Motivation of Cut-In Requirements

Additional explanation to paragraph 5.2.5.2. of the draft UN Regulation for ALKS (GRVA-05-07)
Cut-In Requirements: Model for ADS Behavior

No intervention required

Intervention assumed for original proposal

Intervention assumed for new proposal

ALKS Vehicle → Intruding Vehicle

ALKS Vehicle → Intruding Vehicle

ALKS Vehicle → Intruding Vehicle

30 cm
Cut-In Requirements: Intervention Concept

Monitor other traffic (continuously)

Decide Brake Intervention (instantaneously)

Transmission delay

Increase brake force

Full braking phase

1st Parameter: Ass. decision strategy

3rd Parameter: typical jerk

2nd Parameter: typical delay

4th Parameter: available deceleration

Unpreventable: Avoidance not required. Do not switch strategy!

Decision too late
$\text{TTC} < \text{TTC}_{\text{min}}$

Decision in time
$\text{TTC} \geq \text{TTC}_{\text{min}}$

Preventable: Avoidance required
Cut-In Requirements: Intervention Model

Start of Intervention

ALKS Vehicle

Intruding Vehicle

30 cm

ALKS decides intervention: other traffic enters lane by > 30 cm

ALKS monitors other traffic

deceleration relative speed
Cut-In Requirements: Intervention Model (2)

Start of Intervention

ALKS Vehicle

Intruding Vehicle

ALKS decides intervention: other traffic enters lane by > 30 cm

ALKS monitors other traffic

Decision in time
TTC ≥ TTC_{min}

deceleration
relative speed (avoidance case)

30 cm

t_{delay}

t_{increase, deceleration}

decel_{max}

0
Cut-In Requirements: Intervention Model (3)

Start of Intervention

ALKS Vehicle

Intruding Vehicle

ALKS monitors other traffic

ALKS decides intervention: other traffic enters lane by > 30 cm

deceleration

relative speed (mitigation case)

Decision too late
TTC<TTC_{min}

delay

increase,
deceleration

delel_{max}

0
Mathematical Model for Edge TTC

- TTC for brake start to avoid collision with deceleration d:

$$TTC_{\text{avoidance}} = \frac{v_{\text{rel}}}{2 \cdot d} = \frac{v_{\text{rel}}}{2 \cdot |\ddot{x}_{\text{max}}|}$$

- Approximation (avoiding numeric integration) for jerk influence:

$$TTC_{\text{avoidance}} = \frac{v_{\text{rel}}}{2 \cdot |\ddot{x}_{\text{max}}|} + \frac{1}{2} t_{\text{increase}}$$

$$t_{\text{increase}} = \frac{\ddot{x}_{\text{max}}}{\ddot{x}_{\text{available}}}$$

- Take "dead time" delay (command transmission etc) into account:

$$TTC_{\text{avoidance}} = \frac{v_{\text{rel}}}{2 \cdot |\ddot{x}_{\text{max}}|} + \frac{1}{2} t_{\text{increase}} + t_{\text{delay}}$$
Parameter Derivation

1st Parameter: Ass. decision strategy

Assume an intrusion of 30 cm into lane can be considered critical (intrusion continuously monitored!)

2nd Parameter: typical delay

Transmission in bus system, overcome actuator friction, ...

100 ms (confirmed by manuf.)

3rd Parameter: typical jerk

Typical (own measurement): 0.4 – 0.6 s from 0 to 10 m/s²
New brake systems (own measurement): 0.15 s from 0 to 10 m/s²
Assumed (conservative!) in DE/FR prop.: 0.5 s from 0 to 6 m/s²

4th Parameter: available deceleration

Typical value from field data: 6 m/s² available also on wet roads.

\[\frac{v_{rel}}{2 \cdot |\ddot{x}_{max}|} + \frac{1}{2} t_{\text{increase}} + t_{\text{delay}} \]

\[\frac{v_{rel}}{2 \cdot 6 \text{ m/s}^2} + \frac{1}{2} 0.5s + 0.1s = \frac{v_{rel}}{2 \cdot 6 \text{ m/s}^2} + 0.35s \]
3rd Parameter: typical jerk

0.48 s from 0 to 9.9 m/s²
4th Parameter: available deceleration
Summary

- DE/FR model assumes a continuous monitoring of traffic in adjacent lanes
- DE/FR model assumes a critical condition and consequently a brake intervention when other traffic enters > 30 cm into ego lane
- DE/FR model assumes a plausible delay (transmission, actuator friction) of 0.1 s
- DE/FR model assumes a brake intervention with 6 m/s² reached in 0.5 seconds
- These values have been shown to be realistic
- DE/FR position: Automated vehicles should not be required to have a weaker performance than current ADAS-equipped vehicles
Comparison of JP and DE/FR DTC values

<table>
<thead>
<tr>
<th>V_{lateral} (m/s)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>0.5</td>
<td>5.0</td>
<td>9.6</td>
<td>3.28</td>
<td>19.8</td>
<td>7.85</td>
<td>N/A</td>
</tr>
<tr>
<td>1.0</td>
<td>5.0</td>
<td>6.6</td>
<td>2.45</td>
<td>13.7</td>
<td>6.18</td>
<td>22.0</td>
</tr>
<tr>
<td>1.5</td>
<td>5.0</td>
<td>5.6</td>
<td>2.17</td>
<td>11.6</td>
<td>5.63</td>
<td>18.4</td>
</tr>
<tr>
<td>1.8</td>
<td>N/A</td>
<td>N/A</td>
<td>2.08</td>
<td>N/A</td>
<td>5.44</td>
<td>N/A</td>
</tr>
<tr>
<td>Threshold [m]</td>
<td>Combined delay [s]</td>
<td>decel [m/s²]</td>
<td>0,3</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v_{lat} [m/s]</td>
<td>v_{rel} [km/h]</td>
<td>TTC_{min} [s]</td>
<td>Distance [m]</td>
<td>TTC_{min} [s] after lane crossing</td>
<td>Distance [m]</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>10</td>
<td>0.58</td>
<td>1.62</td>
<td>1.18</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>0.81</td>
<td>4.52</td>
<td>1.41</td>
<td>7.85</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>30</td>
<td>1.04</td>
<td>8.70</td>
<td>1.64</td>
<td>13.70</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>1.28</td>
<td>14.18</td>
<td>1.88</td>
<td>20.84</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>1.51</td>
<td>20.94</td>
<td>2.11</td>
<td>29.27</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>59</td>
<td>1.72</td>
<td>28.12</td>
<td>2.32</td>
<td>37.95</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0.58</td>
<td>1.62</td>
<td>0.88</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>0.81</td>
<td>4.52</td>
<td>1.11</td>
<td>6.18</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>1.04</td>
<td>8.70</td>
<td>1.34</td>
<td>11.20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>1.28</td>
<td>14.18</td>
<td>1.58</td>
<td>17.51</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>1.51</td>
<td>20.94</td>
<td>1.81</td>
<td>25.10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>59</td>
<td>1.72</td>
<td>28.12</td>
<td>2.02</td>
<td>33.04</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>10</td>
<td>0.58</td>
<td>1.62</td>
<td>0.78</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
<td>0.81</td>
<td>4.52</td>
<td>1.01</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>30</td>
<td>1.04</td>
<td>8.70</td>
<td>1.24</td>
<td>10.37</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>40</td>
<td>1.28</td>
<td>14.18</td>
<td>1.48</td>
<td>16.40</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>50</td>
<td>1.51</td>
<td>20.94</td>
<td>1.71</td>
<td>23.71</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>59</td>
<td>1.72</td>
<td>28.12</td>
<td>1.92</td>
<td>31.40</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>10</td>
<td>0.58</td>
<td>1.62</td>
<td>0.75</td>
<td>2.08</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>20</td>
<td>0.81</td>
<td>4.52</td>
<td>0.98</td>
<td>5.44</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>30</td>
<td>1.04</td>
<td>8.70</td>
<td>1.21</td>
<td>10.09</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>40</td>
<td>1.28</td>
<td>14.18</td>
<td>1.44</td>
<td>16.03</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>50</td>
<td>1.51</td>
<td>20.94</td>
<td>1.67</td>
<td>23.25</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>59</td>
<td>1.72</td>
<td>28.12</td>
<td>1.88</td>
<td>30.85</td>
<td></td>
</tr>
</tbody>
</table>