Evaluating CO₂ emissions in inland transport and climate change mitigation

ForFITS
A monitoring and assessment tool "For Future Inland Transport Systems"

General overview

Pierpaolo Cazzola - UNECE Transport Division
The UNDA project

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Call for funds by the UNECE Transport Division on the UN Development Account (UNDA)</td>
</tr>
</tbody>
</table>
| 2009 | **Project endorsed** by the UN General Assembly
Duration: 3 years (January 2011 – December 2013)
Leading agency: UN ECE (Economic Commission for Europe)
Implementing entities: ECA, ECLAC, ESCAP & ESCWA (other UN Regional Commissions) |
| 2010 | **Project document**
Major phases and activities of this three-year project defined |

Main objective: enhanced cooperation & planning for sustainable transport
Main focus: capacity building
Target: policy makers and technical experts

Project leveraging on the development of a modelling tool (called ForFITS) meant to be freely available for all UN Member States) capable to assist users in the selection of the most appropriate and effective measures to reduce CO₂ emissions in the inland transport sector (including road, rail and inland waterways).
The UNDA project

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Project launched
Tasks and responsibilities of UNECE and other Regional Commissions defined in ToR
Development and distribution of a questionnaire to provide inputs for the preparation of a global status report, containing a review on existing statistical data, policy measures and assessment tools concerning CO₂ emissions in transport</td>
</tr>
<tr>
<td>2012</td>
<td>International Expert Meeting (IEM) (April) to disseminate information, share experiences, identify possible synergies with other stakeholders
Peer-review workshop to discuss the draft global status report and to give feedback on a draft methodology of the ForFITS tool (April)
Finalisation of the global status report (October)
Release of the prototype version of ForFITS (December)</td>
</tr>
<tr>
<td>2013</td>
<td>Release of the advanced prototype of ForFITS (2<sup>nd</sup> quarter)
Development of a user manual (also containing methodological information) (2<sup>nd</sup> and 3<sup>rd</sup> quarter)
Finalization of the ForFITS model (Summer)
Application in pilots, awareness-raising, capacity-building and training workshops (3<sup>rd</sup> and 4<sup>th</sup> quarter)</td>
</tr>
</tbody>
</table>
ForFITS
Model requirements

Key requirements

Allow the estimation/assessment of emissions in transport
Allow the evaluation of transport policies for CO₂ emission mitigation

Be developed as a software tool
Be freely available for users (e.g. national and local governments, general public)
Be developed between 2011 and 2013

Convert information on transport activity into fuel consumption and CO₂ emission estimates considering the influence of the demographic and socio-economic context, including policy inputs

Sectoral model (focused on inland transport only): we do not expect it to target the evaluation of overall effects on the economic growth
Local, national, international applications possible
Flexible with respect to data needs
ForFITS model Coverage

- Passenger and freight transport services
- Two different areas (e.g. to define the transport systems: urban, non-urban, non-spec.)
- Nine transport modes: non-motorized transport, two wheelers, three wheelers, light road vehicles, medium and heavy road vehicles, rail, navigation (inland, short-sea and deep-sea/maritime), air and pipelines
- Different vehicle subsets within each mode (organized in six vehicle classes – A to F) (figures)

- 31 powertrain technologies (e.g. internal combustion engines, hydraulic hybrids, electric hybrids, plug-ins, fuel cell, electric)
- 10 fuel blends, some of which are associated with specific modes and/or powertrains
Four key modelling steps

- Generation of **transport activity** (pkm, tkm, vkm) and **vehicle stock**
- Evaluation of **new vehicle registrations** by powertrain and characterization of the vehicles by age
- Calculation of the **energy use**
- Estimation of **CO₂ emissions**
Transport activity (pkm, tkm), vehicle activity (vkm) and vehicle stock are largely determined by:

- **Relationships linking GDP and population with transport activity**
 - GDP per capita with vehicle ownership and pkm
 - Economic output (GDP) with tonnes lifted

- **Effects of changes in the cost of driving and moving goods**
 - Elasticities of pkm, tkm, average travel and average loads

- **Structural changes in the transport system**
 - Passenger transport system (mainly with respect to the role of public transport, to assess policies related with modal shift)
 - Freight transport system (and related economic structure, and especially the impacts this has on modal choice and the average length of hauls)

Behavioral aspects (environmental culture) are also taken into account for passenger transport (elasticities on key passenger transport parameters)

Coherence due to related inputs (such as GDP growth and economic structure, or the effect on GDP growth due to changes in the cost of driving) needs to be assured by users.
Motorized personal vehicles

- **Vehicle stock** primarily a function of GDP per capita (figure)
- **Annual vehicle travel** (km/year) affected by changes in the cost of driving (through direct and cross elasticities)
- **Vehicle load** affected by changes of vehicle ownership (lower ownership associated with higher average loads)

Shifts to/from personal from/to public transport are considered as structural changes having an effect on:
- the vehicle stock (vehicle ownership is lower in areas with high shares of public transport)
- the average travel per vehicle (the average travel of personal vehicles is lower in areas with high shares of public transport)

Vehicle ownership is also assumed to be influenced by **environmental culture** (behavioural aspect)

Sources: elaboration of national and international databases, building on the information referenced in [UNECE, 2012](#)
ForFITS model: demand generation

Passenger transport

(2/3)

Public transport (except air)

- **Pkm share on public transport** modes (in total personal and public transport, excluding air) primarily a function of GDP per capita (figure), also assumed to be influenced by environmental culture (behavioural aspect)
- **Pkm** affected by changes in the cost of driving (direct & cross elasticities)
- **Pkm** influenced by modal shifts to/from personal from/to public transport
- **Vkm** from pkm and annual travel
- **Vehicle stock** from vkm and loads

Modal share of personal vehicles in total personal and public transport

Source: elaboration of UITP, quoted by IEA, 2008
ForFITS model: demand generation

Passenger transport

Air transport

- **Pkm share** of air transport (in total pkm) primarily a function of GDP per capita (figure), also assumed to be influenced by environmental culture (behavioural aspect)
- **Pkm** affected by changes in the cost of driving (direct & cross elasticities)
- **Vkm** from pkm and annual travel
- **Vehicle stock** from vkm and loads

Modal share of air transport in total transport

Source: elaboration of Schäfer, 2005
Large-freight

- Transport activity (tkm) proportional to GDP (figure)
- Tkm is the product of tonnes lifted (also proportional to GDP) and haul length (constant by distance class)

Tonnes lifted by mode are subject to structural changes, driven by:
- the trade-related nature of the economy (e.g. free trade vs. low imports and exports)
- the origin/destination of goods (e.g. changes in sourcing and/or destination of exports)
- the type of goods transported (e.g. change of importance of the manufacturing industry with vs. primary material extraction and trade)
- the modal competitiveness (e.g. changes due to the construction of new network links)

Tkm and loads are also subject to the influence of the cost of moving goods (through elasticities)

Vkml from tkm and annual travel
Vehicle stock from vkm and loads

Source: IEA, 2004
Light road freight

- Light commercial vehicles (<3.5 t)
- Typically out of freight transport statistics
- Transport activity (tkm) built bottom-up from vehicle stock, travel and loads

Vehicle stock deduced from:
- vehicle stock of large road freight
- historical share of light road freight vehicles in total road freight, function of GDP per capita (figure)

Annual vehicle travel (km/year) affected by changes in the **cost of driving** (through direct and cross elasticities)

Vehicle load affected by changes of **vehicle ownership** (lower ownership associated with higher average loads)

Source: Eurostat
ForFITS model
Powertrain selection

Multinomial logit: used when the "endogenous powertrain selection" is activated
Choice based on the maximization of consumer utility
• corresponds to the maximization of savings from the powertrain selection
Requires the characterization of the utility of all options (powertrains of each vehicle class)
• Vehicle and fuel prices - including costs, margins and tax rates
• Vehicle fuel consumption
• Discount rates

Information on average vehicle travel (km/year) is needed to characterize fuel costs
• average vehicle travel assumed to decrease with vehicle age
• alternative technologies to gasoline-powered positive-ignition powertrains assumed to travel more if their market share is close to zero (figure)

Users are assumed to consider constant fuel prices when taking into account future expenditures (this is justified by the volatility of fuel prices)

Sources: various datasets and publications, including Bodek and Heywood (2008), Eurostat, Howley et al. (2007), Caputo et al. (2008)
The fuel consumption is calculated from:

- vehicle activity
- the structure of the organization of vehicle across services, modes, vehicle classes and powertrain groups
- the energy intensity of each of the vehicles in this structure

ASIF: Activity, Structure, Intensity → Fuel consumption

The calculation is based on Laspeyres identities (frequently used for the development and the analysis of energy efficiency indicators)

\[
F = \sum_i F_i = A \sum_i \left(\frac{A_i}{A} \right) \left(\frac{F_i}{A_i} \right) = A \sum_i S_i I_i = F
\]

- **F** total Fuel use
- **A** vehicle activity (expressed in vkm)
- **F_i** fuel used by vehicles with a given set of characteristics (by service, modes, vehicle class and powertrain)
- **A_i/A = S_i** sectoral structure (expressed as shares of vkm by service, modes, vehicle class and powertrain)
- **F_i/A_i = I_i** energy intensity, i.e. the average fuel consumption per vkm by service, modes, vehicle class and powertrain
Extended ASIF

The same methodological approach used for the calculation of fuel consumption (ASIF) can be extended to evaluate CO\(_2\) emissions. This extension is suitable to the case of where several energy carriers need to be considered.

\[
E = \sum_i E_i = A \sum_i \left(\frac{A_i}{A} \right) \left(\frac{F_i}{A_i} \right) \left(\frac{F_{ij}}{F_i} \right) \left(\frac{E_{ij}}{F_{ij}} \right) = A \sum_i S_i I_i E F_{ij} = E
\]

- \(E\): emissions
- \(E_i\): emissions due to the vehicle \(i\)
- \(F_{ij}\): fuel (energy carrier) \(j\) used in the vehicle \(i\)
- \(EF_{ij}\): emission factor for the fuel (energy carrier) \(j\) used in the vehicle \(i\)
ForFITS model
Simplified structure

- **Passenger transport system characteristics**
 - Base year: vehicles, travel and loads
 - Projections: structural information

- **Gross Domestic Product**
 - Population (base year and projections)

- **Freight transport system characteristics**
 - Base year: vehicles, travel and loads
 - Projections: structural information

- **Policy inputs**

- **Passenger transport demand generation module**

- **Freight transport demand generation module**

- **Transport activity** (pkm, tkm, vkm) and **vehicle stock**

- **New vehicle registrations** by age and by powertrain
 - ASIF

- **Energy use**
 - Fuel characteristics (cost and taxes)
 - Vehicle characteristics (vehicle price, technology cost, fuel consumption, performance) by powertrain

- **Fuel characteristics (emission factors)**

- **CO₂ emissions**
 - Extended ASIF

- **Vehicle characteristics (vehicle price, technology cost, fuel consumption, performance) by powertrain**

- **Policy inputs**

- **Fuel characteristics (cost and taxes)**
ForFITS was developed in the Vensim modelling environment

Two components

- Vensim Packaged Model (.vpm file)
- Excel interface (.xls file)

VPM file

- Model, structured in a set of "views" showing portions of the model
- This file can be opened with the Vensim Model Reader, a free software downloadable here: http://vensim.com/vensim-model-reader

Excel file

- Interface allowing users to enter inputs, communicating with the VPM file.

Both the files are freely available and can be downloaded on line on the UNECE web site: http://www.unece.org/trans/theme_forfits.html

The ForFITS user manual is also accessible on the UNECE web site: http://www.unece.org/trans/forfits_user_manual.html
Example of a “view” of the VPM file

Coding
Purple text: input from XLS file
Black text: variables calculated in the view
Grey text: variables calculated in another view
Blue arrows: connection variables
NAME IN CAPITAL LETTERS: base year variable
FIRST word in capital letters: input over time
Example of input tables in the XLS file

Selection section
Inputs entered in the database section are activated here

Database section
Data for new scenarios shall be entered here
ForFITS model

Results

Results can be visualized in several ways:

• Using the “output” views of the VPM file
• With a graphical interface in the VPM file (up to 16 variables, including subscripts)
• As a table in the VPM file (any amount of subscripts and variables)
• Extracting tables in .txt files, readable and editable in Excel

The visualisation as graphs and table is possible for each of the model variables. Comparative results on multiple runs (e.g., to different scenarios, before and after one or more policy interventions) can also be visualized in graphs and tables.
ForFITS model
Policy impacts or scenarios?

ForFITS may be used to evaluate policy impacts and to consider the effect of certain assumptions/scenarios.

Examples:
- Socio-economic growth scenarios (e.g. strong vs. weak GDP and/or population growth)
- Fuel cost scenarios (e.g. high vs. low oil price)
- Fuel taxation policy, including carbon taxes (need for proper characterization)
- Road pricing policies (caution needed when it is applied to portions of the network)
- Assumptions/scenarios on the evolution of the cost and performance of vehicle technologies
- Differentiated vehicle taxation (e.g. based on the vehicle technology)
- Assumptions/scenarios related to structural changes of the transport systems
 Passenger: modal shift policies, e.g. towards public transport from private vehicles
 Freight: modal shifts, e.g. due structural changes in the economy (such as relevance of imports & exports) and in the logistic system (such as local vs. long-distance sourcing)

In the case of assumptions/scenarios, the coupling with policies has to be worked out be the user aside from the model.
Even if ForFITS has the capacity to adapt to different levels of data availability, the model does require a substantial amount of data, for:

- the characterization of the transport system in the base year (historical inputs)
- the definition of the context in which the transport system should evolve (projections)

Information on the initial and final times, the characterization of the areas, and the selection of the modelling approach for the powertrain choice (exogenous or endogenous), are also firm needs.

Minimum data requirements (other inputs are defined by default data and can be modified)

Historical inputs
- GDP, population
- Vehicle stock: number of vehicles by powertrain, average travel and loads, average fuel consumption
- New vehicle registrations: same detail used for stocks needed for the base year, 5 and 10 years earlier (data in between are taken into account with linear interpolations)

Projections
- GDP and population
- Fuel prices (cost and taxation)
- Vehicle shares between two and three wheelers
- Pkm shares for different public transport modes (e.g. due to the construction of urban rail)
- Modal shares of light road freight vehicles
- Evolution of the network extension for pipelines
- With endogenous powertrain selection (optional), discount rate and powertrain shares

Need for coherence for inputs on each AREA, SERVICE, MODE, VEHICLE CLASS and POWERTRAIN
A wide set of default data are included in the ForFITS Excel file

These default data are used to characterizing several parameters of the ForFITS model

They concern the following input categories:

M Data absolutely required
 Corresponding to the minimum data requirements

A Inputs expected to be introduced by the user
 The default value in ForFITS is for guidance only
 This category includes policy inputs that allow exploring different scenarios

B Input containing technical information (e.g. technological potential and costs by powertrain)
 These data may be maintained unchanged
 The defaults are set on the basis of research activities involving literature reviews and statistical analyses (further information on this is provided in the relevant section of the ForFITS manual)

C Inputs on structural characteristics of the model
 Unless the users acquired significant experience with the model, these inputs shall not be modified: changes to these inputs will result in significant modifications to the model behaviour
ECONOMIC AND DEMOGRAPHIC INPUTS (PROJECTIONS)

- **Economic & demographic data**
 - Over time
 - Population growth
 - GDP growth

TRANSPORT SYSTEM CHARACTERISTICS

- **Passenger modes**
 - Area characterization
 - Passenger transport system index

- **Passenger**
 - Travel
 - Environmental culture index

TECHNICAL CHOICE (PROJECTIONS)

- **Powertrain technology & ICE fuel: shares**
- **Choice switch (endogenous / exogenous)**

DEMAND GENERATION PARAMETERS

- **Passenger**
 - Elasticities as functions of GDP per capita

FUEL CONSUMPTION (PROJECTIONS)

- **All modes but air, NFT and pipelines**
 - Fuel consumption characteristics
 - Fuel consumption by powertrain group

VEHICLE & POWERTRAIN COSTS (PROJECTIONS)

- **All modes but air, NFT and pipelines**
 - Vehicle costs by powertrain group

OTHER INPUTS (PROJECTIONS)

- **Pipe lines**
 - Distance travelled/network extension

VEHICLE CLASSES (EXOGENOUS PROJECTIONS)

- **All modes but air, NFT and pipelines**
 - Vehicle shares within modes & sub-modes

TIME PERIOD ANALYZED

- **Initial and final projection times**
 - Base year and first year
 - New vehicle registrations

INITIAL CONDITIONS

- **Initial transport system**
 - Vehicle stock
 - Vehicle capacity ratios

PRICES AND TAXES (BASE YEAR AND PROJECTIONS)

- **Fuel prices and taxes**
 - Fuel cost
 - Fuel consumption gap by powertrain group

FORFITS MODEL DATA REQUIREMENTS (3/3)

Full data requirements

- **Base year**
 - Economic & demographic data
 - New vehicle registrations

- **Base year-5**
 - Economic & demographic data
 - New vehicle registrations

- **Base year-10**
 - Economic & demographic data
 - New vehicle registrations

- **Time period analyzed**
 - Initial and final projection times

Economic & demographic data

- Over time
 - Population growth
 - GDP growth

Transport system over time

- Area characterization
- Passenger transport system index

Environmental culture index

- Travel
- Environmental culture index

Technology choice

- Powertrain technology & ICE fuel: shares

Fuel consumption

- Fuel consumption characteristics
- Fuel consumption by powertrain group

Vehicle & powertrain costs

- Vehicle costs by powertrain group

Prices and taxes

- Fuel prices and taxes

Technology choice

- Powertrain technology & ICE fuel: shares

Fuel characteristics

- CO2 emission factors

Modal shares

- Modal shares between 3- and 5-wheelers
- Shares of light vehicles in total road freight

Vehicle travel cost multipliers

- Personal passenger vehicles (PPV) per capita
- People per active bike

Elasticities as functions of GDP per capita

- Annual personal vehicle travel to cost of driving
- Plan on public transport vehicles to cost of driving
Who may be interested in using ForFITS?

- Someone willing to understand the transport system he is concerned about (typically a geographical region), its impacts in terms of energy consumption and CO$_2$ emissions
- Someone having access to a sufficient amount of statistical information
- Someone having some degree of specific competence (transport, transport policies, energy policies, environmental policies)
- Someone having sufficient financial means to support his/her ambitions
- Someone from...
 - a national administration and/or a local government
 - an Inter-Governmental Organization
 - a Non-Governmental Organization
 - an Academic institution and/or a consulting company
 - the industry sector (company/corporation, industry association)
Extensions of ForFITS can help answering a wide range of questions that are relevant for transport-, energy-, environment- and safety-related analyses, including:

• estimation of pollutant emissions
• interaction between transport networks and vehicle use
• evolution of fuel demand (e.g. via the integration of a choice model)
• additional vehicle technologies (beyond those already considered)
• vehicles and engines with special characterization (e.g. non-road mobile machines)
• material and energy demand (e.g. for the manufacture of transport vehicles)
• road-safety (e.g. fatalities, injuries and effect of road-safety policies)

ForFITS has the potential to become an important asset for the UN and its Member Countries

The UNECE Transport Division seeking stakeholders interested in the establishment solutions providing opportunities to maintain and further develop the model
Links

Model download/UNDA project page
http://www.unece.org/trans/theme_forfits.html

User manual, including methodological information
http://www.unece.org/trans/forfits_user_manual.html

Contact information
pierpaolo.cazzola@unece.org
miquel.gangonells@unece.org