Informal document No. GRB-42-12 (42nd GRB, 5-7 September 2005, agenda item 4.1.)

# Low frequency noise

A short introduction for GRB

GRB, september 2005 Low frequency noise 1/24

# Relevance for vehicle regulation

- LFN related to Health and Nuisance
- Vehicles are a source of LFN

# Definition of Low Frequency Noise

- No 'global' definition
- Definitions in D, DK, S, PL, NL, ISO

Lower boarder: 8-20 HzHigher boarder: 100-250 Hz

Examples:

ISO: 20-250 HzGer: 8-100 Hz

GRB, september 2005 Low frequency noise 2/24

### LFN in the Netherlands

In the Netherlands many complaints about traffic bound Low Frequency Noise

- If specific conditions are mentioned
  - Accelerating conditions
  - Stationary conditions
- If specific sources are mentioned
  - Exhaust systems
  - City busses
  - Motorcycles
  - Heavy traffic

GRB, september 2005 Low frequency noise 3/24 GRB, september 2005 Low frequency noise 4/24

# Example city bus

Bus company got a lot of complaints about a new type of bus: therefore an investigation was started:

- Investigation of complaints: residents at bus stops and traffic lights complain about LFN
- Measurements on two different types (old and new)
- Both were (correctly) approved according to R51
- New type emits more low frequency noise
  - Slightly during R51 acceleration and stand still
  - Significantly during pulling away from stand still (50-70 Hz)

GRB, september 2005

Low frequency noise

5/24

# Example city bus (cont)

- Exhaust emits normally the firing frequency and higher harmonics
- Example: 6 cylinder 4 stroke line engine 500 rpm:
  - Firing frequency = 500/60 \* 6 / 2 = 25 Hz
  - Higher Harmonics: 50 Hz, 75 Hz etc
- Exhaust was identified as source of LFN
- Manufacturer was asked to optimize exhaust system
- Bus company introduces 'bus stop' noise criteria for all new to buy busses

GRB, september 2005

Low frequency noise

6/24

# Acoustical Background information

What is so special about Low frequency noise?

# Frequency regions



GRB, september 2005 Low frequency noise 7/24 GRB, september 2005 Low frequency noise 8/24

# Examples of low frequency noise

| Source       | Low frequency noise                                         | High frequency noise |
|--------------|-------------------------------------------------------------|----------------------|
| Voice        | Bass, male                                                  | Soprano, female      |
| Nature       | Earthquake, thunder, volcano                                | Snake, mosquito      |
| Music        | Contrabass, kettledrum, pipe organ                          | Piccolo, triangle    |
| Household    | Transformer, fan, washer                                    | whistling kettle     |
| Industry     | compressor, pump                                            | Steam release valve  |
| Ships        | exhaust, radiating hull                                     | Whistle              |
| Road traffic | wheel/road (structure borne on bumps)<br>exhaust (airborne) | Valve train, tyres   |

GRB, september 2005 Low frequency noise 9/24

# ISO equal loudness curves The human ear: non-linear sensitivity



The ear is more sensitive to high frequencies than to low frequencies This discrimination becomes steeper for softer sounds

# Quantities for loudness

- Sound level meter measures physical quantity (sound pressure level or intensity level) in Decibels
- Human ear experiences Loudness level:
- Transition between human ear and sound level meter: ISO equal loudness curves in phons

GRB, september 2005 Low frequency noise 10/24

# The human ear: non-linear sensitivity



**LFN:** hearing = annoyance

GRB, september 2005 Low frequency noise 11/24 GRB, september 2005 Low frequency noise 12/24

#### How to measure sound

Filters: dB(A), dB(B) and dB(C)

- to compensate non-linear sensitivity of the human ear
- Different filter for different situations

GRB, september 2005 Low frequency noise 13/24

# Filters and vehicle regulations

- If the dB(A) is used for noise levels of 70-80 phon, the influence of low frequencies is underestimated. (too much filtered away)
- Vehicle test results are in the range of 70-80 phon and measured in dB(A)
- What is the justification?

### Properties of filters

#### A-filter

- Made for noise levels of 40 phon
- Not made for noise levels of 70 phon and higher
- In practice used for 95% of measurements independent of level
- B-filte
  - Made for noise levels of 70 phon
  - used for vehicle interior noise measurements
- C-filter
  - Made for noise levels of 100 phon
  - used for low frequency noise measurements



GRB, september 2005 Low frequency noise 14/24

# From test result to traffic situations

- In real traffic situations noise propagates from 7,5 meter to citizens
  - On bigger distance
  - Behind barriers
  - Inside dwellings

Therefore Noise levels will decrease.

At lower levels the A-filter could be justified

GRB, september 2005 Low frequency noise 15/24 GRB, september 2005 Low frequency noise 16/24

# The noise reduction between source and receiver

#### Focus in on:

- Barrier
- Facade



GRB, september 2005

# Influence of barrier



#### At low frequencies hardly any reduction from barrier

GRB, september 2005 Low frequency noise 18/24

# Influence of facade



#### At low frequencies hardly any reduction from facade

Example of two sources with same noise level, but different frequency content



GRB, september 2005 Low frequency noise 20/24

GRB, september 2005 Low frequency noise 19/24

# Resulting noise at reception point



GRB, september 2005 Low frequency noise 21/24

# Influence of using C-filter



C-weighted spectrum on 7.5 meter is a good predictor for

A-weighted spectrum inside dwelling

GRB, september 2005 Low frequency noise 22/24

# Summary

- LFN is relevant for health and nuisance
- LFN is relevant for vehicle regulation
- For measurements on 7.5 m , the dB(C) or dB(B) is a better predictor than the dB(A) for
  - the loudness on 7.5 m
  - the loudness inside dwellings

Thank you For your attention!

GRB, september 2005 Low frequency noise 23/24 GRB, september 2005 Low frequency noise 24/24