NATIONS UNIES ST

Secrétariat

Distr. GÉNÉRALE

ST/SG/AC.10/C.4/2003/7 29 septembre 2003

FRANÇAIS

Original: ANGLAIS

COMITÉ D'EXPERTS DU TRANSPORT DES MARCHANDISES DANGEREUSES ET DU SYSTÈME GÉNÉRAL HARMONISÉ DE CLASSIFICATION ET D'ÉTIQUETAGE DES PRODUITS CHIMIQUES

Sous-Comité d'experts du système général harmonisé de classification et d'étiquetage des produits chimiques (Sixième session, 10-12 décembre 2003, point 2 de l'ordre du jour)

PROPOSITIONS D'AMENDEMENTS AU SYSTÈME GÉNÉRAL HARMONISÉ DE CLASSIFICATION ET D'ÉTIQUETAGE DES PRODUITS CHIMIQUES (SGH)

Classification des mélanges de gaz d'après leurs effets toxiques

Communication de l'Association européenne des gaz industriels (EIGA)

Introduction

À la cinquième session du Sous-Comité, l'EIGA a présenté une communication relative à la classification des mélanges de gaz d'après leurs effets toxiques (document ST/SG/AC.10/C.4/2003/1 en date du 21 mars 2003) dans laquelle elle proposait des modifications à apporter au paragraphe 3.1.3.6 du document ST/SG/AC.10/30. Plusieurs États membres ont eu du mal à apprécier la portée réelle du problème et l'EIGA a été invitée à étoffer son argumentation, donner un nouvel éclairage au problème et faire mieux comprendre pourquoi la méthode additive ne donne pas de résultats appropriés pour la classification (voir rapport de la cinquième session, ST/SG/AC.10/C.4/10, par. 31 à 34). En conséquence, l'EIGA présente ci-après le contexte de cette proposition.

Situation générale

Beaucoup de mélanges de gaz à usage spécial sont produits par l'industrie du gaz pour être utilisés dans des applications très variées, notamment pour la fabrication de semi-conducteurs, les applications médicales et les soins de santé, les essais automobiles, la surveillance de l'environnement, la R-D universitaires, etc. Beaucoup de ces mélanges sont préparés pour répondre à des besoins individuels ou en faibles quantités. Des milliers de mélanges spécialisés sont préparés à la demande et la gamme de mélanges est illimitée. Ils peuvent être constitués de plus de 20 gaz différents à des concentrations variables.

En ce qui concerne ces préparations, on ne dispose d'aucune donnée d'expérience concernant leurs effets toxiques sur l'homme en tant que mélanges et il convient de mettre au point une méthode de calcul pour élaborer une classification appropriée. L'application des dispositions du SGH figurant dans la note e) ii) du tableau 3.1.1 (ST/SG/AC.10/30) n'offre pas de solution valable dans le cas de ces mélanges de gaz utilisés une seule fois car elle risque d'amener les experts à établir des classifications différentes.

Il est souhaitable que la toxicité totale du mélange des gaz soit déterminée par un calcul fondé sur la toxicité mesurée des composants individuels du mélange. Cette approche garantit que l'industrie du gaz met en œuvre une classification cohérente et sans équivoque des mélanges. Le SGH est parvenu à la même conclusion dans la figure 3.1.1 se référant à la formule additive du paragraphe 3.1.3.6.1. Cette formule est inacceptable pour l'EIGA en vue d'une application industrielle. L'EIGA propose une autre formule de calcul appliquée depuis de nombreuses années et qui donne des résultats acceptables.

Le problème

Au paragraphe **3.1.3.6**, le SGH autorise l'application d'une formule additive générale pour les mélanges. Elle énonce en détail les principes appliqués pour classer les mélanges en fonction de leur toxicité orale, cutanée ou par inhalation. Elle prévoit la transition de produits purs à des mélanges et indique la formule permettant d'estimer la toxicité aiguë (ATE) lorsque les données sont disponibles pour tous les composants. La formule ci-après a été adoptée aux termes du paragraphe 3.1.3.6.1:

«L'estimation de toxicité aiguë du mélange s'obtient en calculant l'estimation de toxicité aiguë de tous les composants au moyen de la formule ci-dessous pour la toxicité orale, cutanée et par inhalation:

$$\frac{100}{\text{ATEmix}} = \sum_{n} \frac{\text{Ci}}{\text{ATEi}}$$

dans laquelle:

 C_i est la concentration du composant i

n est le nombre de composants et i est compris entre 1 et n

ATE_i est l'estimation de toxicité aiguë du composant i.»

En usage depuis de nombreuses années dans la réglementation des transports, cette formule est totalement inutilisable sur les lieux de travail. Lorsqu'elle est appliquée aux gaz, par exemple, elle donne des résultats irréguliers et qui sous-estiment fortement le risque. Ces résultats sont potentiellement dangereux et susceptibles d'entraîner des accidents de personnes.

Afin d'illustrer les risques que présenterait l'adoption de cette méthode de calcul, le tableau 1 ci-dessous donne les valeurs ATE pour trois gaz courants: l'ammoniac, le monoxyde de carbone et le chlorure d'hydrogène, en mélange avec des gaz non toxiques (selon les pourcentages du SGH). Afin d'évaluer la disparité brute, plusieurs valeurs limites d'exposition exprimées en **ppmV** ont été ajoutées.

Les abréviations ci-après sont utilisées:

- TWA: Concentration moyenne pondérée en fonction du temps pour une journée de travail (8 heures) et une semaine de travail (40 heures) normales, à laquelle la quasi-totalité des travailleurs peuvent être régulièrement exposés, jour après jour, sans effet néfaste.
- STEL: Limite d'exposition de courte durée, limitée à 15 minutes, de TWA par journée de travail.
- IDLH: Concentration présentant un danger immédiat pour la vie ou la santé, à laquelle un travailleur doit se soustraire au risque de ne plus pouvoir le faire ou de conséquences irréversibles pour sa santé.

$Comparaison \ entre \ les \ valeurs \ limites \ d'exposition \ professionnelle \ (OEL) \ en \ vigueur \ et \ les \ valeurs \ limites \ fixées \ par \ le \ SGH$

	Produit	Teneur du mélange en %	Catégorie de toxicité définie par le sgh						
AMMO	ONIAC								
TWA STEL IDLH	20 ppmV 35 ppmV 500 ppmV	Entre 100 et 80 % Entre 80 et 40 % Moins de 40 %	Catégorie 3 Catégorie 4 Catégorie 5 ou non toxique						
CHLOI	RURE D'HYDROGÈNE								
TWA STEL IDLH	5 ppmV 5 ppmV 100 ppmV	Entre 100 et 56,2 % Entre 56,2 et 28,1 % Moins de 28,1 %	Catégorie 3 Catégorie 4 Catégorie 5 ou non toxique						
MONO	XYDE DE CARBONE								
TWA STEL IDLH	25 ppmV 400 ppmV 1 500 ppmV	Entre 100 et 75,2 % Entre 75,2 et 37,6 % Moins de 37,6 %	Catégorie 3 Catégorie 4 Catégorie 5 ou non toxique						

Il est évident que le rejet éventuel de 376 000 ppmV de monoxyde de carbone, soit 250 fois plus qu'une concentration IDLH, ne peut être considéré comme sans danger. On constate un déséquilibre flagrant dans l'approche adoptée à l'égard de la toxicité aiguë et, par exemple, de la reprotoxicité. Le monoxyde de carbone est une substance reprotoxique de catégorie 1 et un mélange éventuel avec d'autres gaz inertes reste dans cette catégorie au-dessus d'une concentration de 0,1 % du monoxyde de carbone.

L'EIGA considère cette approche comme tout à fait dangereuse et recommande fortement de ne pas adopter cette formule pour les gaz.

Proposition

L'EIGA propose de conserver les quatre catégories applicables aux gaz et de les baser sur la méthode adoptée par le SGH pour les autres risques pour la santé (toxicité cancérigène, mutagène et reprotoxicité) ainsi que sur la nouvelle classification de l'Union européenne (quatre catégories au lieu de trois), qui a fait ses preuves et donne des résultats acceptables.

Valeurs limites proposées par l'EIGA pour les mélanges de gaz

Nature du gaz	Valeurs limites de concentration justifiant le classement du mélange dans la											
	Catégorie 1 * 100 ppmV	Catégorie 2 * 500 ppmV	Catégorie 3 * 2 500 ppmV	Catégorie 4 * 5 000 ppmV								
Catégorie 1	Plus de 1 %	1,0-0,5 %	0,5-0,2 %	0,2-0,02 %								
Catégorie 2		Plus de 2,0 %	2,0-1,0 %	1,0-0,2 %								
Catégorie 3			Plus de 5 %	5-0,5 %								
Catégorie 4				Plus de 5 %								

^{*} CL₅₀ (4 heures).

Par exemple, dans l'actuel système SGH, la valeur limite pour un mélange contenant du monoxyde de carbone passant de la catégorie dangereuse à la catégorie toxique est de 75,2 % en volume de CO, alors que dans les propositions de l'EIGA, ce chiffre serait de 5 % en volume. Si l'on compare cette concentration avec la concentration IDLH (présentant un danger immédiat pour la vie ou la santé) de 1 500 ppmV (0,15 % en volume) et la concentration STEL (niveau d'exposition à court terme) de 400 ppmV (0,04 % en volume) on constate que la méthode de calcul de l'EIGA est plus facile à appliquer et plus sûre que la formule ATE actuelle.

Appendices

Plusieurs délégués ont exprimé le souhait de savoir quelles sont en fait les substances en cause. L'EIGA a donc ajouté un tableau à la présente communication. Ce tableau énumère 55 gaz par ordre décroissant de toxicité exprimée par leur CL₅₀, conformément à la classification

de l'ONU (1 heure) ou du SGH (4 heures). Le tableau énumère ensuite les valeurs limites de mélanges contenant des gaz non toxiques pour la formule additive du SGH et la proposition de l'EIGA. Pour compléter l'évaluation, les valeurs actuellement utilisées dans l'Union européenne ont été également mentionnées.

Par exemple:

En utilisant la formule additive du SGH, le fluor (n° ONU 1045) avec une CL_{50} de 92,5 ppmV demeurerait dans la catégorie 1 si sa concentration dépassait 92,5 %. Entre 18,5 et 92,5 % il passerait dans la catégorie 2, entre 3,7 et 18,5 % dans la catégorie 3 et entre 3,7 et 1,85 % dans la catégorie 4. Inversement, les valeurs de l'EIGA seraient égales à 1, 0,5, 0,2 et 0,02 % et les valeurs de l'UE 1, 0,2 et 0,02 (l'Union européenne n'envisage que ces trois niveaux).

N° ONU	Nom	CL ₅₀ 1 h (ONU)	CL ₅₀ 4 h (SGH)	VALEUR LIMITE DE CONCENTRATION % Catégorie 1		VALEUR LIMITE DE CONCENTRATION % Catégorie 2		VALEUR LIMITE DE CONCENTRATION % Catégorie 3		CONCEN	LIMITE DE TRATION % gorie 4	NON TOXIQUE		CLASSIFICATION UE			ONU	ONU
				SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	Très toxique %	Toxique %	Nocif %	Classifi- cation	Groupe de risque
2202	Séléniure d'hydrogène anhydre	2	1	> 1	> 1	0,2 - 1	0,5 - 1	0,04 - 0,2	0,2 - 0,5	0,02 - 0,04	0,02 - 0,2	< 0,02	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	2.1
3160	Tellurure d'hydrogène CL ₅₀ à partir de la norme ISO 10298	5	1	>1	>1	0,2 - 1	0,5 - 1	0,04 - 0,2	0,2 - 0,5	0,02 - 0,04	0,02 - 0,2	< 0,02	< 0,02	>1	1 - 0,2	0,2 - 0,02	2.3	2.1
1076	Phosgène	5	2,5	> 2,5	>1	0,5 - 2,5	0,5 - 1	0,1 - 0,5	0,2 - 0,5	0,05 - 0,1	0,02 - 0,2	< 0,05	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	8
3308	Pentafluorure d'arsenic CL ₅₀ à partir de la norme ISO 10298	20	10	> 10	>1	2 - 10	0,5 - 1	0,4 - 2	0,2 - 0,5	0,2 - 0,4	0,02 - 0,2	< 0,2	< 0,02		> 0,2	0,2 - 0,1	2.3	8
2188	Arsine	20	10	> 10	>1	2 - 10	0,5 - 1	0,4 - 2	0,2 - 0,5	0,2 - 0,4	0,02 - 0,2	< 0,2	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	2.1
2199	Phosphine	20	10	> 10	> 1	2 - 10	0,5 - 1	0,4 - 2	0,2 - 0,5	0,2 - 0,4	0,02 - 0,2	< 0,2	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	2.1
2676	Stibine	20	10	> 10	> 1	2 - 10	0,5 - 1	0,4 - 2	0,2 - 0,5	0,2 - 0,4	0,02 - 0,2	< 0,2	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	2.1
1069	Chlorure de nitrosyle	35	17,5	> 17,5	>1	3,5 - 17,5	0,5 - 1	0,7 - 3,5	0,2 - 0,5	0,35 - 0,7	0,02 - 0,2	< 0,35	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	8
2418	Tétrafluorure de soufre	40	20	> 20	>1	4 - 20	0,5 - 1	0,8 - 4	0,2 - 0,5	0,4 - 0,8	0,02 - 0,2	< 0,4	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	8
2194	Hexafluorure de sélénium	50	25	> 25	>1	5 - 25	0,5 - 1	1 - 5	0,2 - 0,5	0,5 - 1	0,02 - 0,2	< 0,5	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	8
1589	Chlorure de cyanogène	80	40	> 40	> 1	8 - 40	0,5 - 1	1,6 - 8	0,2 - 0,5	0,8 - 1,6	0,02 - 0,2	< 0,8	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	8
1911	Diborane	80	40	> 40	> 1	8 - 40	0,5 - 1	1,6 - 8	0,2 - 0,5	0,8- 1,6	0,02 - 0,2	< 0,8	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	2.1
1660	Monoxyde d'azote	115	57,5	> 57,5	>1	11,5 - 57,5	0,5 - 1	2,3 - 11,5	0,2 - 0,5	1,15 - 2,3	0,02 - 0,2	< 1,15	< 0,02	> 10	10 - 1	1 - 0,1	2.3	5.1.8
1067	Dioxyde d'azote Tétroxyde de diazote	115	57,5	> 57,5	>1	11,5 - 57,5	0,5 - 1	2,3 - 11,5	0,2 - 0,5	1,15 - 2,3	0,02 - 0,2	< 1,15	< 0,02	> 10	10 - 1	1 - 0,1	2.3	5.1.8
2548	Pentafluorure de chlore	122	61	> 61	>1	12,2 - 61	0,5 - 1	2,44 - 12,2	0,2 - 0,5	1,22 - 2,44	0,02 - 0,2	< 1,22	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	5.1.8
2196	Hexafluorure de tungstène	160	80	> 80	>1	16 - 80	0,5 - 1	3,2 - 16	0,2 - 0,5	1,6 - 3,2	0,02 - 0,2	< 1,6	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	8
1045	Fluor	185	92,5	> 92,5	> 1	18,5 - 92,5	0,5 - 1	3,7 - 18,5	0,2 - 0,5	1,85 - 3,7	0,02 - 0,2	< 1,85	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	5.1.8

N° ONU	Nom	CL ₅₀ 1 h (ONU)	CL ₅₀ 4 h (SGH)	CONCEN	LIMITE DE VTRATION % gorie 1	CONCEN	LIMITE DE ITRATION % gorie 2	CONCEN	LIMITE DE TRATION % gorie 3	TION CONCENTRATION %		NON T	OXIQUE	CLASSIFICATION UE			ONU	ONU
				SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	Très toxique %	Toxique %	Nocif %	Classifi- cation	Groupe de risque
2198	Pentafluorure de phosphore	190	95	> 95	>1	19 - 95	0,5 - 1	3,8 - 19	0,2 - 0,5	1,9 - 3,8	0,02 - 0,2	< 1,9	< 0,02	> 1	1 - 0,2	0,2 - 0,02	2.3	
1017	Chlore	293	146,5			29,3 - 100	2 - 100	5,86 - 29,3	1 - 2	2,93 - 5,86	0,2 - 1	< 2,93	< 0,2		> 5	5 - 0,5	2.3	8
1749	Trifluorure de chlore	299	149,5			29,9 - 100	2 - 100	5,98 - 29,9	1 - 2	2,99 - 5,98	0,2 - 1	< 2,99	< 0,2		> 5	5 - 0,5	2.3	5.1.8
2189	Dichlorosilane	314	157			31,4 - 100	2 - 100	6,28 - 31,4	1 - 2	3,14 - 6,28	0,2 - 1	< 3,14	< 0,2		> 5	5 - 0,5	2.3	2.1.8
1026	Cyanogène	350	175			35 - 100	2 - 100	7 - 35	1 - 2	3,5 - 7	0,2 - 1	< 3,5	< 0,2		> 5	5 - 0,5	2.3	2.1
2417	Fluorure de carbonyle	360	180			36 - 100	2 - 100	7,2 - 36	1 - 2	3,6 - 7,2	0,2 - 1	< 3,6	< 0,2		> 5	5 - 0,5	2.3	8
1008	Trifluorure de bore	387	193,5			38,7 - 100	2 - 100	7,74 - 38,7	1 - 2	3,87 - 7,74	0,2 - 1	< 3,87	< 0,2	> 1	1 - 0,2	0,2 - 0,02	2.3	8
3308	Trifluorure de phosphore CL ₅₀ à partir de la norme ISO 10298	420	210			42 - 100	2 - 100	8,4 - 42	1 - 2	4,2 - 8,4	0,2 - 1	< 4,2	< 0,2		> 5	5 - 0,5	2.3	8
1859	Tétrafluorure de silicium	450	225			45 - 100	2 - 100	9 - 45	1 - 2	4,5 - 9	0,2 - 1	< 4,5	< 0,2		> 5	5 - 0,5	2.3	8
2420	Hexafluoracétone	470	235			47 - 100	2 - 100	9,4 - 47	1 - 2	4,7 - 9,4	0,2 - 1	< 4,7	< 0,2		> 5	5 - 0,5	2.3	8
2192	Germane	620	310			62 - 100	2 - 100	12,4 - 62	1 - 2	6,2 - 12,4	0,2 - 1	< 6,2	< 0,2	> 1	1 - 0,2	0,2 - 0,02	2.3	2.1
1053	Sulfure d'hydrogène	712	356			71,2 - 100	2 - 100	14,24 - 71,2	1 - 2	7,12 - 14,24	0,2 - 1	< 7,12	< 0,2	> 10	10 - 5	5 - 1	2.3	2.1
1062	Bromure de méthyle	850	425			85 - 100	2 - 100	17 - 85	1 - 2	8,5 - 17	0,2 - 1	< 8,5	< 0,2		> 5	5 - 0,5	2.3	
1052	Fluorure d'hydrogène anhydre	966	483			96,6 - 100	2 - 100	19,32 - 96,6	1 - 2	9,66 - 19,32	0,2 - 1	< 9,66	< 0,2	> 1	1 - 0,2	0,2 - 0,02	8	6.1
3160	Hexafluoro - 1,3 - butadiène CL ₅₀ SOURCE INCONNUE	1 300	650					26 -100	5 - 100	13 - 26	0,5 - 5	< 13	< 0,5			> 5	2.3	
1064	Mercaptan méthylique	1 350	675					27 -100	5 - 100	13,5 - 27	0,5 - 5	< 13,5	< 0,5			> 5	2.3	2.1

N° ONU	Nom	CL ₅₀ 1 h (ONU)	CL ₅₀ 4 h (SGH)	CONCEN	R LIMITE DE ENTRATION CONCENTRATION % 1tégorie 1 VALEUR LIMITE DE CONCENTRATION % Catégorie 2		VALEUR LIMITE DE CONCENTRATION % Catégorie 3		VALEUR LIMITE DE CONCENTRATION % Catégorie 4		NON TOXIQUE		CLA	SSIFICATIO	ONU	ONU		
				SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	Très toxique %	Toxique %	Nocif %	Classifi- cation	Groupe de risque
2204	Sulfure de carbonyle	1 700	850					34 - 100	5 - 100	17 - 34	0,5 - 5	< 17	< 0,5		> 5	5 - 0,5	2.3	2.1
2419	Bromotrifluor éthylène (R 113 B1) CL ₅₀ SOURCE INCONNUE	2 000	1 000					40 - 100	5 - 100	20 - 40	0,5 - 5	< 20	< 0,5			-5	2.1	
1082	Trifluorochloréthylène stabilisé (R 113)	2 000	1 000					40 - 100	5 - 100	20 - 40	0,5 - 5	< 20	< 0,5		> 5	5 - 0,5	2.3	2.1
1079	Dioxyde de soufre	2 520	1 260					50,4 - 100	5 - 100	25,2 - 50,4	0,5 - 5	< 25,2	< 0,5		> 20	- 5	2.3	8
1741	Trichlorure de bore	2 541	1 270,5					50,82 - 100	5 - 100	25,41 - 50,82	0,5 - 5	< 25,41	< 0,5	> 1	1 - 0,2	0,2 - 0,02	2.3	8
3162	Hexafluoroisobutène CL ₅₀ SOURCE INCONNUE	2 650	1 325					53 - 100	5 - 100	26,5 - 53	0,5 - 5	< 26,5	< 0,5		> 5	5 - 0,5	2.3	
1050	Chlorure d'hydrogène anhydre	2 810	1 405					56,2 - 100	5 - 100	28,1 - 56,2	0,5 - 5	< 28,1	< 0,5		> 5	5 - 0,5	2.3	8
1048	Bromure d'hydrogène anhydre	2 860	1 430					57,2 - 100	5 - 100	28,6 - 57,2	0,5 - 5	< 28,6	< 0,5				2.3	8
2197	Iodure d'hydrogène anhydre	2 860	1 430					57,2 - 100	5 - 100	28,6 - 57,2	0,5 - 5	< 28,6	< 0,5				2.3	8
1040	Oxyde d'éthylène	2 900	1 450					58 - 100	5 - 100	29 - 58	0,5 - 5	< 29	< 0,5		> 5	5 - 0,5	2.3	2.1
2191	Fluorure de sulfuryle	3 020	1 510					60,4 - 100	5 - 100	30,2 - 60,4	0,5 - 5	< 30,2	< 0,5		> 5	5 - 0,5	2.3	
1016	Monoxyde de carbone comprimé	3 760	1 880					75,2 - 100	5 - 100	37,6 - 75,2	0,5 - 5	< 37,6	< 0,5		> 5	5 - 0,5	2.3	2.1
1005	Ammoniac anhydre	4 000	2 000					80 - 100	5 - 100	40 - 80	0,5 - 5	< 40	< 0,5		> 5	5 - 0,5	2.3	8

N° ONU	Nom	CL ₅₀ 1 h (ONU)	4 h	VALEUR LIMITE DE CONCENTRATION % Catégorie 1		VALEUR LIMITE DE CONCENTRATION % Catégorie 2		VALEUR LIMITE DE CONCENTRATION % Catégorie 3		VALEUR LIMITE DE CONCENTRATION % Catégorie 4		NON TOXIQUE		CLASSIFICATION UE			ONU	ONU
				SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	SGH	Proposition EIGA	Très toxique %	Toxique %	Nocif %	Classifi- cation	Groupe de risque
1858	Hexafluoropropylène (Gaz réfrigérant R 1216) CL ₅₀ SOURCE INCONNUE	5 600	2 800							56 - 100	5 - 100	< 56	< 5			5	2.2	
2451	Trifluorure d'azote CL ₅₀ SOURCE INCONNUE	6 700	3 350							67 - 100	5 - 100	< 67	< 5				2.2	
1061	Méthylamine anhydre CL ₅₀ à partir d'ISO 10298	7 000	3 500							70 - 100	5 - 100	< 70	< 5			5	2.1	
1083	Triméthylamine anhydre CL ₅₀ à partir d'ISO 10298	7 000	3 500							70 - 100	5 - 100	< 70	< 5			5	2.1	
1063	Chlorure de méthyle	8 300	4 150							83 - 100	5 - 100	< 83	< 5				2.1	
1032	Diméthylamine anhydre CL ₅₀ à partir d'ISO 10298	11 000	5 500													5	2.1	
2422	Octafluorobutène (R 1318) CL ₅₀ SOURCE INCONNUE	12 200	6 100													5	2.2	
2203	Silane CL ₅₀ à partir d'ISO 10298	19 000	9 500														2.1	