Economic Commission for Europe
Inland Transport Committee
Working Party on Inland Water Transport
Sixty-second session
Geneva, 3-5 October 2018
Item 12 of the provisional agenda
E-inland waterway statistics

A proposal for a traffic census of the E Waterway Network

Note by the secretariat

I. Mandate

1. This document is submitted in line with cluster 5: Inland Waterway Transport, paragraph (a) 5.2 of the programme of work 2018-2019 (ECE/TRANS/2018/21/Add.1) adopted by the Inland Transport Committee at its eightieth session (23 February 2018).

3. The present document proposes for a new data collection mechanism concerning traffic levels on the E-Inland Waterway Network, and the visualization of the traffic data on an interactive map. This would ask for traffic levels (in both vessels per day and tonnage shipped), for individual waterway sections.

II. Background

4. Internationally comparable data on main international traffic lines are of major and increasing importance in Europe, given the growing volume of international and transit traffic. The E-Road census carried out under the auspices of ECE is the only existing international framework providing comparable data on traffic flows on main European roads on a pan-European basis. ECE has been conducting a quinquennial census of motor traffic and inventory of standards and parameters on main international traffic arteries in Europe since 1980. This census has been based on the E-Road network as defined by
Annex I of the European Agreement on Main International Traffic Arteries (AGR) of 1975, as amended. The last census was conducted in 2015.

5. The data produced from this census allow policymakers to:

 (a) See how the quality of E-Roads has changed over time, measured in the number of lanes, lane width and E-Road signage;

 (b) Monitor traffic, including transit traffic and heavy goods traffic, together with holiday traffic, peak hour traffic and night traffic. This allows insights into how people and goods are moved through and between countries on main international corridors;

 (c) Visualize through interactive maps how these traffic volumes move across the E-Road network.

6. The Annual Average Daily Traffic (AADT) figures collected in the census represent the total number of motorized vehicles passing through each particular segment of E-Road in a given year, divided by the number of days in the year. While the type of vehicle, time of travel or seasonality factors are not considered, it is a useful headline measure of traffic, and potentially congestion. The AADT level specifically for heavy goods vehicles defined by number of axles is also asked for and can thus also be visualized separately.

7. The interactive map visualizes AADT figures, measured in a standardized manner, across countries. Data for 2005, 2010 and 2015 can be accessed through this map. An example is given in the figure below.

Figure

Example of E-Road traffic visualization (number of vehicles per day)

8. The recommendations to governments on how the data should be collected and provided to the secretariat for the 2015 E-Road Census can be found in ECE/TRANS/WP.6/2013/4.2

1 www.unece.org/trans/main/wp6/e-roads_maps.html
9. The E-Road Census is typically not conducted in isolation, but rather as a by-product of the respective national road traffic censuses, thus only marginal costs are involved in the compilation and transmission of the E-Road Census data by ECE member governments. While ECE only collects these data every five years, many member States collect and publish their own data on a more frequent basis.

10. Since 2005, the secretariat (in cooperation with Eurostat) has also collected an E-Rail census based on the European Agreement on Main International Railway Lines (AGC). Data from this census are useful in understanding how many passenger and freight trains use each part of the international network, and visualization applications are possible too. In particular, when combining visualizations of road and rail traffic together, it can give insight into traffic bottlenecks and where modal shifting of traffic may be most beneficial. The recommendations to governments on how the E-Rail data should be collected and provided to the secretariat for the 2015 E-Rail census can be found at ECE/TRANS/WP.6/2013/5.2

III. Proposal

11. With these clear benefits to collecting E-Rail and E-Road data and given the increasing importance of inland waterways within freight transport, the secretariat proposes to consider collecting an E-Inland Waterway census in a similar fashion. This would naturally cover inland waterways as defined in the European Agreement on Main Inland Waterways of International Importance (AGN).

12. In line with the existing censuses and to limit the reporting burden of member States, this new collection would be conducted every five years, the first be in 2020.

13. Such a census would need to request data that most countries with navigable inland waterways have already or that could be collected easily, based on existing observation posts. The annex gives proposals for the data to be asked for, as a starting point for discussions.

14. For purposes of the coverage of the E-Waterway traffic census, the E waterway network to be considered could consist of the waterways that are included in annex 1 of AGN (this would implicitly include all waterways defined in the European Commission’s Trans-European network (TEN-T).

15. Every effort should be made to arrive at data which are as comparable as possible at the international level. Continuous efforts are, therefore, necessary to keep the scope and quality of the E-Waterway traffic census data in line with user requirements and member State involvement would thus be beneficial.

16. In addition to AADT, particularities of inland waterways could be taken into account, such as their seasonal nature, low water periods or other periods when navigation is stopped or hindered.

17. This information could also contribute to the modal shift from other inland transport modes and facilitate the study of environmental issues, safety and energy consumption of inland water transport.

18. An additional objective of the E-Waterway traffic census is the measurement of the performance of the waterway network, expressed mainly in tonne-kilometres, by the different types of vessels counted.
18. While the data would be useful in themselves, the real value of this proposed data collection is to visualize these traffic volumes on a map. As such, the data of table 3 in the annex would be requested in geospatial format, such as in a Shapefile, to allow an interactive map to be produced.

IV. Potential Benefits for member States

19. This proposed data collection would be a useful analytical tool for policymakers in member States. While data already exist at a national level on vessels, tonnes carried and tonne-km, having localized traffic information will increase the value of information collected, allow targeted policies on the most important and most congested ports and areas of the network, and give the greatest specific insights into where there is potential for shifting freight to inland waterways.

20. This potential data collection is thus of benefit to policymakers in member States with regards to their own country. But in addition to this, having data produced for other countries in a comparable way, allows a better understanding of the international inland waterway sector.

V. Proposed Timeline

21. Subject to SC.3 approving this data collection, the idea will be discussed by the Working Party on Transport Statistics (WP.6) at its next session in 2019. If approved there, it is envisaged that country-level experts will provide further input, either through informal consultations or through expert-led, ad hoc group meetings of statistics and inland navigation experts. Following this, any recommendations on data collection could be presented to the Inland Transport Committee for their consideration, and a resolution thus prepared for member States’ agreement.
Examples of E-IWW Census Data Tables

Table 1
Length of E-IWW sections by average annual daily traffic (AADT)

<table>
<thead>
<tr>
<th>Average Annual Daily Traffic (AADT)</th>
<th>Length of waterway section (km)</th>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up to 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50 - 99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100 - 199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>200 - 299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>300 - 399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>400 - 499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>500+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Distribution of traffic by vessel carrying capacity in 2020

<table>
<thead>
<tr>
<th>Vessel carrying capacity</th>
<th>Code</th>
<th>Average number per post in 2020</th>
<th>Change from 2015 (%)</th>
<th>Average number per post in 2020</th>
<th>Change from 2015 (%)</th>
<th>Average number per post in 2020</th>
<th>Change from 2015 (%)</th>
<th>Average number per post in 2020</th>
<th>Change from 2015 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All vessels</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 999 t</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 000 - 2 999 t</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 000 t and over</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
2015 Vessel density data at counting posts on E-IWW shown on the accompanying map

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td>(D)</td>
<td>(E)</td>
<td>(F)</td>
<td>(G)</td>
<td>(H)</td>
<td>(I)</td>
<td>(J)</td>
</tr>
</tbody>
</table>