Transmitted by the expert from Germany

Informal document No. **GRB-45-5** (45th GRB, 20-22 February 2007 agenda item 7.)

Road surface characteristics and tyre road noise

Dr.-Ing. Klaus-Peter Glaeser

Federal Highway Research Institute BASt www.bast.de

Main Goals of the German Ministry of Transport

- Mitigation of road traffic noise at the source (Tyre Road Noise)
- Today about 4% of the cost of constructing a new road is for noise mitigation

BASt* Experience:

- Sperenberg Project
- Leiser Straßenverkehr 1
- Leiser Straßenverkehr 2
- Silence (EU Project)
- Michelstadt (New ISO surface)
- Several test sites in highways
- Tyre Road Noise Study (FEHRL**)

*Federal Highway Research Institute

**Forum of Highway Research Laboratories

Sperenberg Project:

Passenger car coast by noise level at 80 km/h vs. aggregat size

Plateau with gaps for dense surfaces

- Reduction of tyre profile vibrations
- Minimisation of air pumping

Dense Surfaces

Stone Mastix Asphalt with chipping size 0/8 is the major road surface type in the German primary road network.

This surface type has in average a -2 dB(A) tyre noise level compared to a reference surface

Pourous Asphalts

Systematic construction and testing began in Germany in 1986.

5 generations of porous asphalt:

Increase in void content 15 ---> 22 Vol.-%

Increase of acoustic effectiveness

Increase of durability by polymer modified binders

Twinlay: top 8 mm, bottom 16 mm aggregate size

Appliance of Nano Technology to avoid clogging

Porous Asphalt

Advantages:

- Reduction of splash and spray
- High resistance to rutting
- •Highest acoustic effectiveness [-7 to 9 dB(A)]

Disadvantages:

- •Higher cost (+30 €/m²)
- •Repairing problems and higher maintenance costs
- Reduced durability (clogging, ravelling, binder hardening)
- Bad wet grip short after construction

dense / porous

Effectiveness of Porous Asphalt

Generation	Date of Construction	SPB Noise 120 km/h Pass.Car	SPB Noise 90 km/h Trucks
1	1988	79	-
2	1993	78	85
3	1997	76	84
4 (Twinlay)	1998	77	82
5 (increased	2003	76	-
thickness)			

Acoustical Mode of Function of Porous Layers

Construction of Twinlay

Surface Ruination

Ravelling

Clogging

Porous Surfaces

Only used in "noise hot spots" in the German primary road network

Only about 2% of the 12,000 km long Autobahn network consists in porous asphalt

Porous concrete surfaces are also possible to construct, but too many open problems

Tyre development in "Leiser Strassenverkehr 1"

Heavy truck traffic is dominant between 2 and 6 o clock (ca. 60 %).

One truck each 8 sec.

Noise emission level between 2 and 6 o clock is dominated by trucks.

Truck drive axle tyres are about 3-4 dB(A) louder than steering axle tyres

Drive axle tyres of different brands vary up to 4 dB(A) on dense surfaces and 1,5 dB(A) on porous surfaces

Source: DWW (NL) measured on Sperenberg surfaces, 70 km/h

Truck drive axle tyres are about 3-4 dB(A) louder than steering axle tyres

Drive axle tyres of different brands vary up to 4 dB(A) on dense surfaces and 1,5 dB(A) on porous surfaces

Source: DWW (NL) measured on Sperenberg surfaces, 70 km/h

For truck drive axle tyres a noise reduction of 3 dB(A) seem to be possible without changing other tyre features too much.

This is reached only by the profile design, no changes in carcass or rubber mixture.

(Source: Leiser Straßenverkehr 2)

Future Tyre Road Noise Research of BASt

Tyre Pavement Interaction Test Facility

Gluing of the road surfaces into the caskets

Preheat of the caskets

140° C hot polymer modified bitumen

Thank you for you attention!

