

www.euroncap.com

Euro NCAP Medium Severity Whiplash Pulse

GTR7 – Informal Working Group

1st March 2011

- Target Sled Pulse
- **Euro NCAP Corridor Development**
- Repeatability and Reproducibility

- Euro NCAP whiplash sub-group formed to draft Testing and Assessment procedures
- Draft procedures issued Nov 2005
- Final procedures issued May 2008
- Cooperation with industry and laboratories throughout process

Based upon IIWPG pulse

- Triangular pulse
- 16km/h delta V

Only limited requirements available

- T0, 0.5g / -0.25g
- Peak acceleration, 9.9g -10.5g @ 27ms
- 0g, 88ms 94ms
- Delta V, 14.8g 16.2g

Clear definition of target pulse needed

$$\frac{A_{\max}}{2} \left\{ 1 - \cos\left(\frac{\pi \cdot t}{27}\right) \right\} = \begin{cases}
0 & \text{t \leq 0 ms} \\
-A_{\max} \left\{ \frac{t - 91}{(91 - 27)} \right\} & \text{for} \\
0 & \text{t \leq 0 ms} \\
0 & \text{t \leq 91 ms}
\end{cases}$$

$$t \ge 91 \text{ ms}$$

$$\frac{A_{\max}}{2} \left\{ t - \frac{27}{\pi} \sin\left(\frac{\pi \cdot t}{27}\right) \right\}$$
 for 0 ms < t < 27 ms
$$-A_{\max} \left\{ \frac{\frac{1}{2}t^2 - 91t + C}{(91 - 27)} \right\}, \text{ with } C = 1228.5$$
 27 ms < t < 91 ms
$$t \ge 91 \text{ ms}$$

High repeatability and reproducibility of whiplash pulses was required

High level of pulse control, <u>must be</u> achievable by labs

Strict sled pulse requirements were developed by Euro NCAP

First step develop boundary conditions Leading to:

Delta V

Mean g

Pulse Boundary Conditions

Delta V corridor

Further requirements were necessary for better control of the pulse

Clear definition for T0 required to synchronise pulses

1g level established

Additional requirements were added:

Pulse rise rate

Final 0g corridor

Pulse rise rate

Max width 2.4g

Medium Pulse Requirements

Initially, difficult to achieve

In depth analysis of sled characteristics

Simple measures developed to improve repeatability:

Using maximum sled mass possible
Moving mass on the sled
Performing test runs prior to actual test
Even order of test performed

Questions?