if necessary.
- 7.2.1.5.3. Peak areas shall be used for all evaluations. Peak heights may be used alternatively with approval of the responsible authority.

# 7.2.1.6. Linearity

A multipoint calibration to confirm instrument linearity shall be performed for the target compound:

- (a) for new instruments,
- (b) after doing instrument modifications that can affect linearity, and
- (c) at least once per year.
- 7.2.1.6.1. The multipoint calibration consists of at least 3 concentrations, each above the LoD, distributed over the range of expected sample concentration.
- 7.2.1.6.2. Each concentration level is measured at least twice.
- 7.2.1.6.3. A linear regression analysis is performed using concentration and average area counts to determine the regression correlation coefficient (r). The regression correlation coefficient must be greater than 0.995 to be considered linear for one point calibrations.

If the weekly check of the instrument response indicates that the linearity may have changed, a multipoint calibration must be done.

# 7.2.1.7. Quality control

- 7.2.1.7.1. The calibration standard shall be analysed each day of analysis to generate the response factors used to quantify the sample concentrations.
- 7.2.1.7.2. A quality control standard shall be analysed within 24 hours before the analysis of the sample.

#### 7.2.1.8. Calculations

Conc. 
$$N_2O = PeakArea_{sample} * ResponseFactor_{sample}$$

ResponseFactor<sub>sample</sub> = Concentration<sub>standard</sub> (ppb) / PeakArea<sub>standard</sub>

# 7.2.1.9. Limit of detection, limit of quantification

The determination limit is based on the noise measurement close to the retention time of  $N_2O$  (reference DIN 32645, 01.11.2008):

Limit of Detection: LoD = avg. (noise) + 3 x std. dev. where std. dev. is considered to be equal to noise.

Limit of Quantification:  $LoQ = 3 \times LoD$ 

For the purpose of calculating the mass of N<sub>2</sub>O, the concentration below LoD is considered to be zero.

# 7.2.1.10. Interference verification.

An interference is any component present in the sample with a retention time similar to that of the target compound described in this method. To reduce interference error, proof of chemical identity may require periodic confirmations using an alternate method or instrumentation.

#### ANNEX 6: TEST PROCEDURE AND TEST CONDITIONS

- 1.0. Test procedures and test conditions
- 1.1 Description of tests
- 1.1.1 The tests verify the emissions of gaseous species, particulate matter, particle number,  $CO_2$  emissions, fuel consumption, energy consumption and electric range in a characteristic driving cycle.
- 1.1.1.1. The tests shall be carried out by the method described in paragraph 1.2. and 1.3. to this regulation. Gases, particulate matter and particle number shall be sampled and analysed by the prescribed methods.
- 1.1.1.2 The number of tests shall be determined as shown in Figure 1.  $R_{i1}$  to  $R_{i3}$  describe the final measurement results of three tests to determine gaseous and particulate emissions species, carbon dioxide emission, fuel consumption and range, where applicable. L are limit values as defined in [ $\S$  unknown].

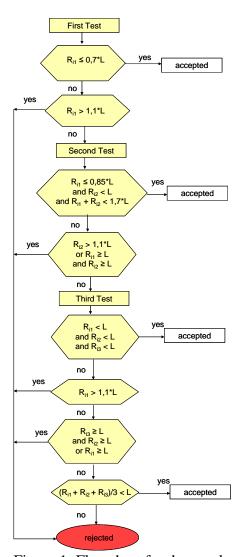



Figure 1: Flowchart for the number of Type I tests

# 1.2. Type I test conditions

#### 1.2.1. Overview

- 1.2.1.1. The Type I test consists of prescribed sequences of dynamometer preparation, fuelling, soaking, and operating conditions.
- 1.2.1.2. The test consists of engine start-ups and vehicle operation on a chassis dynamometer through a specified driving cycle. A proportional part of the diluted exhaust emissions is collected continuously for subsequent analysis, using a constant volume sampler or other suction device.
- 1.2.1.3. Except in cases of component malfunction or failure, all emission control systems installed on or incorporated in a tested vehicle shall be functioning during all procedures.
- 1.2.1.4. Background concentrations are measured for all species for which dilute mass emissions measurements are conducted. For exhaust testing, this requires sampling and analysis of the dilution air.

# 1.2.1.4.1. Background particulate mass measurement

- 1.2.1.4.1.1. Where the manufacturer requests and the Contracting Party permits subtraction of either dilution air or dilution tunnel particulate matter background from emissions measurements, these background levels shall be determined according to the following procedures:
- 1.2.1.4.1.1.1. The maximum permissible background correction shall be a mass on the filter equivalent to 1 mg/km at the flow rate of the test.
- 1.2.1.4.1.1.2. If the background exceeds this level, the default figure of 1 mg/km shall be subtracted.
- 1.2.1.4.1.1.3. Where subtraction of the background contribution gives a negative result, the particulate mass result shall be considered to be zero.
- 1.2.1.4.1.2. Dilution air particulate matter background level shall be determined by passing filtered dilution air through the particulate filter. This shall be drawn from a point immediately downstream of the dilution air filters. [Background levels in  $\Box g/m^3$  shall be updated daily and determined as a rolling average, of at least 20 measurements, with at least one measurement per week.]
- 1.2.1.4.1.3. Dilution tunnel particulate matter background level shall be determined by passing filtered dilution air through the particulate filter. This shall be drawn from the same point as the particulate matter sample. Where secondary dilution is used for the test the secondary dilution system should be active for the purposes of background measurement. One measurement may be performed on the day of test, either prior to or after the test.

# 1.2.1.4.2. Background particle number measurements

1.2.1.4.2.1. Where the contracting party permits subtraction of either dilution air or dilution tunnel particle number background from emissions measurements or a manufacturer requests a background sample, these background levels shall be determined as follows:

- 1.2.1.4.2.1.1. The maximum permissible background correction shall be equivalent to  $2x10^9$  particles/km.
- 1.2.1.4.2.1.2. If the background exceeds this level, the default figure of  $2x10^9$  particles/km may be subtracted.
- 1.2.1.4.2.1.3. Where subtraction of the background contribution gives a negative result, the particle number result shall be considered to be zero.
- 1.2.1.4.2.2. Dilution air particle number background level shall be determined by sampling filtered dilution air. This shall be drawn from a point immediately downstream of the dilution air filters into the particle number measurement system. [Background levels in #/m³ shall be updated daily and determined as a rolling average, of least 20 measurements with at least one measurement per week.]
- 1.2.1.4.2.3. Dilution tunnel particle number background level shall be determined by sampling filtered dilution air. This shall be drawn from the same point as the particle number sample. Where secondary dilution is used for the test the secondary dilution system should be active for the purposes of background measurement. One measurement may be performed on the day of test, either prior to or after the test.
- 1.2.2. General test cell equipment
- 1.2.2.1. Parameters to be measured
- 1.2.2.1.1. The following temperatures shall be measured with an accuracy of  $\pm$  1.5 K:
- (a) test cell ambient air
- (b) dilution and sampling system temperatures as required for emissions measurement systems defined in Annex 5 Test Equipment and Calibration.
- 1.2.2.1.2. Atmospheric pressure shall be measurable to within  $\pm$  0.1 kPa.
- 1.2.2.1.3. Absolute humidity ( $H_a$ ) shall be measurable to within  $\pm 1$  g  $H_2O/kg$  dry air.
- 1.2.2.2. Test cell and soak area
- 1.2.2.2.1. Test cell
- 1.2.2.2.1.1. The test cell shall have a temperature set point of 296 K. The tolerance of the actual value shall be within  $\pm$  5 K. The air temperature and humidity shall be measured at the vehicle cooling fan at a rate of 1 Hz.
- 1.2.2.2.1.2. The absolute humidity  $(H_a)$  of either the air in the test cell or the intake air of the engine shall be such that:

$$5.5 \le H_a \le 12.2$$
 (g H<sub>2</sub>O/kg dry air)

- 1.2.2.2.1.3. Humidity shall be measured continuously at a minimum of 1 Hz.
- 1.2.2.2.2. Soak area

1.2.2.2.2.1. The soak area shall have a temperature set point of 296 K and the tolerance of the actual value shall be within  $\pm$  3 K. The temperature shall be measured continuously at a minimum of 1 Hz.

# NOTE: Paragraphs §1.2.3.1. and §1.2.3.2. areunder development

#### 1.2.3. Test vehicle

- [1.2.3.1. The test vehicle shall conform in all its components with the production series, or, if the vehicle is different from the production series, a full description shall be given in the test report. For the measurement of  $CO_2$  and species emissions the vehicle with the highest mass  $(TM_H)$  [and the worst-case road load  $(RL_{HH})$ ] will be selected.
- 1.2.3.2. At the request of the manufacturer, the vehicle may be tested in addition at a test mass of  $TM_L$  [and at different road load settings ( $RL_{HH}$ ,  $RL_{HL}$  and  $RL_{LH}$ )] to determine the  $CO_2$  emission value for individual vehicles in the vehicle family according to the  $CO_2$  regression method in Annex 7 (insert reference). These additional tests are allowed if  $OM_H$  for the vehicle family is 100 kg or higher. If  $OM_H$  is lower than 100 kg, additional testing is allowed if  $OM_H$  is set to 100 kg.

For all additional tests, no species emissions and particulates must to be measured.]

#### 1.2.3.3. Run-in

The vehicle must be presented in good mechanical condition. It must have been run-in and driven between 3,000 km and 15,000 km before the test. The engine, transmission and vehicle shall be run-in in accordance with the manufacturer's requirements.

#### 1.2.4. Settings

- 1.2.4.1. Dynamometer settings and verification (see Annex 4 Road Load Determination)
- 1.2.4.2. Dynamometer operation mode
- 1.2.4.2.1. Vehicle dynamometer operation mode can be activated at the manufacturer's request.
- 1.2.4.2.2. A dynamometer operation mode, if any, shall be activated by using a manufacturer's instruction (e.g. using vehicle steering buttons in a special pressing order, by using the manufacturer's work shop tester, or by the removal of a fuse).

The manufacturer shall provide the responsible authority a list of the deactivated devices and justification of the deactivation.

Auxiliaries shall be switched off/deactivated during dynamometer operation.

1.2.4.2.3. Dynamometer operation mode shall not activate, modulate, delay or deactivate the operation of any part that affects the emissions and fuel consumption under the test conditions. Any device that affects the operation on a chassis dynamometer can be set in a certain condition to ensure a proper operation.

Activation or deactivation of the mode shall be recorded in the test report.

1.2.4.3. The vehicle's exhaust system shall not exhibit any leak likely to reduce the quantity of gas collected.

- 1.2.4.5. The settings of the engine and of the vehicle's controls shall be those prescribed by the manufacturer.
- 1.2.4.6. Tyres shall be of a type specified as original equipment by the vehicle manufacturer. Tyre pressure may be increased by up to 50 per cent above the pressure specified in §4.2.2.3. of Annex 4 Road and Dynamometer Load. The same tyre pressure shall be used for the setting of the dynamometer and for all subsequent testing. The tyre pressure used shall be recorded in the test report.
- 1.2.4.7. Specification of the reference fuel
- 1.2.4.7.1. The appropriate reference fuel as defined in Annex 3 Reference Fuels to this Regulation shall be used for testing.
- 1.2.4.8. Test vehicle preparation
- 1.2.4.8.1. The vehicle shall be approximately horizontal during the test so as to avoid any abnormal distribution of the fuel.
- 1.2.4.8.2. At the manufacturer's request and upon approval of the responsible authority, if the test vehicle is equipped with a dynamometer operation mode and/or coastdown mode, it shall be switched on.
- 1.2.4.8.3. If necessary, the manufacturer shall provide additional fittings and adapters, as required to accommodate a fuel drain at the lowest point possible in the tank(s) as installed on the vehicle, and to provide for exhaust sample collection.
- 1.2.5. Preliminary testing cycles
- 1.2.5.1. Preliminary testing cycles may be carried out if requested by the manufacturer to follow the speed trace within the prescribed limits.
- 1.2.6. Test vehicle preconditioning
- 1.2.6.1. The fuel tank or fuel tanks shall be filled with the specified test fuel. If the existing fuel in the fuel tank or fuel tanks does not meet the specifications contained in paragraph 1.2.4.8. above, the existing fuel shall be drained prior to the fuel fill. For the above operations, the evaporative emission control system shall neither be abnormally purged nor abnormally loaded.

# 1.2.6.2. Battery charging

Before the preconditioning test cycle, the battery may be fully charged. The battery shall not be charged again before the official testing.

- 1.2.6.3. The test vehicle shall be moved to the test cell and the following operations performed:
- 1.2.6.3.1. The test vehicle shall be placed, either by being driven or pushed, on a dynamometer and operated through the cycles as specified in Annex 1 for that class of vehicle. The vehicle need not be cold, and may be used to set dynamometer power.

- 1.2.6.3.2. The dynamometer shall be set according to §7.0. in Annex 4.
- 1.2.6.3.3. During preconditioning, the test cell temperature shall be the same as defined for the Type I test (§1.2.2.2.1. of this Annex).
- 1.2.6.3.4. The drive-wheel tyre pressure shall be set in accordance with the provisions of §4.2.1.2. of Annex 4 Road Load Determination.
- 1.2.6.3.5. Between the tests on the first gaseous reference fuel and the second gaseous reference fuel, for positive-ignition engined vehicles fuelled with LPG or NG/biomethane or so equipped that they can be fuelled with either petrol or LPG or NG/biomethane, the vehicle shall be preconditioned again before the test on the second reference fuel.
- 1.2.6.3.6. For the purpose of measuring particulates, at most 36 hours and at least 6 hours before testing, the complete cycle for that class of vehicle as described in Annex 1 of this GTR shall be used for vehicle pre-conditioning. Three consecutive complete cycles shall be driven. The dynamometer setting shall be indicated as in §1.2.4. above.
- 1.2.6.4. The engine shall be started up by means of the devices provided for this purpose according to the manufacturer's instructions.
- 1.2.6.4.1. If the vehicle does not start, the test is void, precondition tests must be repeated and a new test must be driven.
- 1.2.6.4.2. The cycle starts on the initiation of the engine start-up procedure.
- 1.2.6.4.3. In cases where LPG or NG/biomethane is used as a fuel, it is permissible that the engine is started on petrol and switched automatically to LPG or NG/biomethane after a predetermined period of time which cannot be changed by the driver.
- 1.2.6.4.4. Stationary/idling vehicle phase

During stationary/idling vehicle phases, the brakes shall be applied with appropriate force to prevent the drive wheels from turning.

- 1.2.6.5. Use of the gearbox
- 1.2.6.5.1. Manual shift gearbox

The gear shift prescriptions described in Annex 2 shall be followed.

Vehicles which do not attain the acceleration and maximum speed values required in the driving cycle shall be operated with the accelerator control fully activated until they once again reach the required driving curve. Speed trace violations under these circumstances shall not void a test. Deviations from the operating cycle shall be recorded in the test report.

- 1.2.6.5.1.1. The tolerances given in §1.2.6.6.below shall apply.
- 1.2.6.5.1.2. The gear change must be started and completed within  $\pm 1.0$  s of the prescribed gear shift point.
- 1.2.6.5.1.3. The clutch must be pressed within  $\pm 1.0$  s of the prescribed clutch operating point.
- 1.2.6.5.2. Semi-automatic gearbox

Vehicles equipped with semi-automatic gearboxes shall be tested using the gears normally employed for driving, and the gear shift used in accordance with the manufacturer's instructions.

The shift points shall be those determined by the gearshift calculation tool.

1.2.6.5.2.1. The tolerances given in §1.2.6.6. below shall apply.

# 1.2.6.5.3. Automatic-shift gearbox

Vehicles equipped with automatic-shift gearboxes shall be tested in the predominant drive mode. The accelerator control shall be used in such a way as to accurately follow the speed trace.

The tolerances given in §1.2.6.6. below shall apply.

After initial engagement, the selector shall not be operated at any time during the test.

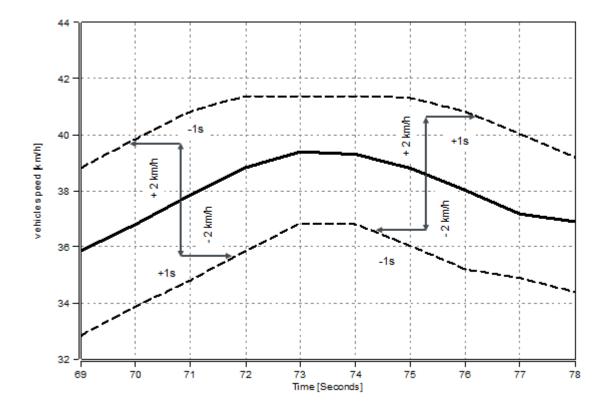
## 1.2.6.5.4. Use of multi-mode gearboxes

1.2.6.5.4.1. In the case of emissions testing, emission standards shall be fulfilled in all modes.

1.2.6.5.4.2. In the case of CO<sub>2</sub>/fuel consumption testing, the vehicle shall be tested in the default mode.

If the vehicle has no default mode, the vehicle shall be tested in the best case mode and worst case mode, and the CO<sub>2</sub> and fuel consumption results shall be the average of both modes.

Vehicles with an automatic transmission with a manual mode shall be tested according §1.2.6.5.3. of this Annex.


#### 1.2.6.6. Speed trace tolerances

The following tolerances shall be allowed between the indicated speed and the theoretical speed of the respective WLTC:

- (1) The upper limit may be 2.0 km/h higher than the trace within  $\pm$  1.0 s of the given point in time:
- (2) The lower limit may be 2.0 km/h lower than the trace within  $\pm$  1.0 s of the given time.

If the vehicle decelerates more rapidly without the use of the brakes, the provisions of paragraph §1.2.6.8.1. below shall apply. Speed tolerances greater than those prescribed shall be accepted provided the tolerances are never exceeded for more than [0.5] s on any one occasion.

There shall be no more than [10] such deviations per test.



#### 1.2.6.7. Accelerations

The vehicle shall be operated with the appropriate accelerator control movement necessary to accurately follow the speed trace.

The vehicle shall be operated smoothly, following representative shift speeds and procedures. For manual transmissions, the operator shall release the accelerator controller during each shift and accomplish the shift in minimum time.

If the vehicle cannot follow the speed trace, it shall be operated at maximum available power until the vehicle speed reaches the value prescribed for that time in the driving schedule.

#### 1.2.6.8. Decelerations

- 1.2.6.8.1. All decelerations of the cycle shall be effected by deactivating the accelerator control with the clutch remaining engaged.
- 1.2.6.8.1.1. If the vehicle decelerates quicker than prescribed by the drive trace, the vehicle shall be operated with the appropriate accelerator controller movement necessary to accurately follow the speed trace.
- 1.2.6.8.1.2. If the vehicle decelerates too slowly to follow the intended deceleration, the brakes shall be applied such, that is possible to accurately follow the speed trace.
- 1.2.6.9. Unexpected engine stop
- 1.2.6.9.1. If the engine stops unexpectedly during the test, the test shall be declared void.
- 1.2.6.10. After completion of the preconditioning cycle, the engine shall be switched off.

1.2.6.10.1. If requested by the manufacturer and approved by the responsible authority, additional WLTC preconditioning cycles may be driven to bring the vehicle and its control systems to a stabilised condition.

At request of the manufacturer or [responsible authority] additional wltc cycles can be performed in order to bring the vehicle and its control systems in a stabilised condition.

- 1.2.6.10.2. The additional preconditioning shall consist of driving the cycle for that class of vehicle as defined in Annex 1.
- 1.2.6.10.3. The extent of such additional preconditioning shall be recorded in the test report.
- 1.2.6.10.4. In a test facility in which there may be possible contamination of a low particulate emitting vehicle test with residue from a previous test on a high particulate emitting vehicle, it is recommended, for the purpose of sampling equipment pre-conditioning, that a 120 km/h steady state drive cycle of 20 minutes duration be driven by a low particulate emitting vehicle. Longer and/or higher speed running is permissible for sampling equipment pre-conditioning if required. Where dilution tunnel background measurements are used they shall be taken after the tunnel pre-conditioning running, and prior to any subsequent vehicle testing.

#### 1.2.7. Soak

- 1.2.7.1 After this preconditioning, and before testing, vehicles shall be kept in a room in which ambient conditions are described in 1.2.2.2.2.
- 1.2.7.2. The vehicle shall be soaked for a minimum of 6 hours and a maximum of 36 hours with the bonnet opened or closed.
- 1.2.7.3. If not excluded by specific provisions for a particular vehicle, cooling may be accomplished by forced cooling down to the setpoint temperature. If cooling is accelerated by fans, the fans shall be placed so that the maximum cooling of the drive train, engine and exhaust aftertreatment system is achieved in a homogeneous manner. This conditioning shall be carried out for at least six hours and continue until the engine oil temperature and coolant temperature, if any, are within  $\pm 2$  K of the setpoint.

#### 1.2.8. Emissions Test

- 1.2.8.1. The test vehicle shall be pushed onto a dynamometer and operated through the cycles as specified in Annex 1 for that class of vehicle.
- 1.2.8.1.1. The drive wheels of the vehicle shall be placed on the dynamometer without starting the engine.
- 1.2.8.1.2. The drive-wheel tyre pressures shall be set in accordance with the provisions of paragraph 1.2.6.3.4.
- 1.2.8.1.3. The bonnet shall be closed.
- 1.2.8.1.4. An exhaust connecting tube shall be attached to the vehicle tailpipe(s) immediately before starting the engine.

- 1.2.8.2. Engine starting and driving
- 1.2.8.2.1. The engine shall be started up by means of the devices provided for this purpose according to the manufacturer's instructions.
- 1.2.8.2.2. The vehicle shall be driven as described in paragraph 1.2.6.4.
- 1.2.8.3. During the test, speed shall be recorded against time or collected by the data acquisition system at a rate of no less than 1 Hz so that the driven speed can be assessed.
- 1.2.8.4. Before starting a new cycle part, dynamometer distance shall be recorded

#### 1.2.9. Gaseous Sampling

Gaseous samples shall be collected in bags and the compounds analysed at the end of the test, or the compounds may be analysed continuously and integrated over the cycle.

- 1.2.9.1. The following steps shall be taken prior to each test:
- 1.2.9.1.1. The purged, evacuated sample bags shall be connected to the dilute exhaust and dilution air sample collection systems.
- 1.2.9.1.2. Measuring instruments shall be started according to the instrument manufacturers' instructions.
- 1.2.9.1.3. The CVS heat exchanger (if installed) shall be pre-heated or pre-cooled to within its operating test temperature tolerance as specified in Annex 5 §3.3.5.1.
- 1.2.9.1.4. Components such as sample lines, filters, chillers and pumps shall be heated or cooled as required until stabilised operating temperatures are reached.
- 1.2.9.1.5. CVS flow rates shall be set according to §3.3.4. in Annex 5, and sample flow rates shall be set to the appropriate levels.
- 1.2.9.1.6. Any electronic integrating device shall be zeroed and may be re-zeroed before the start of any cycle phase.
- 1.2.9.1.7. For all continuous gas analysers, the appropriate ranges shall be selected. These may be switched during a test only if switching is performed by changing the span over which the digital resolution of the instrument is applied. The gains of an analyser's analogue operational amplifiers may not be switched during a test.
- 1.2.9.1.8. All continuous gas analysers shall be zeroed and spanned using gases fulfilling the requirements of §6.0. in Annex 5.
- 1.2.10. Particulate Mass Sampling
- 1.2.10.1. The following steps shall be taken prior to each test:
- 1.2.10.1.1. Filter Selection

1.2.10.1.1.1. A single particulate filter without back-up shall be employed for the complete test cycle driven for that class of vehicle.

# 1.2.10.1.2. Filter Preparation

1.2.10.1.2.1. At least one hour before the test, the filter shall be placed in a petri dish protecting against dust contamination and allowing air exchange, and placed in a weighing chamber for stabilization.

At the end of the stabilization period, the filter shall be weighed and its weight shall be recorded. The filter shall then be stored in a closed petri dish or sealed filter holder until needed for testing. The filter shall be used within eight hours of its removal from the weighing chamber.

The filter shall be returned to the stabilisation room within 1 hour after the test and shall be conditioned for at least one hour before weighing.

- 1.2.10.1.2.2. The particulate sample filter shall be carefully installed into the filter holder. The filter shall be handled only with forceps or tongs. Rough or abrasive filter handling will result in erroneous weight determination. The filter holder assembly shall be placed in a sample line through which there is no flow.
- 1.2.10.1.2.3. It is recommended that the microbalance be checked at the start of each weighing session within 24 hours of the sample weighing by weighing one reference weight of 100 mg. This weight shall be weighed three times and the average result recorded. If the average result of the weighings is  $\pm$  5 µg of the result from the previous weighing session then the weighing session and balance are considered valid.

#### 1.2.11. Particle Number Sampling

- 1.2.11.1. The following steps shall be taken prior to each test:
- 1.2.11.1.1. The particle specific dilution system and measurement equipment shall be started and made ready for sampling.
- 1.2.11.1.2. The correct function of the particle counter and volatile particle remover elements of the particle sampling system shall be confirmed according to the following procedures:
- 1.2.11.1.2.1. A leak check, using a filter of appropriate performance attached to the inlet of the entire particle number measurement system (VPR and PNC), shall report a measured concentration of less than 0.5 particles cm<sup>-3</sup>.
- 1.2.11.1.2.2. Each day, a zero check on the particle counter, using a filter of appropriate performance at the counter inlet, shall report a concentration of  $\leq 0.2$  particles cm<sup>-3</sup>. Upon removal of the filter, the particle counter shall show an increase in measured concentration to at least 100 particles cm<sup>-3</sup> when sampling ambient air and a return to  $\leq 0.2$  particles cm<sup>-3</sup> on replacement of the filter.
- 1.2.11.1.2.3. It shall be confirmed that the measurement system indicates that the evaporation tube, where featured in the system, has reached its correct operating temperature.
- 1.2.11.1.2.4. It shall be confirmed that the measurement system indicates that the diluter PND<sub>1</sub> has reached its correct operating temperature.

- 1.2.12. Sampling during the test
- 1.2.12.1. The dilution system, sample pumps and data collection system shall be started.
- 1.2.12.2. The particulate mass and particle number sampling systems shall be started.
- 1.2.12.3. Particle number shall be measured continuously. The average concentrations shall be determined by integrating the analyser signals over the test cycle.
- 1.2. 12.4. Sampling shall begin (BS) before or at the initiation of the engine start up procedure and end on conclusion of the cycle.
- 1.2.12.6. Sample switching
- 1.2.12.6.1. Gaseous emissions
- 1.2.12.7.1.1 Sampling from the diluted exhaust and dilution air shall be switched from one pair of sample bags to subsequent bag pairs (if necessary) at the end of each part of the cycle to be driven for that class of vehicle. The diluted exhaust and dilution air bags shall be measured by the analytical system as soon as possible.
- 1.2.12.6.2. Particulate matter
- 1.2.12.6.2.1. Particulate matter shall be collected on a single sample filter over the duration of the cycle.
- 1.2.12.6.3. Particulate number
- 1.2.12.6.3.1. Particles number shall be measured continuously over the duration of the cycle.
- 1.2.12.7. Before starting a new cycle part, dynamometer distance shall be recorded
- 1.2.13. Ending the test
- 1.2.13.1. The engine shall be turned off immediately after the end of the last part of the test.
- 1.2.13.2. The constant volume sampler (CVS) or other suction device shall be turned off, or the exhaust tube from the tailpipe or tailpipes of the vehicle shall be disconnected. [Should the test include a hot start, the transfer tube shall be disconnected but the CVS shall remain in operation.]
- 1.2.13.3. The vehicle may be removed from the dynamometer.
- 1.2.14. Post-test procedures
- 1.2.14.1. Gas analyser check
- 1.2.14.1.1. Zero and span gas reading of the analysers used for continuous diluted measurement shall be checked. The test shall be considered acceptable if the difference between the pre-test and post-test results is less than 2 per cent of the span gas value.
- 1.2.14.2. Bag analysis

- 1.2.14.2.1. The exhaust gases contained in the bag shall be analysed as soon as possible and in any event not later than [30] minutes after the end of the cycle phase.

  [However, the gas reactivity time for species in the bag shall be ensured.]
- 1.2.14.2.2. Prior to each sample analysis, the analyser range to be used for each species shall be set to zero with the appropriate zero gas.
- 1.2.14.2.3. The analysers shall then be set to the calibration curves by means of span gases of nominal concentrations of 70 to 100 per cent of the range.
- 1.2.14.2.4. The analysers zero settings shall then be rechecked: if any reading differs by more than 2 per cent of the range from that set in paragraph 1.2.14.2.2. above, the procedure shall be repeated for that analyser.
- 1.2.14.2.5. The samples shall then be analysed.
- 1.2.14.2.6. After the analysis zero and span points shall be rechecked using the same gases. If these rechecks are within  $\pm$  2 per cent of those in paragraph 1.2.14.2.2. above, the analysis shall be considered acceptable.
- 1.2.14.2.7. At all points in paragraph 1.2.14.2., the flow-rates and pressures of the various gases through analysers shall be the same as those used during calibration of the analysers.
- 1.2.14.2.8. The figure adopted for the content of the gases in each of the species measured shall be that read off after stabilisation of the measuring device.
- 1.2.14.2.9. The mass and number of all emissions, where applicable, shall be calculated according to Annex 7 Calculations.
- 1.2.14.3. Particulate filter weighing
- 1.2.14.3.1. The particulate filter shall be returned to the weighing chamber no later than one hour after completion of the test. It shall be conditioned in a petri dish, which is protected against dust contamination and allows air exchange, for at least [one hour], and then weighed. The gross weight of the filter shall be recorded.
- 1.2.14.3.2. At least two unused reference filters shall be weighed within 8 hours of, but preferably at the same time as, the sample filter weighings. Reference filters shall be of the same size and material as the sample filter.
- 1.2.14.3.3. If the specific weight of any reference filter changes by more than  $\pm$  5µg between sample filter weighings, then the sample filter and reference filters shall be reconditioned in the weighing room and then reweighed.
- 1.2.14.3.4. The comparison of reference filter weighings shall be made between the specific weights and the rolling average of that reference filter's specific weights. The rolling average shall be calculated from the specific weights collected in the period since the reference filters were placed in the weighing room. The averaging period shall be at least 1 day but not exceed 15 days.

- 1.2.14.3.5. Multiple reconditionings and reweighings of the sample and reference filters are permitted until a period of 80 h has elapsed following the measurement of gases from the emissions test. If, prior to or at the 80 h point, more than half the number of reference filters meet the  $\pm$  5 µg criterion, then the sample filter weighing can be considered valid. If, at the 80 h point, two reference filters are employed and one filter fails the  $\pm$  5 µg criterion, the sample filter weighing can be considered valid under the condition that the sum of the absolute differences between specific and rolling averages from the two reference filters must be less than or equal to 10 µg.
- 1.2.14.3.6. In case less than half of the reference filters meet the  $\pm$  5 µg criterion, the sample filter shall be discarded, and the emissions test repeated. All reference filters must be discarded and replaced within 48 hours. In all other cases, reference filters must be replaced at least every 30 days and in such a manner that no sample filter is weighed without comparison to a reference filter that has been present in the weighing room for at least 1 day.
- 1.2.14.3.7. If the weighing room stability criteria outlined in paragraph 4.2.2.1. of Annex 5 Test Equipment and Calibrations are not met, but the reference filter weighings meet the above criteria, the vehicle manufacturer has the option of accepting the sample filter weights or voiding the tests, fixing the weighing room control system and re-running the test.

# 1.3. Type II test conditions

# ANNEX 6, APPENDIX I

# EMISSIONS TEST PROCEDURE FOR VEHICLES EQUIPPED WITH PERIODICALLY REGENERATING SYSTEMS

NOTE: This entire annex has yet to be reviewed.

# 1. General

This Appendix defines the specific provisions regarding type-approval of a vehicle equipped with periodically regenerating systems.

During cycles where regeneration occurs, emission standards can be exceeded. If a regeneration of an anti-pollution device occurs at least once per Type I test and has already regenerated at least once during vehicle preparation cycle, it will be considered as a continuously regenerating system which does not require a special test procedure. Annex 6, Appendix I does not apply to continuously regenerating systems.

At the request of the manufacturer, and subject to the agreement of the responsible technical authority, the test procedure specific to periodically regenerating systems will not apply to a regenerative device if the manufacturer provides data demonstrating that, during cycles where regeneration occurs, emissions remain below the emissions limits applied by the Contracting Party for the relevant vehicle category.

#### 2. Test Procedure

The test vehicle shall be capable of inhibiting or permitting the regeneration process provided that this operation has no effect on original engine calibrations. Prevention of regeneration shall only be permitted during loading of the regeneration system and during the preconditioning cycles. It shall not be permitted during the measurement of emissions during the regeneration phase; rather the emission test shall be carried out with the unchanged original equipment manufacturer's (OEM) control unit.

- 2.1. Exhaust emission measurement between two cycles where regenerative phases occur
- 2.1.1. Average emissions between regeneration phases and during loading of the regenerative device shall be determined from the arithmetic mean of several approximately equidistant (if more than 2) Type I operating cycles or equivalent engine test bench cycles. As an alternative the manufacturer may provide data to show that the emissions remain constant (±15 per cent) between regeneration phases. In this case, the emissions measured during the regular Type I test may be used. In any other case emissions measurement for at least two Type I operating cycles or equivalent engine test bench cycles must be completed: one immediately after regeneration (before new loading) and one as close as possible prior to a regeneration phase. All emissions measurements shall be carried out according to this Annex and all calculations shall be carried out according to Annex 7.
- 2.1.2. The loading process and  $K_i$  determination shall be made during the Type I operating cycle, on a chassis dynamometer or on an engine test bench using an equivalent test cycle. These cycles may be run continuously (i.e. without the need to switch the engine off between

- cycles). After any number of completed cycles, the vehicle may be removed from the chassis dynamometer, and the test continued at a later time.
- 2.1.3. The number of cycles (D) between two cycles where regeneration phases occur, the number of cycles over which emissions measurements are made (n), and each emissions measurement (M'sij) shall be reported in the test report.
- 2.2. Measurement of emissions during regeneration
- 2.2.1. Preparation of the vehicle, if required, for the emissions test during a regeneration phase, may be completed using the preparation cycles in paragraph 1.2.6. of this Annex or equivalent engine test bench cycles, depending on the loading procedure chosen in paragraph 2.1.2. above.
- 2.2.2. The test and vehicle conditions for the Type I test described in Annex 6 apply before the first valid emission test is carried out.
- 2.2.3. Regeneration must not occur during the preparation of the vehicle. This may be ensured by one of the following methods:
- 2.2.3.1. A "dummy" regenerating system or partial system may be fitted for the preconditioning cycles.
- 2.2.3.2. Any other method agreed between the manufacturer and the responsible authority.
- 2.2.4. A cold-start exhaust emission test including a regeneration process shall be performed according to the WLTP-DHC operating cycle for that class of vehicle or equivalent engine test bench cycle. If the emissions tests between two cycles where regeneration phases occur are carried out on an engine test bench, the emissions test including a regeneration phase shall also be carried out on an engine test bench.
- 2.2.5. If the regeneration process requires more than one operating cycle, subsequent test cycle or cycles shall be driven immediately, without switching the engine off, until complete regeneration has been achieved (each cycle shall be completed). The time necessary to set up a new test should be as short as possible (e.g. particulate matter filter change). The engine must be switched off during this period. [Use of a single particulate matter filter for multiple cycles required to complete regeneration is permissible].
- 2.2.6. The emission values during regeneration  $(M_{\rm ri})$  shall be calculated according to Annex 7. The number of operating cycles (d) measured for complete regeneration shall be recorded.
- 3.0. Calculations
- 3.1. Calculation of the combined exhaust emissions of a single regenerative system

(1) 
$$\mathbf{M}_{si} = \frac{\sum_{j=1}^{n} \mathbf{M}'_{sij}}{n} \qquad n \ge 2$$

(2) 
$$M_{ri} = \frac{\sum_{j=1}^{d} M_{rij}}{d}$$

(3) 
$$M_{pi} = \left\{ \frac{M_{si} * D + M_{ri} * d}{D + d} \right\}$$

where for each species (i) considered:

M'<sub>sij</sub> are the mass emissions of species (i) over an operating cycle (or an equivalent engine test bench cycle) without regeneration, g/km;

 $M'_{rij}$  are the mass emissions of species (i) in g/km over an operating cycle (or an equivalent engine test bench cycle) during regeneration. (if d > 1, the first Type I test is run cold, and subsequent cycles are hot), g/km;

M<sub>si</sub> are the mean mass emission of species (i) without regeneration, g/km;

M<sub>ri</sub> are the mean mass emission of species (i) during regeneration, g/km;

M<sub>pi</sub> are the mean mass emission of species (i), g/km;

is the number of test points at which emissions measurements (WLTC operating cycles or equivalent engine test bench cycles) made between two cycles where regenerative phases occur,  $\geq 2$ ;

d is the number of operating cycles required for regeneration;

D is the number of operating cycles between two cycles where regenerative phases occur.

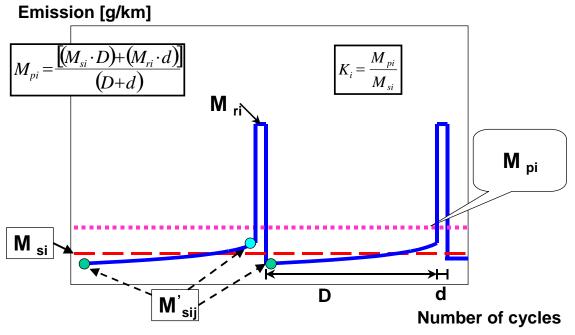



Figure 1: Parameters measured during emissions test during and between cycles where regeneration occurs (schematic example, the emissions during 'D' may increase or decrease)

# 3.1.1. Calculation of the regeneration factor K for each species (i) considered

The manufacturer may elect to determine either additive or multiplicative factors,

For multiplicative factors:  $K_i = M_{pi} / M_{si}$ 

For additive factors:  $K_i = M_{pi} - M_{si}$ 

 $M_{si}$ ,  $M_{pi}$  and  $K_i$  results, and the manufacturer's choice of type of factor shall be recorded in the test report.

K<sub>i</sub> may be determined following the completion of a single sequence.

3.2. Calculation of combined exhaust emissions of multiple periodic regenerating systems

(1) 
$$M_{sij} = \frac{\sum_{k=1}^{n_j} M'_{sij,k}}{n_j}$$
  $n_j \ge 2$ 

(2) 
$$M_{rij} = \frac{\sum_{k=1}^{d_j} M'_{rij,k}}{d_j}$$

(3) 
$$M_{si} = \frac{\sum_{j=1}^{x} M_{sij} * D_{j}}{\sum_{j=1}^{x} D_{j}}$$

(4) 
$$M_{ri} = \frac{\sum_{j=1}^{x} M_{rij} * d_{j}}{\sum_{j=1}^{x} d_{j}}$$

(5) 
$$M_{pi} = \frac{M_{si} * \sum_{j=1}^{x} D_{j} + M_{ri} * \sum_{j=1}^{x} d_{j}}{\sum_{j=1}^{x} (D_{j} + d_{j})}$$

(6) 
$$M_{pi} = \frac{\sum_{j=1}^{x} (M_{sij} * D_j + M_{rij} * d_j)}{\sum_{j=1}^{x} (D_j + d_j)}$$

(7) For multiplicative factors: 
$$K_i = \frac{M_{pi}}{M_{si}}$$
  
For additive factors:  $K_i = M_{pi} - M_{si}$ 

where:

is the mean mass emission of all events (j) of species (i) without  $M_{si}$ regeneration, g/km;  $M_{ri}$ is the mean mass emission of all events (j) of species (i) during regeneration, g/km; are the mean mass emission of all events (j) of species (i), g/km;  $M_{pi}$ are the mean mass emission of event (j) of species (i) without regeneration,  $M_{sii}$ g/km: is the mean mass emission of event (j) of species (i) during regeneration,  $M_{rij}$ g/km are the mass emissions of event (j) of species (i) over one [Type I] operating  $M'_{sij,k}$ cycle (or equivalent engine test bench cycle) without regeneration; k test points, g/km; are the mass emissions of event (j) of species (i) over one [Type I] operating  $M'_{rij,k}$ 

cycle (or equivalent engine test bench cycle) during regeneration (when k > 1, the first [Type I] test is run cold, and subsequent cycles are hot); k test points,  $n_i$ 

are the number of test points of event (j) at which emissions measurements ([Type I operating cycles or equivalent engine test bench cycles]) are made between two cycles where regenerative phases occur,  $\geq 2$ ;

number of operating cycles of event (j) required for regeneration;  $d_i$ 

 $D_i$ number of operating cycles of event (j) between two cycles where regenerative phases occur.

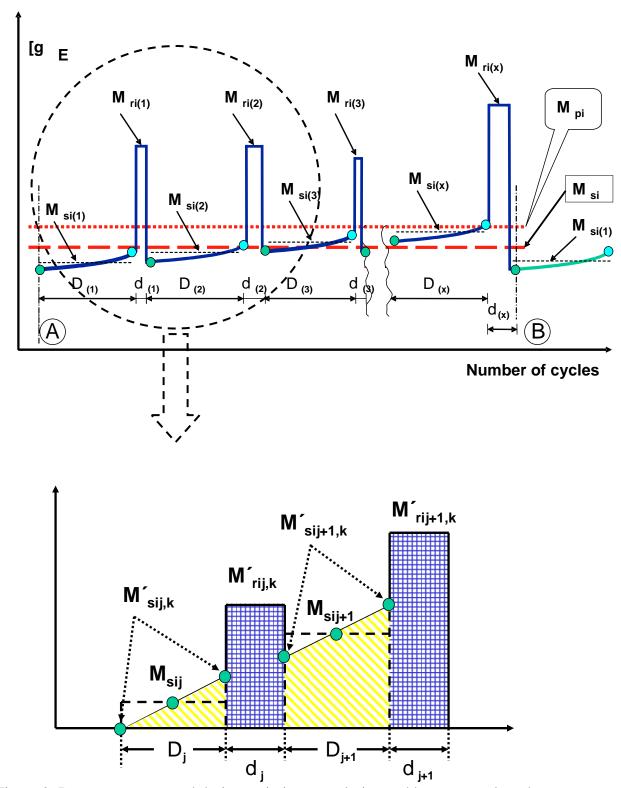



Figure 2: Parameters measured during emissions test during and between cycles where regeneration occurs (schematic example)

For application of a simple and realistic case following example is shown: A system consisting of a particulate trap (DPF) and a NOx storage trap (DeNOx).

<u>DPF</u>: regenerative, equidistant events, similar emissions ( $\pm$  15%) from event to event

$$\begin{split} D_j &= D_{j+1} = D_1 \\ d_j &= d_{j+1} = d_1 \\ M_{rij} - M_{sij} &= M_{rij+1} - M_{sij+1} \\ n_i &= n \end{split}$$

<u>DeNOx</u>: the desulphurisation (SO<sub>2</sub> removal) event is initiated before an influence of sulphur on emissions is detectable ( $\pm 15\%$  of measured emissions)

"DeNO<sub>x</sub>": the desulphurisation (SO<sub>2</sub> removal) event is initiated before an influence of sulphur on emissions is detectable ( $\pm 15$  per cent of measured emissions) and in this example for exothermic reason together with the last DPF regeneration event performed.

$$M'_{sij,k=1} = const.$$
  $\rightarrow$   $M_{sij} = M_{sij+1} = M_{si2}$   
 $M_{rii} = M_{rii+1} = M_{ri2}$ 

For SO<sub>2</sub> removal event:  $M_{ri2}$ ,  $M_{si2}$ ,  $d_2$ ,  $D_2$ ,  $n_2 = 1$ 

Complete system (DPF + DeNOx):

$$\begin{aligned} M_{si} &= n \times M_{si1} \times D_1 + M_{si2} \times D_2 \\ M_{ri} &= n \times M_{ri1} \times d_1 + M_{ri2} \times d_2 \end{aligned}$$

$$\mathbf{M}_{si} = \frac{\mathbf{n} \cdot \mathbf{M}_{si1} \cdot \mathbf{D}_1 + \mathbf{M}_{si2} \cdot \mathbf{D}_2}{\mathbf{m}_{si2} \cdot \mathbf{D}_{si2} \cdot \mathbf{D}_{si2}}$$

$$M_{ri} = \frac{n \cdot M_{ri1} \cdot d_1 + M_{ri2} \cdot d_2}{1 + M_{ri2} \cdot d_2}$$

$$M_{pi} = \frac{M_{si} + M_{ri}}{n * (D_1 + d_1) + D_2 + d_2} = \frac{n * (M_{si1} * D_1 + M_{ri1} * d_1) + M_{si2} * D_2 + M_{ri2} * d_2}{n * (D_1 + d_1) + D_2 + d_2}$$

The calculation of the factor  $(K_i)$  for multiple periodic regenerating systems is only possible after a certain number of regeneration phases for each system. After performing the complete procedure (A to B, see Figure 8/2), the original starting conditions A should be reached again.

#### **ANNEX 7: CALCULATIONS**

- 1. Calculations
- 1.1 General requirements
- 1.1.1. The final test result shall be rounded in one step to the number of places to the right of the decimal point indicated by the applicable emission standard plus one additional significant figure.
- 1.1.1.1. The NOx correction factor, KH, shall be shall be rounded to 2 decimal places.
- 1.1.1.2. The dilution factor, DF, shall be rounded to 2 decimal places
- 1.1.1.3. For information not related to standards, good engineering judgement shall be used.
- 2. Determination of diluted exhaust gas volume
- 2.1 Diluted exhaust volume calculation for a variable dilution device, capable of operating at a constant or variable flow rate.
- 2.1.1. Record continuously the parameters showing the volumetric flow, and calculate the total volume for the duration of the test.
- 2.2. Volume calculation for a variable dilution device using a positive displacement pump
- 2.2.1. The volume is calculated using the following equation:

$$V=V_0\,\cdot\,N$$

where:

V is the volume of the diluted gas, in litres per test (prior to correction)

 $V_0$  is the volume of gas delivered by the positive displacement pump in testing

conditions, I/N

N is the number of revolutions per test.

- 2.2.1.1. Correcting the volume to standard conditions
- 2.2.1.1.1. The diluted exhaust gas volume is corrected to standard conditions by means of the following equation:

$$V_{\text{mix}} = V \times K_1 \times \left(\frac{P_B - P_1}{T_p}\right)$$

(1)

where:

$$K_1 = \frac{273.15 \text{ (K)}}{101.325 \text{ (kPa)}} = 2.6961$$
 (2)

P<sub>B</sub> is the test room barometric pressure, kPa;

P<sub>1</sub> is the vacuum at the inlet to the positive displacement pump relative to the

ambient barometric pressure, kPa;

 $T_p$  is the average temperature of the diluted exhaust gas entering the positive

displacement pump during the test, K.

# **MASS EMISSIONS**

- 3. Mass emissions
- 3.1. General requirements
- 3.1.1. Assuming no compressibility effects, all gases involved in the engine intake/combustion/exhaust process can be considered to be ideal according to Avogadro's hypothesis.
- 3.1.2. The mass M of gaseous species emitted by the vehicle during the test shall be determined by obtaining the product of the volumetric concentration and the volume of the gas in question, with due regard for the following densities under the reference conditions of 101.325 kPa and 273.15 K:

| Carbon monoxide (CO):                              | d = 1.25  g/l  |
|----------------------------------------------------|----------------|
| Carbon dioxide $(CO_2)$ :                          | d = 1.964  g/l |
| Hydrocarbons:                                      |                |
| for petrol (E5) $(C_1H_{1.89}O_{0.016})$           | d = 0.631  g/1 |
| for diesel (B5) $(C_1H_{1.86}O_{0.005})$           | d = 0.622  g/1 |
| for LPG ( $CH_{2.525}$ )                           | d = 0.649  g/l |
| for NG/biomethane (C <sub>1</sub> H <sub>4</sub> ) | d = 0.714  g/l |
| for ethanol (E85) $(C_1H_{2,74}O_{0.385})$         | d = 0.932  g/l |
| Nitrogen oxides (NO <sub>x</sub> ):                | d = 2.05  g/1  |
| Nitrogen dioxide (NO <sub>2</sub> ):               | d = 2.05  g/1  |
| Nitrous oxide $(N_2O)$ :                           | d = 1.964  g/1 |

#### 3.2. Mass emissions calculation

3.2.1. Mass emissions of gaseous species shall be calculated using the following equation:

$$M_{i} = \frac{V_{mix} \times \rho_{i} \times KH \times C_{i} \times 10^{-6}}{d}$$

(3)

where:

M<sub>i</sub> is the mass emission of emissions species i, g/km

V<sub>mix</sub> is the volume of the diluted exhaust gas expressed in litres per test and corrected

to standard conditions (273.15 K and 101.325 kPa)

 $\rho_i$  is the density of emissions species i in grams per litre at normal temperature and

pressure (273.15 K and 101.325 kPa)

KH is a humidity correction factor applicable only to the mass emissions of oxides of nitrogen ( $NO_2$  and  $NO_X$ )

C<sub>i</sub> is the concentration of emissions species i in the diluted exhaust gas expressed in ppm and corrected by the amount of the emissions species i contained in the dilution air

d is the distance corresponding to the operating cycle, kilometres.

3.2.1.1. The concentration of a gaseous species in the diluted exhaust gas shall be corrected by the amount of the gaseous species in the dilution air as follows:

$$C_{i} = C_{e} - C_{d} \times \left(1 - \frac{1}{DF}\right) \tag{4}$$

where:

C<sub>i</sub> is the concentration of gaseous species (i) in the diluted exhaust gas corrected by the amount of (I) contained in the dilution air, ppm;

C<sub>e</sub> is the measured concentration of gaseous species (i) in the diluted exhaust gas, ppm;

C<sub>d</sub> is the concentration of gaseous species (i) in the air used for dilution, ppm;

DF is the dilution factor.

# 3.2.1.1.1. The dilution factor, DF, is calculated as follows:

DF = 
$$\frac{13.4}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 for petrol (E5) (5a)

DF = 
$$\frac{13.5}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 for diesel (B5) (5b)

$$DF = \frac{11.9}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}} \qquad \text{for LPG}$$
 (5c)

$$DF = \frac{9.5}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 for NG/biomethane (5d)

DF = 
$$\frac{12.5}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 for ethanol (E85) (5e)

3.2.1.1.2. General equation for dilution factor (DF) for each reference fuel with an average composition of  $C_xH_yO_z$ :

$$DF = \frac{X}{C_{CO2} + (C_{HC} + C_{CO}) \times 10^{-4}}$$
 (6)

where: 
$$X = 100 \times \frac{x}{x + \frac{y}{2}} + 3.76 \left(x + \frac{y}{4} + \frac{z}{2}\right)$$

In these equations:

C<sub>CO2</sub> is the concentration of CO<sub>2</sub> in the diluted exhaust gas contained in the sampling

bag, per cent volume;

C<sub>HC</sub> is the concentration of HC in the diluted exhaust gas contained in the sampling

bag, ppm carbon equivalent;

C<sub>CO</sub> is the concentration of CO in the diluted exhaust gas contained in the sampling

bag, ppm.

# 3.2.1.1.3. Flow weighted average concentration calculation

When the CVS flow rate  $q_{vCVS}$  over the test varies more than  $\pm$  3 per cent of the average flow rate, a flow weighted average has to be used for all continuous diluted measurements including PN:

$$C_{e} = \frac{\sum_{i=1}^{n} q_{VCVS}(i) \times \Delta t \times C(i)}{V}$$
(7)

where:

 $\begin{array}{ll} C_e & \text{is the flow-weighted average concentration;} \\ q_{vCVS}(i) & \text{is the CVS flow rate at time } t=i * \Box t, \, m^3/\text{min;} \end{array}$ 

C(i) is the concentration at time  $t = i * \Box t$ , ppm;

 $\Box t$  sampling interval, s; V total CVS volume, m<sup>3</sup>.

# 3.2.1.2. Calculation of the NO<sub>X</sub> humidity correction factor

In order to correct the influence of humidity on the results of oxides of nitrogen, the following calculations are applied:

$$KH = \frac{1}{1 - 0.0329 \times (H_a - 10.71)}$$
 (8)

where:

$$H_a = \frac{6.211 \times R_a \times P_d}{P_B - P_d \times R_a \times 10^{-2}}$$

and:

H<sub>a</sub> is the absolute humidity, grams of water per kilogram of dry air;

R<sub>a</sub> is the relative humidity of the ambient air, per cent;

P<sub>d</sub> is the saturation vapour pressure at ambient temperature, kPa;

P<sub>B</sub> is the atmospheric pressure in the room, kPa.

The KH factor shall be calculated for each phase of the test cycle.

The ambient temperature and relative humidity shall be defined as the average of the continuously measured values during each phase.

# 3.2.1.3. Determination of NO<sub>2</sub> concentration from NO and NO<sub>X</sub>

NO<sub>2</sub> is determined by the difference between NO<sub>X</sub> concentration from the bag corrected for dilution air concentration and NO concentration from continuous measurement corrected for dilution air concentration

- 3.2.1.3.1. NO concentrations
- 3.2.1.3.1.1. NO concentrations shall be calculated from the integrated NO analyser reading, corrected for varying flow if necessary.
- 3.2.1.3.1.2. The average NO concentration is calculated as follows:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} C_{NO} \cdot dt}{t_{2} - t_{1}}$$

where:

 $\int_{t_1}^{t_2} C_{NO} \cdot dt \text{ is the integral of the recording of the modal NO analyser over the test } (t_2-t_1);$ 

C<sub>e</sub> is the concentration of NO measured in the diluted exhaust, ppm;

- 3.2.1.3.1.3. Dilution air concentration of NO is determined from the dilution air bag. Correction is carried out according to 3.2.1.1.
- 3.2.1.3.2. NO<sub>2</sub> concentrations
- 3.2.1.3.2.1. Determination NO<sub>2</sub> concentration from direct diluted measurement
- 3.2.1.3.2.2. NO<sub>2</sub> concentrations shall be calculated from the integrated NO2 analyser reading, corrected for varying flow if necessary.
- 3.2.1.3.2.3. The average NO<sub>2</sub> concentration is calculated as follows:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} C_{NO_{2}} \cdot dt}{t_{2} - t_{1}}$$

where:

 $\int_{t_{1}}^{t_{2}} C_{NO2} \cdot dt = integral \text{ of the recording of the modal NO}_{2} \text{ analyser over the test (t}_{2}\text{-t}_{1}\text{)};$ 

 $C_e$  is the concentration of  $NO_2$  measured in the diluted exhaust, ppm.

- 3.2.1.3.2.4. Dilution air concentration of NO<sub>2</sub> is determined from the dilution air bag. Correction is carried out according to 3.2.1.1.
- 3.2.2. Determination of the HC mass emissions from compression-ignition engines
- 3.2.2.1. To calculate HC mass emission for compression-ignition engines, the average HC concentration is calculated as follows:

$$C_{e} = \frac{\int_{t_{1}}^{t_{2}} C_{HC}.dt}{t_{2}-t_{1}}$$
 (9)

where:

 $\int_{t_{-}}^{t_{2}} C_{HC} \cdot dt$  is the integral of the recording of the heated FID over the test (t<sub>2</sub>-t<sub>1</sub>);

 $C_e$  is the concentration of HC measured in the diluted exhaust in ppm of  $C_i$  is substituted for  $C_{HC}$  in all relevant equations.

# NOTE: Section §3.2.3. is under development

- 3.2.3.  $CO_2$  emissions using the regression method
- 3.2.3.1. If no additional tests have taken place at test mass  $TM_L$  [and/or at different road load settings ( $RL_{HH}$ ,  $RL_{HL}$  and  $RL_{LH}$ )], the value  $M_{CO2}$  calculated in 3.2.1 shall be attributed to all vehicles in the vehicle family.
- 3.2.3.2. If additional tests have taken place at test mass  $TM_L$  [and/or at different road load settings ( $RL_{HH}$ ,  $RL_{HL}$  and  $RL_{LH}$ )],  $M_{CO2,i}$  for vehicle i in the vehicle family shall be calculated as follows:

$$M_{CO2,i} = M_{CO2,L} + (TM_L - TM_{L,actual} + OM_i) \times (\frac{\Delta M_{CO2}}{\Delta TM})$$

where:

 $M_{CO2,i}$  are the mass  $CO_2$  emissions for vehicle (i) in the vehicle family, g/km;

 $M_{CO2,L}$  are the mass  $CO_2$  emissions for vehicle (i) at  $TM_{L,actual}$ , g/km; OM<sub>i</sub> is the mass of optional equipment installed on vehicle (i);

 $\Delta M_{CO2}$  is the difference in mass  $CO_2$  emissions at  $TM_{H, actual}$  and  $TM_{L, actual}$ ;

 $\Delta TM$  is mass difference between  $TM_{H, actual}$  and  $TM_{L, actual}$ .

To include any future optional equipment in the same type approval, this calculation may be applied to a maximum of [50 kg] above  $OM_H$ .

- 3.3. Mass of particulate emissions
- 3.3.1. Particulate emission  $M_p$  (g/km) is calculated as follows:

$$M_{p} = \frac{\left(V_{mix} + V_{ep}\right) \times P_{e}}{V_{ep} \times d}$$

where exhaust gases are vented outside tunnel;

$$M_{p} = \frac{V_{\text{mix}} \times P_{e}}{V_{ep} \times d}$$

where exhaust gases are returned to the tunnel;

where:

V<sub>mix</sub> is the volume of diluted exhaust gases (see paragraph 2.0.), under standard condi-

tions;

V<sub>ep</sub> is the volume of diluted exhaust gas flowing through the particulate filter under

standard conditions;

P<sub>e</sub> is the particulate mass collected by one or more filters; d distance corresponding to the operating cycle, km;

M<sub>p</sub> is the particulate emission, g/km.

3.3.1.1. Where correction for the particulate background level from the dilution system has been used, this shall be determined in accordance with paragraph 1.2.1.4.1. in Annex 6. In this case, the particulate mass (g/km) shall be calculated as follows:

$$M_{p} = \left\{ \frac{P_{e}}{V_{ep}} - \left[ \frac{P_{a}}{V_{ap}} \times \left( 1 - \frac{1}{DF} \right) \right] \right\} \times \frac{\left( V_{mix} + V_{ep} \right)}{d}$$

in the case where exhaust gases are vented outside tunnel;

$$M_{p} = \left\{ \frac{P_{e}}{V_{ep}} - \left[ \frac{P_{a}}{V_{ap}} \times \left( 1 - \frac{1}{DF} \right) \right] \right\} \times \frac{(V_{mix})}{d}$$

in the case where exhaust gases are returned to the tunnel;

where:

 $V_{ap}$  is the volume of tunnel air flowing through the background particulate filter under

standard conditions;

P<sub>a</sub> is the particulate mass collected by background filter;

P<sub>a</sub> is the rolling average particulate mass collected by the background filter, up to a

maximum equivalent to 1mg/km and the flow rates of the test;

DF is the dilution factor determined in paragraph 6.6.4.

Where application of a background correction results in a negative particulate mass (in g/km) the result shall be considered to be zero g/km particulate mass.

3.3.2. Calculation of particulate mass emissions using the double dilution method

$$V_{ep} = V_{set} - V_{ssd}$$

where:

V<sub>ep</sub> is the volume of diluted exhaust gas flowing through the particulate filter under standard conditions

V<sub>set</sub> is the volume of the double diluted exhaust gas passing through the particulate

collection filters

V<sub>ssd</sub> is the volume of the secondary dilution air

Where the secondary diluted PM sample gas is not returned to the tunnel, the CVS volume should be calculated as in single dilution i.e.

$$V_{mix} = V_{mix indicated} + V_{ep}$$

where:

V<sub>mix indicated</sub> is the measured volume of diluted exhaust gas in the dilution system following extraction of particulate sample under standard conditions

- 4. Determination of particle numbers
- 4.1. Number emission of particles shall be calculated by means of the following equation:

$$N = \frac{V \times k \times (\overline{C_s} \times \overline{f_r} - C_b \times \overline{f_{rb}}) \times 10^3}{d}$$

where:

N is the particle number emission, particles per kilometre;

- V is the volume of the diluted exhaust gas in litres per test (after primary dilution only in the case of double dilution) and corrected to standard conditions (273.15 K and 101.325 kPa);
- k is a calibration factor to correct the particle number counter measurements to the level of the reference instrument where this is not applied internally within the particle number counter. Where the calibration factor is applied internally within the particle number counter, the calibration factor shall be 1;
- $\overline{C}_s$  is the corrected concentration of particles from the diluted exhaust gas expressed as the average number of particles per cubic centimetre figure from the emissions test including the full duration of the drive cycle. If the volumetric mean concentration results ( $\overline{C}$ ) from the particle number counter are not output at standard conditions (273.15 K and 101.325 kPa), the concentrations shall be corrected to those conditions ( $\overline{C}_s$ );
- C<sub>b</sub> is either the dilution air or the dilution tunnel background particle concentration, as permitted by the responsible authority, in particles per cubic centimeter, corrected for coincidence and to standard conditions (273.15 K and 101.325 kPa);
- $\overline{f_r}$  is the mean particle concentration reduction factor of the volatile particle remover at the dilution setting used for the test;
- $\overline{f_{tb}}$  is the mean particle concentration reduction factor of the volatile particle remover at the dilution setting used for the background measurement;
- d is the distance corresponding to the operating cycle, kilometres

shall be calculated from the following equation:  $\overline{C} = \frac{\sum_{i=1}^{n} C_i}{n}$  $\overline{\mathbf{C}}$ 

$$\overline{C} = \frac{\sum_{i=1}^{n} C_i}{n}$$

where:

- is a discrete measurement of particle concentration in the diluted gas exhaust  $C_{i}$ from the particle counter; particles per cubic centimetre and corrected for coincidence
- is the total number of discrete particle concentration measurements made n during the operating cycle and shall be calculated using the following equation:

$$n = T \times f$$

where:

- is the time duration of the operating cycle, s; T
- f is the data logging frequency of the particle counter, Hz.

#### ANNEX 8: VEHICLES WITH COMPLETE OR PARTIAL ELECTRIC PROPULSION

# NOTE: There are at the moment no paragraphs 1 or 2. This will be corrected for later versions

# 3. General Requirements

# 3.1. Electric Energy Consumption and Range Testing

Parameters, units and accuracy of measurements shall be as follows:

| Parameter                      | Units | Accuracy                              | Resolution            |
|--------------------------------|-------|---------------------------------------|-----------------------|
| Electrical energy <sup>1</sup> | Wh    | ± 1 per cent                          | 0.001 Wh <sup>2</sup> |
| Electrical current             | A     | $\pm 0.3$ per cent FSD or $\pm 1$ per | 0.01 A                |
|                                |       | cent of reading <sup>3,4</sup>        |                       |

<sup>&</sup>lt;sup>1</sup>: Equipment: static meter for active energy

# 3.2. Emission and Fuel Consumption Testing

Parameters, units and accuracy of measurements shall be the same as those required for conventional combustion engine-powered vehicles as found in Annex 5 Test Equipment and Calibrations.

# 3.3. Measurement Units and Presentation of results

Accuracy of measurement units and presentation results shall be as follows:

| Parameter                         | Units      | Communication of test results         |
|-----------------------------------|------------|---------------------------------------|
| AER                               | km         | Rounded to nearest whole number       |
| AERcity                           | km         | Rounded to nearest whole number       |
| EAER                              | km         | Rounded to nearest whole number       |
| R <sub>cda</sub>                  | km         | Rounded to nearest whole number       |
| R <sub>CDC</sub>                  | km         | Rounded to nearest whole number       |
| Distance                          | km         | For calculation purposes: 0.1km,      |
|                                   |            | For reporting purposes : whole number |
| Electric energy consumption       | Wh/km      | Rounded to nearest whole number       |
| NEC                               | Wh         | Rounded to the first decimal place    |
| NEC ratio                         | %          | Rounded to the first decimal place    |
| Eac recharged E                   | Wh         | Rounded to nearest whole number       |
| FC correction factor              | 1/100km/Ah | Rounded to 4 significant figures      |
|                                   |            | (e.g. 0.xxxx or xx.xx)                |
| CO <sub>2</sub> correction factor | g/km/Ah    | Rounded to 4 significant figures      |
|                                   |            | (e.g. 0.xxxx or xx.xx)                |
| Utility Factor                    |            | Rounded to 3 decimal places           |

#### 4. **REESS Preparation**

For all OVC-HEVs, NOVC-HEVs, PEVs, [FCV-HEVs, and FCVs] with and without 4.1. driver-selectable operating modes, the following shall apply:

<sup>&</sup>lt;sup>2</sup>: AC watt-hour meter, Class 1 according to IEC 62053-21 or equivalent <sup>3</sup>: whichever is greater

<sup>4:</sup> current integration frequency 10 Hz or more

- (a) the vehicles must have been driven at least 300 km with those batteries installed in the test vehicle,
- (b) if the batteries are operated above the ambient temperature, the operator shall follow the procedure recommended by the car manufacturer in order to keep the temperature of the REESS in its normal operating range. The manufacturer's agent shall be in a position to attest that the thermal management system of the REESS is neither disabled nor reduced.
- 4.2. In addition to fulfilling §4.1., all energy storage systems available for purposes other than providing traction (electric, hydraulic, pneumatic, etc.) for all OVC-HEVs with and without driver-selectable operating modes, and PEVs with and without driver-selectable operating modes shall be charged to the maximum level specified by the manufacturer.

#### 5. Test Procedure

# 5.1. General requirements

- 5.1.1. For all OVC-HEVs, NOVC-HEVs, and PEVs with and without driver-selectable operating modes, the following shall apply where applicable:
- (a) vehicles shall be conditioned, soaked and tested according to the test procedures applicable to vehicles powered solely by a combustion engine described in Annex 6 of this Regulation unless modified by this Annex,
- (b) gear selection and the gear shift points shall be determined according to Annex 2 of this Regulation,
- (c) the vehicle shall be started by the means provided for normal use to the driver,
- (d) exhaust emission sampling and electricity measuring shall begin for each test cycle before or at the initiation of the vehicle start up procedure and end on conclusion of the final vehicle standstill of each test cycle,
- (f) emissions species shall be sampled and analysed for each individual WLTC phase when the combustion engine starts consuming fuel,
- (g) breaks for the driver and/or operator shall be permitted only between WLTC cycles as described in the table below:

| Distance driven, km | Maximum total break time, min     |
|---------------------|-----------------------------------|
| Up to 100           | 10                                |
| Up to 150           | 20                                |
| Up to 200           | 30                                |
| Up to 300           | 60                                |
| More than 300       | Shall be based on the manufactur- |
|                     | er's recommendation               |

During a break, the switch for the propulsion system shall be in the "OFF" position to guarantee continuity of the control system of the vehicle.

5.1.2. All OVC-HEV and PEV vehicles shall be tested using the WLTC and WLTC city cycles.

- 5.1.3. Forced cooling as per Annex 6, §1.2.7.3. shall apply only for the charge-sustaining test and for the testing of NOVC-HEVs.
- 5.2. OVC-HEV, with and without driver-selectable operating modes
- 5.2.1. Vehicles shall be tested under either charge-depleting (CD) and charge-sustaining (CS) conditions, or in a combination of CD and CS conditions.
- 5.2.2. Vehicles may be tested according to four possible test sequences:
- 5.2.2.1. Option 1: charge-depleting test with a subsequent charge-sustaining test (CD + CS test),
- 5.2.2.2. Option 2: charge-sustaining test with a subsequent charge-depleting test (CS + CD test).
- 5.2.2.3. Option 3:charge-depleting test with no subsequent charge-sustaining test (CD test),
- 5.2.2.4. Option 4: charge-sustaining test with no subsequent charge-depleting test (CS test).

| Possible test seque                 | Possible test sequences in case of OVC-HEV testing |                                     |                                     |  |  |  |  |  |  |
|-------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|--|--|--|--|--|--|
| Option 1                            | Option 2                                           | Option 3                            | Option 4                            |  |  |  |  |  |  |
| At least 1 Cycle<br>Preconditioning | Discharging                                        | At least 1 Cycle<br>Preconditioning | Discharging                         |  |  |  |  |  |  |
| Charging<br>Soak 12h                | At least 1 Cycle<br>Preconditioning                | Charging<br>Soak 12h                | At least 1 Cycle<br>Preconditioning |  |  |  |  |  |  |
| CD Test                             | Soak 12h                                           | CD Test                             | Soak 12h                            |  |  |  |  |  |  |
| Soak 12h                            | CS Test                                            | charging<br>eAC                     | CS Test                             |  |  |  |  |  |  |
| CS Test                             | charging<br>eAC                                    |                                     |                                     |  |  |  |  |  |  |
| charging<br>eAC                     | CD Test                                            |                                     |                                     |  |  |  |  |  |  |
|                                     | charging<br>eAC                                    |                                     |                                     |  |  |  |  |  |  |

- 5.2.3. A change of driver-selectable operating mode shall be permitted during a CD or a CS test.
- 5.2.4. Charge-depleting (CD) test with no subsequent charge-sustaining (CS) test
- 5.2.4.1. Preconditioning

The vehicle shall be prepared according to the procedures in Appendix IV, §2.2. of this Annex.

- 5.2.4.2. Test conditions
- 5.2.4.2.1. The test shall be carried out with a fully charged electrical energy storage device according the charging requirements as described in 2.2.5. of Appendix IV of this Annex.
- 5.2.4.2.2. Operation mode selection
- 5.2.4.2.2.1. The charge depletion test shall be performed by using the most electric energy consuming mode that best matches the driving cycle. If the vehicle cannot follow the trace, other installed propulsion systems shall be used to allow the vehicle to best follow the cycle.

5.2.4.2.2.2. Dedicated driver-selectable modes such as "mountain mode" or "maintenance mode" which are not intended for normal daily operation but only for special limited purposes shall not be considered for charge-depleting condition testing.

# 5.2.4.3. Type I test procedure

- 5.2.4.3.1. The charge-depleting test procedure shall consist of a number of consecutive cycles, each followed by a maximum [20] minute soak period until charge-sustaining operation is achieved.
- 5.2.4.3.2. During soaking between individual WLTC cycles, the key switch shall be in the "off" position, and the REESS shall not be recharged from an external electric energy source. The RCB instrumentation shall not be turned off between test cycle phases. In the case of ampere-hour meter measurement, the integration shall remain active throughout the entire test until the test is concluded.

Restarting after soak, the vehicle shall be operated in the required driver-selectable operation mode in case it is not already in the default mode.

5.2.4.3.3. Bags may be analysed after each phase. Optionally, analysers may be spanned and zero checked before and after each complete cycle, and the bags analysed.

#### 5.2.4.4. End of the charge-depleting test

The end of the charge-depleting test is considered to have been reached at the end of the WLTC cycle n (defined as the transient cycle) when the break-off criteria during cycle n + 1 is reached for the first time.

5.2.4.4.1. For vehicles without charge-sustaining capability on the complete WLTC, end of test is reached by indication on standard on-board instrument panel to stop the vehicle, or when the vehicle deviates from the prescribed driving tolerance for 4 seconds or more. The acceleration controller shall be deactivated. The vehicle shall be braked to a standstill within 60 seconds.

#### 5.2.4.5. Break-off criteria

5.2.4.5.1. The break-off criteria for the charge-depleting test is reached when the relative net energy change, NEC, as shown in the equation below is less than 4 per cent.

Net energy change (per cent) = 
$$\frac{\text{RCB*nominal REESS voltage}}{\text{cycle energy demand of the test vehicle}} * 100$$

#### 5.2.4.6. REESS charging and measuring electric energy consumption

The vehicle shall be connected to the mains within 120 minutes after the conclusion of the charge-sustaining Type I test. The energy measurement equipment, placed before the vehicle charger, shall measure the charge energy, E, delivered from the mains, as well as its duration. Charging stops when a fully charged REESS is detected. The responsible authority shall confirm that the REESS is fully charged.

- 5.2.4.7. Each individual full WLTC within the charge-depleting test shall fulfil the applicable exhaust emission limits.
- 5.2.5. CS test with no subsequent CD test

#### 5.2.5.1. Preconditioning

The vehicle shall be prepared according to the procedures in Appendix IV, §2.1. of this Annex.

#### 5.2.5.2. Test conditions

- 5.2.5.2.1. The test shall be carried out with the electrical energy storage device in a neutral charging balance state.
- 5.2.5.2.2. Tests shall be carried out with the vehicle operated in charge-sustaining operation condition in which the energy stored in the REESS may fluctuate but, on average, is maintained at a charging neutral balance level while the vehicle is driven.
- 5.2.5.2.3. For vehicles equipped with a driver-selectable operating mode, the charge-sustaining test shall be performed in the charging balance neutral hybrid mode that best matches the target curve.
- 5.2.5.2.4. In case the requirements of the charging balance window are not fulfilled, the CS test CO<sub>2</sub> and fuel consumption values shall be corrected according to Appendix II, RCB compensation.
- 5.2.5.2.5. The profile of the state of charge of the electrical energy storage device during different stages of the Type I test is given in Appendices Ia and Ib.
- 5.2.5.2.6. Upon request of the manufacturer and with approval of the responsible authority, the manufacturer may set the start SOC for the charge-sustaining test.
- 5.2.5.3. Type I test procedure
- 5.2.5.3.1. If required by paragraph 6.2.1., CO<sub>2</sub>, emissions and fuel consumption results shall be corrected according to the RCB correction as described in Appendix II.
- 5.2.5.3.2. The charge-sustaining test shall fulfil the applicable exhaust emission limits.

# 5.2.5.4. REESS charging and measuring electric energy consumption

The vehicle shall be connected to the mains within 120 minutes after the conclusion of the charge-sustaining Type I test. The energy measurement equipment, placed between the mains socket and the vehicle charger, shall measure the charge energy, E, delivered from the mains, as well as its duration. Electric energy measurement can be stopped when the state of charge after the CD/CS test is at least equal to the state of charge measured before the CD test. The state of charge shall be determined by on board or external instruments

#### 5.2.6. CD test with a subsequent CS test

- 5.2.6.1. The procedures for the CD test from §5.2.4.1. to §5.2.4.5. in this Annex shall be followed.
- 5.2.6.2. Subsequently, the procedures for the CS test from §5.2.5.1. to §5.2.5.4. in this Annex shall be followed.

#### 5.2.7. CS test with a subsequent CD test

5.2.7.1. The procedures for the CS test from §5.2.5.1. to §5.2.5.4. in this Annex shall be followed.

- 5.2.7.2. Subsequently, the procedures for the CD test from §5.2.4.3. to §5.2.4.6. in this Annex shall be followed.
- 5.2.8. Cycle energy demand
- 5.2.8.1. Cycle energy demand of the test vehicle shall be determined by one of the two options defined in Appendix VII of this Annex.
- 5.2.9. Electric Range Determination
- 5.2.9.1. The charge-depleting test procedure as described in paragraph 5.2.4. shall apply to electric range measurements.
- 5.2.9.2. All-electric range (AER, AERcity)
- 5.2.9.2.1. The total distance travelled over the WLTC cycles from the beginning of the charge-depleting test to the point in time during the test when the combustion engine starts to consume fuel shall be measured.
- 5.2.9.3. Equivalent all-electric range (EAER, EAERcity)
- 5.2.9.3.1. The range shall be calculated according to §6.4.1.2.
- 5.2.9.5. Charge-depleting cycle range (RCDC, RCDCcity)
- 5.2.9.5.1. The distance from the beginning of the charge-depleting test to the end of the last cycle prior to the cycle or cycles satisfying the break-off criteria shall be measured. This shall include the distance travelled during the transient cycle where the vehicle operates in both depleting and sustaining modes. If the charge-depleting test possesses a transient range, the  $R_{\rm cdc}$  shall include those transient cycles or cycles.
- 5.2.9.6. Actual charge-depleting range (RCDA, RCDAcity)
- 5.2.9.6.1. The range shall be calculated according to §6.4.1.5 (and possibly an additional equation).
- 5.3. NOVC-HEV, with and without driver-selectable operating modes
- 5.3.1. Vehicle and REESS Conditioning
- 5.3.1.1. For preconditioning, at least 1 complete WLTC cycle shall be driven using the gear shifting procedure described in Annex 2.
- 5.3.1.1.1. Alternatively, at the request of the manufacturer, the SOC level of the REESS for charge-sustaining test can be set according to manufacturer's recommendation in order to achieve a charge balance neutral charge-sustaining test.
- 5.3.2. Type I Test
- 5.3.2.1. These vehicles shall be tested according to Annex 6, unless modified by this Annex.
- 5.3.2.2. If required by paragraph 6.2.2., CO<sub>2</sub> emissions and fuel consumption results shall be corrected according to the RCB correction described in appendix II.
- 5.4. PEV, with and without driver-selectable operating mode
- 5.4.1. General

- 5.4.1.1. The test sequence for all-electric range AER determination as described in §5.2.9.2. for OVC-HEVs shall apply unless modified by this Annex.
- 5.4.1.2. The test sequence for all-electric range city AERcity determination described in §5.2.9.2. for OVC-HEVs shall apply unless modified by this Annex.
- 5.4.2. Testing
- 5.4.2.1. If the vehicle is equipped with a driver-selectable operating mode, the charge-depletion test shall be performed in the highest electric energy consumption mode that best matches the target curve.
- 5.4.2.2. The gear shift prescription defined in Annex 2 shall be used.
- 5.4.2.3. The measurement of all-electric range, AER, and electric energy consumption shall be performed during the same test.
- 5.4.2.4. All-electric range test
- 5.4.2.4.1. The test method shall include the following steps:
  - (a) initial charging of the REESS;
  - (b) driving consecutive WLTC cycles until the break-off criteria is reached and measuring AER;
  - (c) recharging the REESS and measuring electric energy consumption
- 5.4.2.4.1.1. The initial charging procedure of the REESS starts with a normal overnight charge. The end of charge criteria shall correspond to a charging time of 12 hours except if a clear indication is given to the driver by the standard instrumentation that the REESS is not yet fully charged. In this case,

$$maximum time = 3 * \frac{claimed REESS capacity, Wh}{mains power supply, W}$$

- 5.4.2.4.1.2. WLTC cycles shall be driven and the all-electric range (AER) distance shall be measured.
- 5.4.2.4.1.3. The end of the test occurs when the break-off criteria is reached.

The break-off criteria shall have been reached when the vehicle deviates from the prescribed driving tolerance for 4 seconds or more. The acceleration controller shall be deactivated. The vehicle shall be braked to a standstill within 60 seconds.

[For vehicles with a maximum speed lower than the maximum speed on the WLTC, the vehicle shall be operated at maximum available power when the vehicle cannot achieve the driving trace within the speed and time tolerances specified in Annex 2 of this regulation].

5.4.2.4.1.4. The vehicle shall be connected to the mains within 120 minutes after the conclusion of the all-electric range AER determination. The energy measurement equipment, placed between the mains socket and the vehicle charger, shall measure the charge energy E delivered from the mains, as well as its duration. Charging stops when a fully charged REESS is detected. The responsible authority shall confirm that the REESS is fully charged.

- 5.4.2.5. All-electric range city (AERcity) test
- 5.4.2.5.1. The test method includes the following steps:
  - (a) initial charging of the REESS;
  - (b) driving the WLTCcity cycle to measure the AERcity;
  - (c) measuring electric range, AERcity, until the break-off criteria is reached
- 5.4.2.5.1.1. The initial charging procedure of the REESS shall start with a normal overnight charging and the end of charge criteria shall be defined as in §5.4.2.4.1.1
- 5.4.2.5.1.2. City cycles shall be driven and the all-electric range (AER) distance shall be measured.
- 5.4.2.5.1.3. The end of the test occurs when the break-off criteria is reached according to §5.4.2.4.1.3.
- 6. Calculations
- 6.1. Emission species calculations

Exhaust gases shall be analysed according to Annex 6.

All equations shall apply to WLTC cycle and WLTC city cycle tests

- 6.1.1. OVC-HEV with and without operating mode switch
- 6.1.1.1. Charge-depleting mode emissions

The level of the emission species at charge-depleting shall be calculated as follows:

$$M_{i,CD} = \frac{\sum_{j=1}^{k} (UF_{j} * M_{i,CD,j})}{\sum_{j=1}^{k} UF_{j}}$$

where:

M<sub>i,CD,j</sub> is the mass of the emissions species measured during the j<sup>th</sup> phase, mg/km

i is the emissions species

UF<sub>i</sub> is the fractional utility factor of the j<sup>th</sup> phase

is the index number of the phases up to the end of the transient cycle n

k is the number of phases driven until the end of transient cycle n

#### 6.1.1.2. Charge-sustaining mode emissions

Exhaust emissions from a cold start charge-sustaining test shall be calculated according the requirements for conventional vehicles as described in Annex 6.

$$Emission_{CS} = Emission_{CS,cold}$$

where

Emission<sub>CS</sub> are the charge-sustaining test emissions, g/km

Emission<sub>CS,cold</sub> are the emissions measured from the cold start charge-sustaining

test, g/km

The calculations specified in Annex 7 of this regulations shall be used in conjunction with the above equation in measuring each regulated emissions species.

# 6.1.1.3. Weighted emissions species

The weighted emissions species from the charge-depleting and charge-sustaining test results shall be calculated using the equation below:

$$M_{i,\text{weighted}} = \sum_{j=1}^{k} (UF_j * M_{i,CD,j}) + (1 - \sum_{j=1}^{k} UF_j) * M_{i,CS}$$

where:

M<sub>i,weighted</sub> is the utility factor-weighted exhaust emissions of each measured emission

species, mg/km

i is the emissions species

UFj is the fractional utility factor of the j<sup>th</sup> phase

 $M_{i,CD,j}$  are the species mass emissions measured during the j<sup>th</sup> charge-depleting phase,

mg/km

M<sub>i,CS</sub> are the species mass emissions for the charge-sustaining test according to

6.1.1.3., mg/km

j is the index number of the phases up to the end of the transient cycle n

k is the number of phases driven until the end of transient cycle n

# 6.1.2. NOVC-HEV with and without driver-selectable operating modes

- 6.1.2.1. Exhaust emissions shall be calculated as required for conventional vehicles according to Annex 7.
- 6.1.2.2. The charging balance correction (RCB) calculation is not required for the determination of emissions species.

#### 6.2. CO<sub>2</sub> and Fuel Consumption Calculations

Exhaust gases shall be analysed according to Annex 6.

#### 6.2.1. OVC-HEV with and without an operating mode switch

All equations shall apply to the WLTC cycle and WLTC city cycle tests.

#### 6.2.1.1. Charge-depleting CO<sub>2</sub> Emissions

The CO<sub>2</sub> values at charge-depleting shall be calculated as follows:

$$CO_{2,CD} = \sum_{j=1}^{k} (UF_j * CO_{2,CD,j}) / \sum_{j=1}^{k} UF_j$$

where:

CO<sub>2,CD</sub> is the utility factor-adjusted mass of CO<sub>2</sub> emissions during charge-depleting mode, (g/km)

CO<sub>2,CD,j</sub> are the CO<sub>2</sub> emissions measured during the j<sup>th</sup> charge-depleting phase, g/km UF<sub>j</sub> the driving cycle and phase-specific utility factor according to Appendix VII of this Annex

- is the index number of each phase up to the end of the transient cycle n
- k is the number of phases driven up to the end of transient cycle n

# 6.2.1.2. Charge-depleting fuel consumption

The fuel consumption values at charge depleting shall be calculated as follows:

$$FC_{CD} = \sum_{j=1}^{k} (UF_j * FC_{CD,j}) / \sum_{j=1}^{k} UF_j$$

where:

 $FC_{CD}$  is the utility factor-adjusted fuel consumption charge-depleting mode, l/100~km  $FC_{CD,j}$  is the fuel consumption measured during the  $j^{th}$  charge-depletion phase, l/100~km UF $_j$  is the driving cycle and phase-specific utility factor according to Appendix II of this Annex

- j is the index number of each phase up to the end of the transient cycle n
- k is the number of phases driven up to the end of transient cycle n
- 6.2.1.3. Charge-sustaining fuel consumption and CO2 emissions
- 6.2.1.3.1. Test result correction as a function of REESS charging balance

The corrected values  $CO_{2,CS,corrected}$  and  $FC_{CS,FC,corrected}$  shall correspond to a zero energy balance (RCB = 0), and shall be determined according to Appendix II of this Annex.

- 6.2.1.3.2. The electricity balance, Q, measured using the procedure specified in Appendix III to this Annex, is used as a measure of the difference in the vehicle REESS's energy content at the end of the cycle compared to the beginning of the cycle. The electricity balance is to be determined for the WLTC cycle driven.
- 6.2.1.3.3. The test results shall be the uncorrected measured values of  $CO_{2,CS}$  and  $FC_{CS}$  in case any of the following applies:
- (a) the manufacturer can prove that there is no relation between the energy balance and fuel consumption,
- (b)  $\Delta E_{REESS}$  as calculated from the test result corresponds to REESS charging,
- (c)  $\Delta E_{REESS}$  as calculated from the test result corresponds to REESS discharging and  $\Delta E_{REESS}$ , as expressed as a percentage of the energy content of the fuel consumed over the cycle, as calculated in the equation below, is less than the RCB correction criteria, according to the following table:

$$\Delta E_{REESS} = \frac{0.0036*RCB[Ah]*V_{REESS}}{E_{Fuel}}*100[\%] \leq RCB \ correction \ criteria$$

| Cycle                   | WLTC City       | WLTC City WLTC     |                 |
|-------------------------|-----------------|--------------------|-----------------|
|                         | (L+Med)         | (L+Med+High+eHigh) | (L+Med+High)    |
| RCB correction criteria | 1,5             | 0,5                | 1               |
| [%]                     | [ACEA proposal] | (Agreed)           | [ACEA proposal] |

where:

 $\Delta E_{REESS}$  is the change in the electrical REESS energy content, MJ;

 $V_{REESS}$  is the nominal REESS voltage, V;

RCB is REESS charging balance over the whole cycle, Ah;

E<sub>Fuel</sub> is the energy content of the consumed fuel, MJ

Where the RCB correction of CO<sub>2</sub> and fuel consumption measurement values are required, the procedure described in Appendix II of this Annex shall be used.

### 6.2.1.4. Weighted CO<sub>2</sub> Emissions

The weighted CO<sub>2</sub> emissions from the charge-depleting and charge-sustaining test results shall be calculated using the equation below:

$$CO_{2,\text{weighted}} = \sum_{j=1}^{k} (UF_j * CO_{2,CD,j}) + (1 - \sum_{j=1}^{k} UF_j) * CO_{2,CS}$$

where:

CO<sub>2.weighted</sub> are the utility factor-weighted CO<sub>2</sub> emissions, g/km;

UF<sub>i</sub> is the fractional utility factor of the j<sup>th</sup> phase;

CO<sub>2,CD,j</sub> are the CO<sub>2</sub> emissions measured during the j<sup>th</sup> charge-depleting phase,

g/km;

 $CO_{2,CS}$  are the  $CO_2$  emissions for the charge-sustaining test according to 6.1.1.3.,

g/km;

is the index number of each phase up to the end of the transient cycle n;

k is the number of phases driven up to the end of transient cycle n.

#### 6.2.1.5. Weighted FC Emissions

The weighted fuel consumption from the charge-depleting and charge-sustaining test results shall be calculated using the equation below:

$$FC_{weighted} = \sum_{j=1}^{k} (UF_j * FC_{CD,j}) + (1 - \sum_{j=1}^{k} UF_j) * FC_{CS}$$

where:

FC<sub>weighted</sub> is the utility factor-weighted fuel consumption, 1/100 km;

UF<sub>i</sub> is the fractional utility factor of the j<sup>th</sup> phase;

FC<sub>CD,j</sub> is the fuel consumption measured during the j<sup>th</sup> charge-depleting phase,

1/100 km;

FC<sub>CS</sub> is the fuel consumption measured during the charge-sustaining test according

to 6.1.1.3., 1/100 km;

j is the index number of each phase up to the end of the transient cycle n;

k is the number of phases driven up to the end of transient cycle n.

#### 6.2.2. NOVC-HEV with and without driver-selectable operating modes

#### 6.2.2.1. Exhaust gases shall be analysed according to Annex 6.

- 6.2.2.2. Charge-sustaining fuel consumption and CO<sub>2</sub> emissions shall be calculated according to §6.2.1.3. of this Annex.
- 6.2.2.3. Test result correction as a function of REESS charging balance

The corrected values  $CO_{2,CS,corrected}$  and  $FC_{CS,FC,corrected}$  shall correspond to a zero energy balance (RCB = 0), and shall be determined according to Appendix II of this Annex.

- 6.2.2.3.1 The electricity balance, Q, measured using the procedure specified in Appendix III to this Annex, is used as a measure of the difference in the vehicle REESS's energy content at the end of the cycle compared to the beginning of the cycle. The electricity balance is to be determined for the WLTC cycle driven.
- 6.2.2.3.2. The test results shall be the uncorrected measured values of  $CO_{2,CS}$  and  $FC_{CS}$  in case any of the following applies:
- (a) the manufacturer can prove that there is no relation between the energy balance and fuel consumption,
- (b)  $\Delta E_{REESS}$  as calculated from the test result corresponds to REESS charging,
- (c)  $\Delta E_{REESS}$  as calculated from the test result corresponds to REESS discharging and  $\Delta E_{REESS}$ , as expressed as a percentage of the energy content of the fuel consumed over the cycle, as calculated in the equation below, is smaller than the RCB correction criteria, according to the following table:

$$\Delta E_{REESS} = \frac{_{0.0036*RCB[Ah]*}\,V_{REESS}}{E_{Fuel}}*100[\%] \leq RCB \ correction \ criteria[\%]$$

| Cycle                   | WLTC City       | WLTC               | WLTC            |
|-------------------------|-----------------|--------------------|-----------------|
|                         | (L+Med)         | (L+Med+High+eHigh) | (L+Med+High)    |
| RCB correction criteria | 1,5             | 0,5                | 1               |
| [%]                     | [ACEA proposal] | (Agreed)           | [ACEA proposal] |

where:

 $\Delta E_{REESS}$  is the change in the electrical REESS energy content, MJ;

V<sub>REESS</sub> is the nominal REESS voltage, V

RCB is REESS charging balance over the whole cycle, Ah  $E_{Fuel}$  is the Energy content of the consumed fuel, MJ

- 6.2.2.3.3 Where the RCB correction of CO<sub>2</sub> and fuel consumption measurement values are required, the procedure described in appendix II of this Annex shall be used.
- 6.3. Electric Energy Consumption Calculations

#### 6.3.1. OVC-HEV

6.3.1.1. Utility factor-weighted total AC electric energy consumption including charging losses shall be calculated using the following equations:

$$C_{\text{weighted}} = \sum_{j=1}^{k} (UF_j * C_{CD,j})$$

$$C_{CD,j} = \frac{RCB_j}{D_j * \sum_{i=1}^k RCB_j} * C_{AC}$$

where

 $C_{weighted}$  is the utility factor-weighted total energy consumption, Wh/km, UF $_{j}$  is the driving cycle and phase-specific utility factor according to

Appendix VII of this Annex;

 $C_{CD,j}$  is the calculated fraction of  $E_{AC}$  used in the j<sup>th</sup> phase during the charge-

depleting test, Wh;

RCB<sub>i</sub> is the measured charge balance of the j<sup>th</sup> phase during the charge-

depleting test, Ah;

D<sub>i</sub> is the distance driven in the j<sup>th</sup> phase during the charge-depleting test,

km;

 $E_{AC}$  is the measured recharged electric energy from the grid, Wh; is the index number of each phase up to the end of transient cycle n is the number of phases driven up to the end of transient cycle n.

- 6.3.1.2. Electric energy consumption of the electric powertrain including charging losses.
- 6.3.1.2.1. Recharged electric energy E in Wh and charging time measurements shall be recorded in the test report.
- 6.3.1.2.2. Electric energy consumption C is defined by the equation:

$$C = E_{AC} / EAER$$

where:

C is the electric energy consumption, Wh/km

E<sub>AC</sub> is the recharged electric energy from the grid, Wh

EAER is the equivalent all-electric range according to §6.4.1.3., km

6.3.1.3. Charge-depleting AC electric energy consumption including charging losses

$$C_{CD} = \frac{E_{weighted}}{\sum_{j=1}^{k} UF_{j}}$$

- 6.3.2. Pure electric vehicle (PEV)
- 6.3.2.1. Recharged electric energy E in Wh and charging time measurements shall be recorded in the test report.
- 6.3.2.2. The electric energy consumption C including charging losses is defined by the equation:

$$C = E_{AC} / AER$$

where:

C is the electric energy consumption, Wh/km;

E<sub>AC</sub> is the recharged electric energy from the grid, Wh;

AER is the all-electric range as defined in B.3. Definitions of this GTR.

#### 6.4. Electric Range

#### 6.4.1. OVC-HEV

All equations apply to the WLTC cycle and WLTC city cycle tests.

#### 6.4.1.1. All-electric range, AER

The distance driven over a number of WLTC cycles using only the REESS until the combustion engine starts consuming fuel for the first time shall be measured and shall be rounded to the nearest whole number.

# 6.4.1.2. Equivalent all-electric range, EAER

#### 6.4.1.2.1. EAER shall be calculated as follows:

$$EAER = \left(\frac{CO_{2,CS} - CO_{2,CDavg}}{CO_{2,CS}}\right) * R_{cdc}$$

where:

$$CO_{2,CD,avg} = \frac{\sum_{j=1}^{k} CO_{2,CD,}}{\sum_{j=1}^{k} D_{j}}$$

and:

EAER is the equivalent all-electric range EAER, km  $CO_{2,CS}$  are the  $CO_2$  emissions during the charge-sustaining test, g/km  $CO_{2,CD,j}$  are the  $CO_2$  emissions in the  $j^{th}$  phase during the charge-depletion test, g is the distance driven in the  $j^{th}$  phase during the charge-depletion test, km  $R_{cdc}$  is the charge-depleting cycle range, km is the index number of each phase up to the end of the transient cycle n is the number of phases driven up to the end of the transient cycle n

# 6.4.1.3. Charge-depleting Cycle Range R<sub>cdc</sub>

The distance from the beginning of the charge-depleting test to the end of the last cycle prior to the cycle or cycles satisfying the break-off criteria shall be measured. This shall include the distance travelled during the transient cycle where the vehicle operates in both depleting and sustaining modes. If the charge-depleting test possesses a transient range, the  $R_{cdc}$  shall include those transient cycles or cycles.

#### NOTE: §6.4.1.4. below currently under review.

#### [6.4.1.4. Actual charge-depleting cycle range R<sub>cda</sub>

Option 1: Based on CO<sub>2</sub> value

$$R_{cda} = \sum_{j=1}^{n-1} D_{j,cycle} + \left( \frac{CO_{2,CS} - CO_{2,n,cycle}}{CO_{2,CS} - CO_{2,CD,average,n-1}} \right) * D_n$$

where:

R<sub>cda</sub> is the actual charge-depleting range, km

 $CO_{2,CS}$  are the  $CO_2$  emissions during the charge-sustaining test, g/km  $CO_{2,n,cycle}$  are the  $CO_2$  emissions over the  $n^{th}$  drive cycle in charge-depleting

operating condition, g/km

CO<sub>2,CD,average,n-1</sub>are the average CO<sub>2</sub> emissions in charge-depleting operating condition

until the n-1<sup>th</sup> drive cycle, g/km

D<sub>j,cycle</sub> is the test distance travelled during j<sup>th</sup> drive cycle, km

D<sub>n</sub> is the test distance travelled during the n<sup>th</sup> drive cycle in charge-depleting

operating condition, km

j is the index number of each whole cycle up to the end of transient cycle n

n is the number of whole cycles driven including transient cycle n

#### Option 2: Based on SOC value

$$R_{cda} = \sum_{j=1}^{n-1} D_{j,cycle} + \left(\frac{\Delta SOC_n}{\Delta SOC_{n-1}}\right) * D_n$$

where:

R<sub>cda</sub> is the actual charge-depleting range, km;

 $\Delta SOC_n$  is the change of state of charge during the nth drive cycle under charge-

depleting conditions, per cent;

 $\Delta SOC_{n-1}$  is the change of state of charge during the n-1<sup>th</sup> drive cycle under charge-

depleting conditions, per cent;

D<sub>j,cycle</sub> is the test distance travelled during the j<sup>th</sup> drive cycle, km;

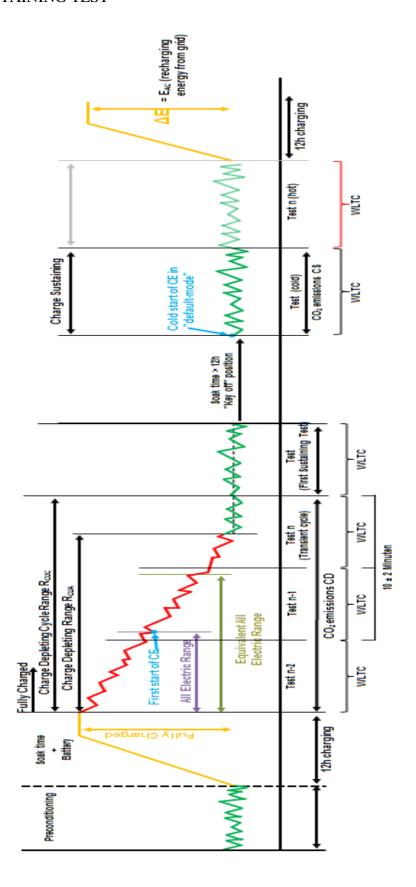
D<sub>n</sub> is the test distance travelled during the nth drive cycle in charge-depleting

operating condition, km;

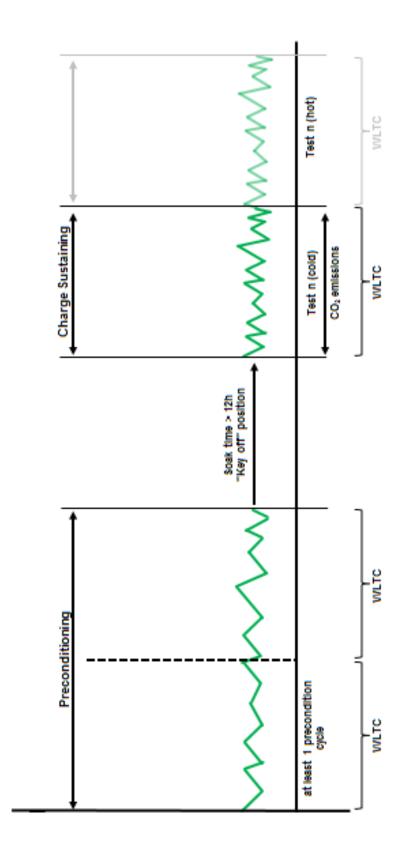
n is the last charge-depleting cycle during the charge depletion test (transient

cycle).

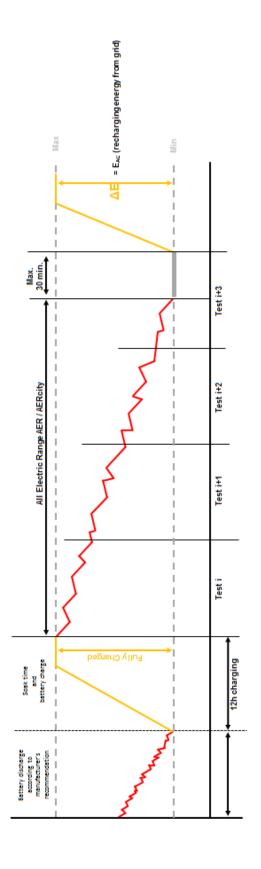
#### 6.4.2. PEV


#### 6.4.2.1. All-electric range, AER

The distance driven over complete WLTC cycles until the break-off criteria is reached shall be measured and shall be rounded to the nearest whole number.


#### 6.4.2.2. All-electric city range, AERcity

The distance driven over complete low and medium WLTC cycles until the break-off criteria is reached shall be measured and shall be rounded to the nearest whole number.


# APPENDIX Ia: RCB PROFILE OVC-HEV, CHARGE-DEPLETING FOLLOWED BY CHARGE-SUSTAINING TEST



# APPENDIX Ib: RCB PROFILE, OVC-HEV, CHARGE-SUSTAINING TEST



# APPENDIX Ic: RCB PROFILE, PEV, ELECTRIC RANGE AND ELECTRIC ENERGY CONSUMPTION TEST



#### APPENDIX II: REESS CHARGE BALANCE (RCB) COMPENSATION

- 1. This Appendix describes the test procedure for RCB compensation of CO<sub>2</sub> and fuel consumption measurement results when testing NOVC-HEV and OVC-HEV vehicles.
- 2. Fuel consumption correction coefficient (K<sub>fuel</sub>) defined by the manufacturer
- 2.1. The fuel consumption correction coefficient ( $K_{fuel}$ ) shall be determined from a set of n measurements performed by the manufacturer. This set shall contain at least one measurement with  $Q_i < 0$  and at least one with  $Q_j > 0$ . If the latter condition cannot be realised on the driving cycle (each part of cycle) used in this test, the responsible authority shall evaluate the statistical significance of the extrapolation necessary to determine the fuel consumption value at  $\Delta E_{batt} = 0$ .
- 2.1.1. The fuel consumption correction coefficient ( $K_{\text{fuel}}$ ) is defined as:

$$K_{\text{fuel}} = (n \cdot \Sigma Q_{i}FC_{i} - \Sigma Q_{i} \cdot \Sigma FC_{i}) / (n \cdot \Sigma Q_{i}^{2} - (\Sigma Q_{i})^{2})$$

where:

K<sub>fuel</sub> is the fuel consumption correction coefficient, 1/100 km/Ah

FC<sub>i</sub> is the fuel consumption measured during i<sup>th</sup> manufacturer's test, 1/100 km

Q<sub>i</sub> is the electricity balance measured during i<sup>th</sup> manufacturer's test, Ah

n is number of data

The fuel consumption correction coefficient shall be rounded to four significant figures. The statistical significance of the fuel consumption correction coefficient is to be evaluated by the responsible authority.

- 2.2. Separate fuel consumption correction coefficients shall be determined for the fuel consumption values measured over [each phase of the WLTC cycle].
- 2.3. Fuel consumption at zero REESS energy balance  $(C_0)$
- 2.3.1. The fuel consumption FC<sub>0</sub> at  $\Delta E_{\text{batt}} = 0$  is determined by the following equation:

$$FC_0 = FC - K_{fuel} \cdot Q$$

where:

FC<sub>0</sub> is the fuel consumption at  $\Delta E_{\text{batt}} = 0$ , 1/100 km

FC is the fuel consumption measured during the test, 1/100 km

Q is the electricity balance measured during test, Ah

or: 
$$FC' = 100/FC_0$$

where:

FC' is the fuel consumption  $C_0$  in units of km/l

2.3.2. Fuel consumption at zero REESS energy balance shall be determined separately for the fuel consumption values measured over the [Part One] cycle and the [Part Two] cycle respectively.

- 3. CO<sub>2</sub> emission correction coefficient (K<sub>CO2</sub>) defined by the manufacturer
- 3.1. The  $CO_2$  emission correction coefficient ( $K_{CO2}$ ) shall be determined as follows from a set of n measurements performed by the manufacturer. This set shall contain at least one measurement with  $Q_i < 0$  and at least one with  $Q_j > 0$ . If the latter condition cannot be realised on the driving cycle (Part One or Part Two) used in this test, the responsible authority will be asked to approve the statistical significance of the extrapolation necessary to determine the  $CO_2$  emission value at  $\Delta E_{batt} = 0$ .
- 3.1.1. The  $CO_2$  emission correction coefficient ( $K_{CO2}$ ) is defined as:

$$K_{CO2} = (n \cdot \Sigma Q_i M_i - \Sigma Q_i \cdot \Sigma M_i) / (n \cdot \Sigma Q_i^2 - (\Sigma Q_i)^2)$$

where:

K<sub>CO2</sub> are the CO<sub>2</sub> emissions correction coefficient, g/km/Ah

 $M_i$  are the  $CO_2$  emissions measured during  $i^{th}$  manufacturer's test, g/km

Q<sub>i</sub> is the electricity balance during i<sup>th</sup> manufacturer's test, Ah

n is the number of measurements

- 3.1.2. The  $CO_2$  emission correction coefficient shall be rounded to four significant figures. The statistical significance of the  $CO_2$  emission correction coefficient is to be judged by the responsible authority.
- [3.1.3. Separate CO<sub>2</sub> emission correction coefficients shall be determined for the fuel consumption values measured over WLTC].
- 3.2.  $CO_2$  emission at zero REESS energy balance ( $M_0$ )
- 3.2.1. The CO<sub>2</sub> emission  $M_0$  at  $\Delta E_{\text{batt}} = 0$  is determined by the following equation:

$$M_0 = M - K_{CO2} \cdot Q$$

where:

 $M_0$  are the  $C_{O2}$  emissions at zero REESS energy balance, g/km

C is the fuel consumption measured during test, 1/100 km

Q is the electricity balance measured during test, Ah

 $3.2.2.\ CO_2$  emissions at zero REESS energy balance shall be determined separately for the  $CO_2$  emission values measured over each WLTC cycle phase.

# APPENDIX III: METHOD FOR MEASURING THE ELECTRICITY BALANCE OF TRACTION BATTERIES OF NOVC-HEVS AND OVC-HEVS

#### 1. Introduction

1.1. This Appendix defines the method and required instrumentation to measure the electricity balance of OVC-HEVs and NOVC-HEVs.

Measurement of the electricity balance is necessary to determine when the minimum state of charge of the REESS has been reached during the test procedures defined in [§5.2.4. (CD test) and §5.2.5. (CS test)] of this Annex; and to correct the measured fuel consumption and CO<sub>2</sub> emissions for the change in REESS energy content occurring during the test.

1.2. The method described in this Annex shall be used by the manufacturer for the measurements that are performed to determine the correction factors  $K_{\text{fuel}}$  and  $K_{\text{CO2}}$ , as defined in Appendix II of this Annex.

The responsible authority shall check whether these measurements have been performed in accordance with the procedure described in this Annex.

- 1.3. The method described in this Annex shall be used by the responsible authority for the measurement of the electricity balance Q, as defined in [Paragraphs x.x.x.x.x.] of this Annex.
- 2. Measurement equipment and instrumentation
- 2.1. During the tests described in [Paragraphs 3., 4., 5. and 6. of this Annex], the REESS current shall be measured using a current transducer of the clamp-on or closed type. The current transducer (i.e. a current sensor without data acquisition equipment) shall have a minimum accuracy of 0.5 per cent of the measured value (in A) or 0.1 per cent of the maximum value of the scale. OEM diagnostic testers shall not be used for the purpose of this test.
- 2.1.1. The current transducer shall be fitted on one of the wires directly connected to the REESS. In order to easily measure REESS current using external measuring equipment, manufacturers should preferably integrate appropriate, safe and accessible connection points in the vehicle. If that is not feasible, the manufacturer is obliged to support the responsible authority by providing the means to connect a current transducer to the wires connected to the REESS in the above described manner.
- 2.1.2. Output of the current transducer shall be sampled with a minimum sample frequency of [5] Hz. The measured current shall be integrated over time, yielding the measured value of Q, expressed in ampere-hours (Ah).
- 2.1.3. The temperature at the location of the sensor shall be measured and sampled with the same sample frequency as the current, so that this value can be used for possible compensation of the drift of current transducers and, if applicable, the voltage transducer used to convert the output of the current transducer.
- 2.2. A list of the instrumentation (manufacturer, model no., serial no.) used by the manufacturer to determine
  - (a) when the minimum state of charge of the REESS has been reached during the test procedure defined in [Paragraphs 3. and 4. of this Annex]; and

- (b) the correction factors  $K_{\text{fuel}}$  and  $KCO_2$  (as defined in Appendix II of this Annex)
- (c) the last calibration dates of the instruments (where applicable)

shall be provided to the responsible technical authority.

# 3. MEASUREMENT PROCEDURE

- 3.1. Measurement of the REESS current shall start at the same time as the test starts and shall end immediately after the vehicle has driven the complete driving cycle.
- 3.2. Separate values of Q shall be logged over the cycles required to be driven for that class of vehicle.

#### APPENDIX IV: CONDITIONING FOR PEV AND OVC-HEV TESTING

- 1. This appendix describes the test procedure for REESS and IC combustion engine conditioning in preparation for (a) electric range, charge-depleting and charge-sustaining measurements when testing OVC-HEV and (b) electric range measurements when testing PEV vehicles.
- 2. OVC-HEV combustion engine and REESS conditioning

When testing in charge-sustaining mode is followed by testing in charge-depleting mode, the charge-sustaining mode test and the charge-depleting test may be repeated independent of one another. In that case, the vehicle shall be prepared as prescribed 2.1.1. before the charge-depleting test or the charge-sustaining test starts.

- 2.1. OVC-HEV combustion engine and REESS condition when the test procedure starts with a charge-sustaining test
- 2.1.1. The soak area shall have a temperature set point of 296 K and the tolerance of the actual value shall be within  $\pm$  3 K. The temperature shall be measured continuously at a minimum of 1 Hz. This conditioning shall be carried out for at least six hours and continue until the engine oil temperature and coolant, if any, are within  $\pm$  2 K of the temperature of the room.
- 2.1.2. For preconditioning of the combustion engine, the OVC-HEV shall be driven over two consecutive WLTC cycles required for that class of vehicle. The manufacturer shall guarantee that the vehicle operates in a charge-sustaining operation. The preconditioning cycle shall be performed in a cold condition after a soak period according to §2.1.1.
- 2.1.3. When testing an OVC-HEV with driver-selectable operation mode, the preconditioning cycles shall be performed in the same operation mode as the charge-sustaining test as described in §5.2.5. of this Annex.
- 2.1.4. During the preconditioning cycle according to §2.1.2., the charging balance of the traction REESS must be recorded and shall be within the permissible charging balance deviation in §5.1.3.3.1. of this Annex.
- 2.1.5. If the charging balance deviation during the preconditioning cycle is higher than in [§5.1.3.3.1.] of this Annex, the preconditioning cycle according to §2.1.2. must be repeated until the charging balance deviation complies with the limit in [§5.1.3.3.1.] of this Annex.
- 2.1.6. Alternatively, at the request of the manufacturer, the SOC level of the REESS for the charge-sustaining test can be set according to the manufacturer's recommendation in order to achieve a charge balance neutral charge-sustaining test.

In that case an additional ICE preconditioning procedure according to the conventional vehicles can be applied.[to be validated during VP2]

- 2.2. OVC-HEV combustion engine and REESS condition when the test procedure starts with a charge-depleting test
- 2.2.1. Before testing, the vehicle shall be kept in a room in which the temperature remains relatively constant around 298 K (25 $^{\circ}$ C) within 293 K and 303 K (20  $^{\circ}$ C and 30  $^{\circ}$ C). This

conditioning shall be carried out for at least six hours and continue until the engine oil temperature and coolant, if any, are within  $\pm 2$  K of the temperature of the room.

- 2.2.2. For preconditioning the combustion engine, the OVC HEV shall be driven in two consecutive WLTC. The manufacturer guarantees that the vehicle operates in a charge-depleting operation.
- 2.2.3. In case of testing a OVC-HEV with driver-selectable operation mode, the preconditioning cycles shall be performed in the same operation mode as the charge-depleting test as described 5.2.4. of this Annex.
- 2.2.4. During soak, the electrical energy storage device shall be charged, using the normal overnight charging procedure as defined in paragraph 2.2.5. below.
- 2.2.5. Application of a normal overnight charge
- 2.2.5.1. The electrical energy storage device shall be charged:
  - (a) with the on board charger if fitted, or
  - (b) with an external charger recommended by the manufacturer using the charging pattern prescribed for normal charging;
  - (c) in an ambient temperature comprised between 20 °C and 30 °C. This procedure excludes all types of special charges that could be automatically or manually initiated like, for instance, the equalisation charges or the servicing charges. The manufacturer shall declare that during the test, a special charge procedure has not occurred.

#### 2.2.5.2. End of charge criteria

The end of charge criteria corresponds to a charging time of 12 hours, unless a clear indication is given to the driver by the standard instrumentation that the electrical energy storage device is not yet fully charged. In this case:[JP will consider later]

Maximum time = 
$$3 * \frac{\text{claimed REESS capacity (Wh)}}{\text{mains power supply (W)}}$$

#### 3. PEV REESS conditioning

#### 3.1. Initial charging of the REESS

Charging the REESS consists of discharging the REESS and applying a normal overnight charge

# 3.1.1. Discharging the REESS

Discharge test procedure shall be performed according to the manufacturer's recommendation. The manufacturer will guarantee that the REESS is as fully depleted as is possible by the discharge test procedure.

# 3.1.2. Application of a normal overnight charge

The REESS shall be charged:

- (a) with the on-board charger if fitted,
- (b) with an external charger recommended by the manufacturer, using the charging pattern prescribed for normal charging,

### (c) at an ambient temperature between between 20 °C and 30 °C.

The procedure shall exclude any special charges that could be automatically or manually initiated equalisation charges or servicing charges. The car manufacturer shall declare that no special charge procedure took place during the test.

# 3.1.3. End of charge criteria

The end of charge criteria shall correspond to a charging time of 12 hours except if a indication is given to the driver by the standard instrumentation that the REESS is yet fully charged. In this case,[JP will consider later]

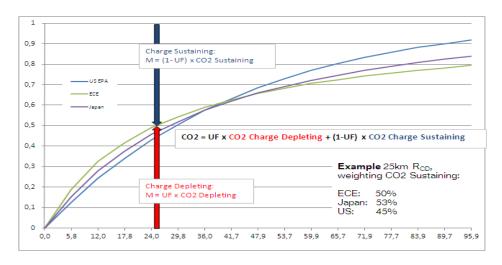
Maximum time = 
$$3 * \frac{\text{claimed REESS capacity (Wh)}}{\text{mains power supply (W)}}$$

# 3.1.4. Fully charged REESS

A fully charged REESS is one which has been charged according to the overnight charge procedure fulfilling the end of charge criteria.

NOTE: Utility factors to be discussed outside of the GTR working groups.

# APPENDIX V: [STANDARDIZED METHODOLOGY FOR DETERMINATION OF A GLOBAL HARMONIZED UTILITY FACTOR (UF) FOR OVC-HEVs]


The Utility Factor UF indicates the limited utility of a particular initial operating mode (e.g. CD mode of an OVC-HEV). An operating mode with a very long range, for example, will have a very high utility and, thus, a UF that approaches 1.0. The UF result is for a distance RCD based upon a set of in-use data collected of daily miles travelled per day of a large sample group. The UF is defined by using the assumptions that (1) the vehicle starts the day from a routinely achieved, fully charged state and (2) the vehicle is charged to said state before every day of personal travel. The UF weighting for a given RCD is applied to the CD results, and the term (1-UF) is applied the CS mode results. (Source: SAE J2841, modified by TB).

It is proposed by the ACEA DTP e-Lab group to apply a Utility Factor (UF) to generate weighted combined values from a charge-depleting test condition and a charge-sustaining test condition for externally chargeable HEV (OVC HEV). For OVC HEV these weighted combined test results (e.g. for CO<sub>2</sub> and emission species) shall be considered to be the equivalent to the test results determined for conventional vehicles and electric vehicles as determined according to the applicable test procedures (Annex 6).

The Utility Factor is determined by statistical methods and is based on real driving behaviour data analyses. An example of how an UF can be determined is given by SAE J2841.

The UF is applied to the CD test results, and (1-UF) is applied to the CS test results.

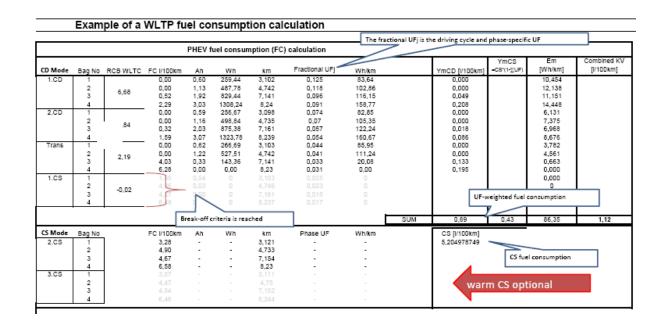
Most OVC-HEV regulations already include utility factors to merge CD and CS values. (Remark: even the equations in Regulation No. 101 can be transformed in a way that they represent a utility factor) → see figure below (from initial OICA presentation):



The WLTP DTP e-Lab group does currently not focus on the determination of the UF. However, there is a need to further elaborate on the determination on a global harmonized utilization factor. To determine the UF, a set of statistical data needs to be generated and methodologies need to be developed how to generate the UFs from the statistical data. SAE J2841could act as an sample for such a methodology.

It is therefore recommended that the WLTP process starts with global harmonized activities to determine the methodology and gather the relevant statistical data.

The WLTP e-Lab group could support this activity, especially regards the development of a global methodology and by providing a list of data that need to be collected. The data gathering itself is beyond the capabilities of the DTP e-Lab group.


For the purpose of  $CO_2$  and fuel consumption determination there is the need to develop equations to calculate the fractional utility factors.

Also the adoption of this known equation from the EPA legislation is possible.]

# APPENDIX VIa: OVC-HEV CO<sub>2</sub> CALCULATION EXAMPLE

|         |                  |          |                                     |                              |                                       |                                              |                                  | The fract                           | tional UFj is th | e driving cycle an               | d phase-speci       | fic UF                               |                                  |
|---------|------------------|----------|-------------------------------------|------------------------------|---------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------|------------------|----------------------------------|---------------------|--------------------------------------|----------------------------------|
|         |                  |          |                                     | PHEV ca                      | rbon dioxi                            | ide (CO2) er                                 | missions                         |                                     |                  |                                  |                     |                                      |                                  |
| CD Mode | Bag No           | RCB WLTC | CO <sub>2</sub> g/km                | Ah                           | Wh                                    | km                                           | Fractional Ufj                   | Wh/km                               |                  | YmCD [g/km]                      | YmCS<br>•C8*(1-∑UF) | Em<br>[Wh/km]                        | Combine<br>CO <sub>2</sub> [g/km |
| 1.CD    | 1<br>2<br>3<br>4 | 6,68     | 0,00<br>0,00<br>11,85<br>52,63      | 0,60<br>1,13<br>1,92<br>3,03 | 259,44<br>487,78<br>829,44<br>1308,24 | 3,102<br>4,742<br>7,141<br>8,24              | 0,125<br>0,118<br>0,096<br>0,091 | 83,64<br>102,86<br>116,15<br>158,77 |                  | 0,000<br>0,000<br>1,138<br>4,789 |                     | 10,454<br>12,138<br>11,151<br>14,448 |                                  |
| 2.CD    | 1<br>2<br>3<br>4 | 6,84     | 0,00<br>0,00<br>7,36<br>36,54       | 0,59<br>1,16<br>2,03<br>3,07 | 256,67<br>498,84<br>875,38<br>1323,78 | 3,098<br>4,735<br>7,161<br>8,239             | 0,074<br>0,07<br>0,057<br>0,054  | 82,85<br>105,35<br>122,24<br>160,67 |                  | 0,000<br>0,000<br>0,420<br>1,973 |                     | 6,131<br>7,375<br>6,968<br>8,676     |                                  |
| Trans   | 1<br>2<br>3<br>4 | 2,19     | 0,00<br>0,00<br>92,73<br>150,15     | 0,62<br>1,22<br>0,33<br>0.00 | 266,69<br>527,51<br>143,36<br>0.00    | 3,103<br>4,742<br>7,141<br>8,23              | 0,044<br>0,041<br>0,033<br>0.031 | 85,95<br>111,24<br>20,08<br>0.00    |                  | 0,000<br>0,000<br>3,060<br>4,655 |                     | 3,782<br>4,561<br>0,663<br>0,000     |                                  |
| 1.CS    | 1<br>2<br>3<br>4 | -0,02    | 37,95<br>144,07<br>108,07<br>150,28 | 0,54<br>0,03<br>0,00         | 0<br>0<br>0                           | 3,103<br>4,748<br>7,161<br>8,237             |                                  |                                     |                  | UF-we                            | ighted CD CO2       | 0,000<br>Emission                    |                                  |
|         |                  |          | Γ                                   | Break-off                    | criteria is rea                       | ached                                        |                                  |                                     | SUM              | 16,03                            | 9,81                | 86,35                                | 25,84                            |
| CS Mode | Bag No           |          | CO <sub>2</sub> g/km                | Ah                           | Wh                                    | km                                           | Phase UF                         | Wh/km                               |                  | CS [g/km]                        |                     |                                      |                                  |
| 2.CS    | 1<br>2<br>3<br>4 |          | 75,50<br>112,67<br>107,35<br>151,29 | :                            | :                                     | 3,611<br>5,389<br>5,134<br>7,235             | :                                | :                                   |                  | 118,185                          |                     |                                      |                                  |
| 3.CS    | 1 2 3            |          | 70,62<br>102,77<br>104,51<br>148,60 |                              |                                       | 3,377354<br>4,914853<br>4,998335<br>7,106807 |                                  |                                     |                  | wari                             | n CS opti           | ional                                |                                  |

# APPENDIX VIb: OVC-HEV FUEL CONSUMPTION CALCULATION EXAMPLE



# APPENDIX VII: DETERMINATION OF THE CYCLE ENERGY DEMAND OF THE VEHICLE

# Option 1:

Calculation of Cycle Energy Demand:

$$E_{cycle} = \int_{t=0}^{t=t_{end}} \left\{ \left[ F_{RL} (v(t)) + M_{test} * \frac{dv(t)}{dt} \right] . v(t) . dt \right\}_{\left(\frac{dv(t)}{dt}\right)_{\geq 0}}$$

where:

E<sub>cycle</sub> is the cycle energy demand, W;

F<sub>RL</sub> is the road load force expressed as a second degree polynomial, N;

 $\begin{array}{ll} v(t) & \text{cycle speed, m/sec;} \\ M_{test} & \text{vehicle test mass, kg;} \end{array}$ 

 $\left(\frac{d\mathbf{v}(t)}{dt}\right)_{\geq 0}$  0 or 1 (only positive accelerations or steady state speeds are considered).

### [Option 2:

Determination of Cycle Energy Demand by using the chassis dynamometer load table depending on the test mass of the vehicle: ]

| Reference mass of<br>vehicle | Equivalent inertia | Power and load ab-<br>sorbed by the dyna-<br>mometer at 80 km/h |     | Coe | fficients |
|------------------------------|--------------------|-----------------------------------------------------------------|-----|-----|-----------|
|                              |                    |                                                                 |     |     | Ф         |
| Rm (kg)                      | kg                 | kW                                                              | N   | IN  | N/(km/h)  |
| Rm ≤ 480                     | 455                | 3.8                                                             | 171 | 3.8 | 0.0261    |
| 480 < Rm ≤ 540               | 510                | 4.1                                                             | 185 | 4.2 | 0.0282    |
| 540 < Rm ≤ 595               | 570                | 4.3                                                             | 194 | 4.4 | 0.0296    |
| 595 < Rm ≤ 650               | 625                | 4.5                                                             | 203 | 4.6 | 0.0309    |
| 650 < Rm ≤ 710               | 680                | 4.7                                                             | 212 | 4.8 | 0.0323    |
| 710 < Rm ≤ 785               | 7.40               | 4.9                                                             | 221 | 5.0 | 0.0337    |
| 765 < Rm ≤ 850               | 800                | 5.1                                                             | 230 | 5.2 | 0.0351    |
| 850 < Rm ≤ 985               | 910                | 5.6                                                             | 252 | 5.7 | 0.0385    |
| 985 < Rm ≤ 1080              | 1020               | 6.0                                                             | 270 | 8.1 | 0.0412    |
| 1080 < Rm s 1190             | 1130               | 6.3                                                             | 284 | 8.4 | 0.0433    |
| 1190 < Rm ≤ 1305             | 1250               | 6.7                                                             | 302 | 6.8 | 0.0460    |
| 1305 < Rm ≤ 1420             | 1380               | 7.0                                                             | 315 | 7.1 | 0.0481    |
| 1420 < Rm ≤ 1530             | 1470               | 7.3                                                             | 329 | 7.4 | 0.0502    |
| 1530 < Rm ≤ 1640             | 1590               | 7.5                                                             | 338 | 7.6 | 0.0515    |
| 1640 < Rm s 1760             | 1700               | 7.8                                                             | 351 | 7.9 | 0.0536    |
| 1760 < Rm ≤ 1870             | 1810               | 8.1                                                             | 365 | 8.2 | 0.0557    |
| 1870 < Rm ≤ 1980             | 1930               | 8.4                                                             | 378 | 8.5 | 0.0577    |
| 1980 < Rm ≤ 2100             | 2040               | 8.6                                                             | 387 | 8.7 | 0.0591    |
| 2100 < Rm ≤ 2210             | 2150               | 8.8                                                             | 396 | 8.9 | 0.0605    |
| 2210 < Rm ≤ 2380             | 2270               | 9.0                                                             | 405 | 9.1 | 0.0619    |
| 2380 < Rm ≤ 2810             | 2270               | 9.4                                                             | 423 | 9.5 | 0.0648    |
| 2610 < Rm                    | 2270               | 9.8                                                             | 441 | 9.9 | 0.0674    |

# NOTE: The following Annex is under development

#### ANNEX 9: DETERMINATION OF SYSTEM EQUIVALENCE

Systems or analysers other than those described in this GTR may be approved by the responsible authority if it is found that they produce an output equivalent to that from reference systems or analysers.

The determination of system equivalency shall be based on a 7 sample pair (or larger) correlation study between the candidate system and one of the accepted reference systems of this GTR using the appropriate test cycle(s). The equivalency criteria to be applied shall be the F-test and the two-sided Student t-test.

Correlation testing is to be performed at the same laboratory, test cell, and on the same vehicle, and is to be run simultaneously. Should it not be possible to run the test simultaneously, it should at least be conducted concurrently. The equivalency of the sample pair averages shall be determined by F-test and t-test statistics as described below obtained under the laboratory test cell and the vehicle conditions described in this GTR. Outliers shall be determined in accordance with ISO 5725-2:1994 and excluded from the database. The systems to be used for correlation testing shall be subject to the approval by the responsible authority.

This statistical method examines the hypothesis that the sample standard deviation and sample mean value for an emission measured with the candidate system do not differ from the sample standard deviation and sample mean value for that emission measured with the reference system. The hypothesis shall be tested on the basis of a 10 per cent significance level of the F and t values. The critical F and t values for 7 to 10 sample pairs are given in Table 1. If the F and t values calculated according to the equation below are greater than the critical F and t values, the candidate system is not equivalent.

The following procedure shall be followed. The subscripts R and C refer to the reference and candidate system, respectively:

- (a) conduct at least 7 tests with the candidate and reference systems operated simultaneously or, if not possible, concurrently. The number of tests is referred to as  $n_R$  and  $n_C$ .
- (b) calculate the mean values  $\overline{x_R}$  and  $\overline{x_C}$  and the standard deviations  $s_R$  and  $s_C$ .
- (c) calculate the F value, as follows:

$$F = \frac{S_{\text{major}}^2}{S_{\text{minor}}^2}$$

(the greater of the two standard deviations s<sub>R</sub> or s<sub>C</sub> must be in the numerator)

(d) calculate the t value, as follows:

$$t = \frac{|\overline{X_C} - \overline{X_R}|}{\sqrt{(n_C - 1) \times S_C^2 + (n_R - 1) \times S_R^2}} \times \sqrt{\frac{n_C \times n_R \times (n_C + n_R - 2)}{n_C + n_R}}$$

(e) compare the calculated F and t values with the critical F and t values corresponding to the respective number of tests indicated in Table 1. If larger

sample sizes are selected, consult statistical tables for 10 per cent significance (90 per cent confidence) level.

(f) determine the degrees of freedom (df), as follows:

for the F-test: 
$$df = n_R - 1 / n_C - 1$$
  
for the t-test:  $df = n_C + n_R - 2$ 

- (g) determine the equivalency, as follows:
  - (i) if  $F < F_{crit}$  and  $t < t_{crit}$ , then the candidate system is equivalent to the reference system of this GTR
  - (ii) if  $F \ge F_{crit}$  or  $t \ge t_{crit}$ , then the candidate system is different from the reference system of this GTR

Table 1 t and F values for selected sample sizes

| Sample Size | F-test |            | t-test |            |
|-------------|--------|------------|--------|------------|
|             | df     | $F_{crit}$ | df     | $t_{crit}$ |
| 7           | 6/6    | 3.055      | 12     | 1.782      |
| 8           | 7/7    | 2.785      | 14     | 1.761      |
| 9           | 8/8    | 2.589      | 16     | 1.746      |
| 10          | 9/9    | 2.440      | 18     | 1.734      |