Volvo Vision 2020

Anders Eugensson, Director Governmental Affairs
Volvo Car Corporation
We all know the picture:

- 1.2 million deaths annually worldwide
- Disables 50 million people annually
- Exceedance of pollution levels for ambient air quality standards
- Increasingly high CO$_2$ emissions
- Congestion problems

Transportation is the backbone of modern society
“Cars are driven by people. The guiding principle behind everything we make at Volvo, therefore, is and must remain - safety.”

Assar Gabrielsson & Gustaf Larson, the founders of Volvo
Our Vision is that no one is killed or injured in a Volvo by 2020

Our Future
Vision 2020

- Can it be done?
- How?
- What will be necessary?
- What will be the obstacles?
- What will help to make this happen?
Our Vision is that no one is killed or injured in a Volvo in the year 2020

2020/ The Challenges of the vision

• Only 11 years of development left
• Two vehicle generations
• We are facing a step learning curve in the development of preventative safety systems
• Further development still needed for protective safety
• Is it possible to find solutions in time?
• Will our technical knowledge be enough?

• **We cannot solve this on our own -> co-operations necessary!**
Volvo Vision 2020/ Need for interpretations

What do we mean by no deaths or injuries?
For what accidents?
For what categories?
What are the boundary conditions?

What will be the likely development of the environment surrounding the vehicles?
- Replacement/ development of the vehicle fleet
- Changes in the infrastructure
- Developments of the legal requirements
- Driver behaviours

Differences depending on markets
Volvo Vision 2020/ What is necessary?

Establish strategies/ approaches

A new outlook on the roles of the stakeholders
 • Drivers/ vehicles/ infrastructure
 • Governments/ industry/ academia/ insurance companies

Increased knowledge through, e.g. research
 • Requirements for broader knowledge than before
 • Requires research across more disciplines

Co-operations essential
 • Agreement on co-operation with SRA

Support from incentives and other drivers necessary in order to create better possibilities for penetration of new technologies.
Volvo/ Swedish Road Administration – Letter of Intent on Co-operation

Establish interfaces and boundaries for:
- Vehicles and Infrastructure
- Vehicles and legislation
- Vehicles and road safety stakeholders

Identify criteria and levels of quality in order to improve the functionality – interaction vehicles and infrastructure.
- Basic requirements and expectations on driver performance and driver limitations.
- Basic requirements on the driver’s area of responsibility.
- Areas of technology and criteria and support for implementation for the safe use of the technologies.
- The passive level of protection of the road, e.g. protective railings and side areas and the design of intersection in relation to vehicle speeds.
- Generic design of streets and adjacent areas
- The location and design of road markings and street signs.
- Intelligent transfer of data between the vehicles and infrastructure.
- Standards for use of roads, e.g. road friction.
Volvo/ Swedish Road Administration – Letter of Intent on Co-operation

Follow-up on results for improvements vehicles/ Infrastructure.
 • Learning process
Interchange on data on quality at the interfaces vehicles/ Infrastructure
Together with other stakeholders actively support the goal achieving a safe use of the road transport system.
Contribute to the aim that all driving is done within the boundaries of the system.

Any standards for technologies must support:
 • Sober driving
 • Driving within the legal framework
Any requirements on driver performance must be well communicated and understood.
Issue of annual status report stating achievements within the co-operation.
Co-operation necessary also with other manufacturers/ manufacturers of heavy vehicles.
Creation of a governing group and a set of working groups linked to the interest areas.
Vision 2020 will require ...

- Shared responsibilities of all road safety stakeholders.
- Substantially increased knowledge through research.
- Co-operations industry – governments – academia.
- Support by offers, e.g. tax incentives, insurance premium discounts and consumer information in order to have rapid penetration of new advanced safety systems.
Modern View on the Role of Car Companies

• Brand image more important
• More focus on corporate social responsibilities (CSR)
• Prepared for open public statements
• Market willingness for safety

Car companies are now willing to take a larger responsibility
To Reach the Visions we need -

Co-operation between different stakeholders:

• Vehicle manufacturers
• Governments/ authorities
• Standardization organizations
• Interest organizations
• Researchers
Co-operation Between Different Stakeholders:

- Shared view on the strategies forward
- Agreements on division of responsibilities
- Shared view on interfaces between car safety systems and infrastructure
- Data sharing
- Standards for interfaces and communication systems
Car manufacturers, governments and local authorities need a common view on the division of responsibilities.
Division of Responsibilities/ Boundary Conditions

- **Head-on**
 - 80 km/h

- **Pedestrians**
 - 40 km/h

- **Side**
 - 70 km/h

- **Rear-end**
 - 40 km/h

- **Large animals**
 - 110 km/h
Division of Responsibilities/ Boundary Conditions

Example: traffic separation for avoiding head-on collisions > 80 km/h

<80 km/h + 80 km/h
Our brand pyramid

- Safety
- Modern Scandinavian Design
- Environmental Care
- Premium Quality
- Customer Experience
- Driving Dynamics

Where we lead
Where we differentiate from others
Qualifiers
The Base – An In-Depth Knowledge of Real-World Safety

Circle of Life

- Production
- Verification
- Prototypes
- Production development
- Safety requirements
- Real world data
Knowledge-driven performance

MAIS 2+ injury rate by model year
29,449 belted drivers in all crash types
Volvo Vision 2020

1,200,000
Fatalities
world wide

>10,000,000 Crashes

6,160,000
Police Reported Crashes

4,300,000
Property Damage Only

1,820,000
Injury Crashes

39,186
Fatal Crashes

43,443
Fatalities in US

Sources: NHTSA, NCSA 2005, WHO
Protective to Preventive Safety
Driving Scenarios: Rear–end Collisions

- Keep safe distance
- Reduce workload – reduce distractions
- Make driver aware of potential conflicts
- Warn driver if potential conflict
- Prepare for a potential collision
- Reduce impact severity
- Reduce injury risks

* Source: 2002 GES

6,304,000 police-reported crashes
Distribution by Crash Type

Volvo Vision 2020
The collision is a fact
How could the accident have been avoided?
Drive towards Zero Injuries, Fatalities and Emissions

‘Technologies for meeting the goal of zero injuries and fatalities are basically known today – it is a matter of how to apply, finance, distribute and activate.’
What Causes Accidents?

The four D’s:
- Distraction
- Drowsiness
- Driving while intoxicated
- Driver capabilities

Source: Virginia Transportation Institute
“Any system which depends on human reliability is unreliable.”

Gilb’s Second Law of Unreliability
’When setting the targets for the drive towards zero injuries and fatalities, no condition for further restricting the access to the transportation sector will be acceptable’
The Haddon Matrix

<table>
<thead>
<tr>
<th></th>
<th>People</th>
<th>Vehicle</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td></td>
<td>Avoiding Accidents</td>
<td></td>
</tr>
<tr>
<td>During</td>
<td></td>
<td>Protect from Injuries</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td></td>
<td>Reduce Effects</td>
<td></td>
</tr>
</tbody>
</table>
The Haddon Matrix in the Future

<table>
<thead>
<tr>
<th>People</th>
<th>Vehicle</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>No Driver Dependance</td>
<td></td>
</tr>
<tr>
<td>During</td>
<td>Accidents Eliminated</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To Reach the Visions We depend upon -

Vehicle to vehicle and vehicle to infrastructure communication
Important First Steps towards Zero injuries and Fatalities:

Actions for:

Speed management
- Intelligent speed adaptation
- Support systems for assisting drivers

Increased belt usage
- Belt reminders

Preventing Driving While Intoxicated
- Alcohol interlocks
Speed Management

• Kinetic energy (speed) is the problem! People are blind to kinetic energy!

• Humans have not been programmed to understand risk with speed.
Speed Management

Requirements for speed limitation of vehicles
Advantages:
• Reduced weights
• Reduced rating of tires
• Reduced engine performance

Technologies exist
• Youth/ Restricted key ’Cinderella key’
• Programmable speed
• Intelligent Speed Adaptation ISA
• Speed Sign Recognition systems
Increased Seat Belt use

In August 2009, 50 year anniversary of factory installed 3-p belt
Continues to be the single most efficient safety device
Substantially improved over the years:
• Pre-tensioners
• Load limiters
• Improved comfort and convenience
Belt reminders efficient to convince occupants of buckling up
Preventing Driving While Intoxicated

• Alcohol related fatalities represent one third to 40% of all road traffic fatalities.

• Issue is taken seriously within the industry

• Technologies are being developed for restricting DWI

• Goal: Systems that are:
 – Totally transparent
 – Reliable
 – Long calibration intervals
 – Inexpensive
 – Comfortable
Preventing Driving While Intoxicated

Volvo Vision 2020
Future Safety Offer – The Development is ongoing

Volvo Vision 2020
Future Safety Offer – The Development is Ongoing

Volvo Vision 2020
Future Safety Offer – The Development is Ongoing

Injury risk (%)

Model year

Volvo Vision 2020
Future Safety Offer –
The Development is Ongoing

Injury risk (%)

Model year

67-74 75-79 80-84 85-89 90-94 95-99 00-05

Volvo Vision 2020
Future Safety Offer –
The Development is Ongoing

Volvo Vision 2020
Volvo Vision 2020

Development and Penetration of New Advanced Safety Systems

- Safety cage
- Safety belt
- Head restraints
- Crumple zones
- Side impact protection systems
- Advanced safety belts
- Front air-bag
- Brake support
- ABS
- Traction control
- Adaptive cruise control
- Electronic stability and traction control
- Electronic roll stability control
- Communication vehicle to vehicle
- Collision avoidance systems
- Driver alert
- Lane departure warning
- Active steering
- Active chassis
- Adaptive protection systems
- Compability
- Preventive safety
- Protective safety

Potential

100%
Holisitic View on Safety

- Preventative
- Dynamic
- Avoidance
- Mitigation
- Impact
- Post-crash

State of the driver

State of the situation

Time

- Non-conflict
- Conflict
- Imminent-crash
- Crash
- Post-crash

- Driver unable to avoid
- Car still able to control
- Driver and car unable to avoid
- Reduce severity
- Prepare to crash

Volvo Vision 2020
Strategy for Holistic Safety

Preventative Dynamic Avoidance/Mitigation Impact Post-crash

Volvo Vision 2020
Development of New Advanced Safety Systems
Autonomous Braking Systems: Low Speed
Autonomous Braking Systems: High Speed
Lane Departure Warning (LDW)

Why?
About 33% of all accidents involve an initial road departure. Of these, 75% occur on roads with speed limits of 70 km/h and above. Many of these accidents are connected to serious personal injuries.

How?
Warns the driver when the vehicle crosses a lane marker while the turn indicator is not used. Active above 65 km/h. Information displayed in the trip computer. On/off via a button located in the centre stack. Camera mounted on the inside of the windscreen.
Driver Alert Control (DAC)

Why?
About 20% of the fatal highway accidents are caused by driver fatigue.
>100,000 accidents are caused by driver fatigue in the US every year, in which 1,500 people are killed and another 71,000 are injured.

How?
Analyses the driving behaviour.
Driver alerted via an audible signal “Time for a break” is shown.
Information displayed in the trip computer.
Active when the vehicle speed passes 65 km/h.
Camera mounted on the inside of the windscreen.
Adaptive Cruise Control (ACC)

Why?
Helps the driver to keep distance, which enhances safety.
ACC contributes to relaxed driving, even when the traffic flow is uneven.

How?
The system automatically adapts the speed to keep the distance.
ACC is active between 30 and 200 km/h.
ACC uses a radar sensor.
Distance Alert (DA)

Why?
30% of all accidents are rear end collisions. Distance Alert (DA) helps keeping proper distance.
Easier to keep local regulations compared to other methods (i.e. counting road markers).

How?
When the distance is too short, the middle segment of the Head-Up Display is lit.
DA is active above 30 km/h and ACC is not active.
DA uses the radar sensor.
Collision Warning with Auto Brake (CWAB)

Why?
30 % of all accidents are rear-end collisions. In 50% of these accidents, the driver does not brake at all. 50 % of the rear-end collisions are towards stationary vehicles.

How?
An intuitive audible and visual warning by flashing the Head Up Display. Prepares the brake system by precharging it. When a collision is unavoidable, Auto Brake will brake autonomously. CWAB uses a radar and a camera to monitor the area in front of the car.
City Safety – avoid low-speed collisions

City Safety will brake automatically just before a collision, and avoid collisions up to 15 km/h. It will also reduce the severity of collisions up to 30 km/h.

Customer Benefit:
- Avoided collisions
- Reduction of insurance costs
- Partner Protection – Whiplash
- Cost-efficient
Drowsiness Prevention Systems
Pedestrian Detection and Braking Systems
Pedestrian Detection and Full Autonomous Braking System

Collision causes

“Inattention, was a contributing factor for 93 percent of the conflict with lead-vehicle crashes and minor collisions.”

“The inattention to the forward roadway .. may explain why almost half of the drivers (47 percent) had no avoidance reaction.”

“The 100-Car Naturalistic Driving Study”, T. A. Dingus et al, NHTSA, DOT HS 810 593, April 2006. The study involved 100 cars, 241 drivers, and 43 000 hours of data. 85 real collisions were recorded and analysed.
Pedestrian Detection and Full Autonomous Braking System

The Pedestrian Safety Problem

Sweden: 16 % of traffic fatalities.
 11 % of seriously injured.
Vägverket, 2008 (Swedish Road Authority)

USA: 11 % of traffic fatalities
 (4,700 people). 3 % of seriously injured.
 (Traffic Safety Facts 2007, NHTSA, DOT HS 810 994)

Germany: 13 % of traffic fatalities.
(2002 SAE paper 2004-21-0056)
Pedestrian Detection and Full Autonomous Braking System

The radar and camera scan the area in front of the car.

If the situation becomes critical - red warning flashes on the windscreen.

If you don’t react to that warning, the car activates full braking power automatically.

Pedestrian accidents can be avoided for vehicle speeds lower than 25 km/h.

For higher speeds, impact speed can be reduced by 25 km/h.
Pedestrian Detection and Full Autonomous Braking System

- New Radar
- Wider field of view
- Mid range
- Long Range Radar
- Vision
- Vision + Radar Fusion
- Upgraded camera
- New control unit
- Upgraded Head up display

Volvo Vision 2020
Pedestrian Detection and Full Autonomous Braking System

Challenges during development

Pedestrian detection of head, neck, legs or shoulder

Weather, light and clothing influence image contrast and hence performance

Physical limitations such as pedestrians running to cross the road but hidden by a parked lorry until the last moment

Rule of thumb - the camera is similar to the human eye – what you as a driver cannot see, the camera cannot see either

Volvo Vision 2020
Preventing Distraction

Monitoring of driver attention helps for car to decide on appropriate measures.

Eye and field of view tracking
Platooning

Estimation: 40% reduction in energy use and CO\textsubscript{2} emissions
Increases safety and comfort and reduces risk for congestion

SARTRE project:
SAfe Road TRains for the Environment
Future - Collision Avoidance by Auto Steering

Helps the driver prevent collisions with oncoming vehicles.

Intervenes with steering to get back into safe lane when collision risk is detected.

The driver can over-rule the intervention by steering resolutely.
Development challenges

Low occurrence of false alarms
Low risk of missed alarms
Minimal “risk compensation”
Intuitive driver interface
Robust to variation in driving style and environment
High efficiency in real life
5 Star Vehicles on 5 Star Roads with 5 Star Usage

- Roads
 - 5 star
 - 4 star
 - 3 star
 - 2 star
 - 1 star

- Cars
 - 5 star
 - 4 star
 - 3 star
 - 2 star
 - 1 star

- Usage
 - 5 star
 - 4 star
 - 3 star
 - 2 star
 - 1 star

130 100 80 70 60

Lowest rating sets limit
CO$_2$-free transportation sector
- Requires a broad technology strategy

Engine Transmission Electrification Alternative Fuels
Rolling resistance Weight Energy Losses Aerodynamics
Volvo Vision 2020

CO\textsubscript{2} Legislation

Voluntary agreement EU

Decision-making legislation EU

Proposed target 95 g/km

Objective in line with 450 ppm

ACEA 160 g/km

USA

China

Japan

2.7 L/100km petrol

2.5 L/100km diesel

Aim 2030 60-70 g/km

Volvo Vision 2020
<table>
<thead>
<tr>
<th>Volvo</th>
<th>liter/mil</th>
<th>CO₂ g/km</th>
<th>mpg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C30</td>
<td>0,39</td>
<td>104</td>
<td>60</td>
</tr>
<tr>
<td>S40</td>
<td>0,39</td>
<td>104</td>
<td>60</td>
</tr>
<tr>
<td>V50</td>
<td>0,39</td>
<td>104</td>
<td>60</td>
</tr>
<tr>
<td>V70</td>
<td>0,49</td>
<td>129</td>
<td>48</td>
</tr>
<tr>
<td>S80</td>
<td>0,49</td>
<td>129</td>
<td>48</td>
</tr>
<tr>
<td>XC60</td>
<td>0,60</td>
<td>159</td>
<td>39</td>
</tr>
<tr>
<td>XC70</td>
<td>0,60</td>
<td>159</td>
<td>39</td>
</tr>
</tbody>
</table>
Achieved through:

- Smaller engines
- Aerodynamic changes
- Software changes for drive trains
- Tires with low roll resistance
- Weight reductions
- Start and stop systems
Plug-in Hybrid

• Diesel or gasoline engine combined with electric engine
• Range on electricity 50 km – appr. 5 hours charging
• <50 g/km CO₂ - 1,9 l/100km – 124 mpg
Cost of Electrification of Passenger Cars

- **Mikrohybrids**: ~5%
- **Mild hybrids**: ~10%
- **Full hybrids**: 20-25%
- **Plug-in hybrids**: ~70%
- **Electric veh.**: ~100%

CO₂ Reduction ~ 5% ~10% 20-25% ~70% ~100%

According to EU cert cycle
Safety and Quality Issues
Pros and Cons for Electric Cars?

• Electric cars have a lot of advantages: low CO$_2$, low cost of fuel, efficient drive train.

• Battery performance and cost are the largest obstacles for a large scale market introduction.

• The customer wants the same performance in the electric car as in other cars – even preferably better.

• Incentives and research support needed in order to get the market activated.
Evolution of U.S. Hydrocarbon Emission Standards
Passenger Cars

HC Reduced 96%

100%

98% Additional Reduction

HC (g/mi @ 50K mi)

0.41

0.25

0.075

0.04

0.01

'93 Base Tier I TLEV LEV/LEVII ULEV/ULEVII SULEV/PZEV '04

PZEV’s: 99.9% Overall or 1000 times higher HC emissions in the '60s

Volvo Vision 2020
Continuous improvement of Catalysts, engine-out emissions, engine control, Catalyst introduced
Drive towards Zero Injuries, Fatalities and Emissions

• No giant leaps but continue the steps forward.

• Car manufacturers are prepared and willing to take on more responsibility

• Co-operations and standards will be essential

• Incentives and good customer offers are needed.

• Technologies to gradually become cheaper and cascade into less expensive vehicles.