Modifications proposed to ECE/TRANS/WP.29/GRB/2017/2
I. Proposal

Paragraph 2.18., amend to read:

"2.18. Gear\(^1\)

2.18.1. "Gear ratios"

2.18.1.1. "Internal Gearbox ratio" means the ratios of engine to gearbox output shaft revolutions.

2.18.1.2. "Final drive ratio" means the ratio(s) of gearbox output shaft to driven wheel revolutions.

2.18.1.3. "Total gear ratio" means the in the context of this Regulation any ratios between vehicle speed and engine speed during the passage of the vehicle through the test track. Used is the gear ratio at the point in the test track, when the rear of the vehicle passes line BB'.

2.18.1.4. "Gear ratio" used in context with vehicles tested according to 3.1.2.1 of Annex 3 and Annex 7 is the total gear ratio as defined in 2.18.1.3. above.

2.18.2. "Locked gear ratios" means the control of the transmission such that the transmission gear cannot change during a test.

2.18.3. "Gear" means in the context of this Regulation a discrete gear ratio either selectable by the driver or by an external device.

2.18.4. For vehicles tested according 3.1.2.1 of Annex 3 and Annex 7, "gear\(_i\)" and "gear\(_{i+1}\)" are defined as two gears in sequence, where gear\(_i\) either provides an acceleration within the 5% tolerance according to paragraph 3.1.2.1.4.1. (a) of Annex 3 or an acceleration greater than the reference acceleration, and gear\(_{i+1}\) an acceleration lower than the reference acceleration according to paragraph 3.1.2.1.4.1. (b) or (c) of Annex 3.

When the acceleration meets the 5% tolerance of the reference acceleration, this gear is defined as well as "gear\(_i\)."

Paragraph 2.24., amend to read:

"2.24. Table of symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Annex</th>
<th>Paragraph</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>(v_{AA,A SEP})</td>
<td>km/h</td>
<td>Annex 7</td>
<td>2.3</td>
<td>Target vehicle velocity for test point P1 of the assessment method according paragraph 2.4 minimum vehicle speed at line AA reported and used for calculations to the first decimal place</td>
</tr>
</tbody>
</table>

\(^1\) Note: The common understanding of a "low gear" or a "high gear" shall not apply to gear ratios. For example, the lowest gear for forward driving, the first gear, has the highest gear ratio of all forward driving gears. While manual transmission has discrete gears, many non-manual transmissions can have more gear ratios engaged by the control unit of the transmission.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Annex</th>
<th>Paragraph</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_{BB',ASEP}$</td>
<td>km/h</td>
<td>7</td>
<td>2.3</td>
<td>Target vehicle velocity for test point P4 of the assessment method according to paragraph 2.4. Maximum vehicle speed at line BB' AA' reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>P_j</td>
<td>—</td>
<td>7</td>
<td>2.4.5</td>
<td>Test point(s) under ASEP</td>
</tr>
<tr>
<td>j</td>
<td>—</td>
<td>7</td>
<td>2.4.5</td>
<td>Index for the test points under ASEP</td>
</tr>
<tr>
<td>$v_{BB,j}$</td>
<td>km/h</td>
<td>7</td>
<td>2.4.5</td>
<td>Vehicle test speed at BB' for a particular ASEP test point</td>
</tr>
<tr>
<td>$a_{wot,test,j}$</td>
<td>m/s²</td>
<td>7</td>
<td>2.5.6</td>
<td>Acceleration at wide-open throttle achieved in gear κ and at test point j.</td>
</tr>
<tr>
<td>$L_{wot,\kappa j}$</td>
<td>dB(A)</td>
<td>7</td>
<td>2.5.6</td>
<td>Sound pressure level measured for a gear κ and at a test point j; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$n_{BB,\kappa j}$</td>
<td>1/min</td>
<td>7</td>
<td>2.5.6</td>
<td>Vehicle test engine speed at BB' for a gear κ and at test point j</td>
</tr>
<tr>
<td>$v_{AA,\kappa j}$</td>
<td>km/h</td>
<td>7</td>
<td>2.5.6</td>
<td>Vehicle test speed at AA' for a gear κ and at test point j; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$v_{BB,\kappa j}$</td>
<td>km/h</td>
<td>7</td>
<td>2.5.6</td>
<td>Vehicle test speed at BB' for a gear κ and at test point j; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$v_{PP,\kappa j}$</td>
<td>km/h</td>
<td>7</td>
<td>2.5.6</td>
<td>Vehicle test speed at PP' for a gear κ and at test point j; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$L_{anchor,\kappa}$</td>
<td>dB(A)</td>
<td>7</td>
<td>3.1</td>
<td>Reported vehicle sound pressure level for gear ratio i from Annex 3; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$L_{\kappa j}$</td>
<td>dB(A)</td>
<td>7</td>
<td>4.3.5</td>
<td>Sound pressure level measured for a gear κ and at a test point j; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$k_{P,ASEP}$</td>
<td>—</td>
<td>7</td>
<td>6.2.4.2.1.</td>
<td>Partial power factor determined for the L_{urbane} principle of ASEP</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
<td>Annex</td>
<td>Paragraph</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>-------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>$L_{\text{wot_ASEP}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>6.2.4.2.1.</td>
<td>vehicle sound pressure level measured for the L_{urban} principle of ASEP; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$L_{\text{urban_measured_ASEP}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>6.2.4.2.1.</td>
<td>interim result for calculation of $\Delta L_{\text{urban_ASEP}}$; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$L_{\text{urban_normalized}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>6.2.4.2.1.</td>
<td>interim result for calculation of $\Delta L_{\text{urban_ASEP}}$; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$\Delta L_{\text{urban_ASEP}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>4.2.1.</td>
<td>estimated deviation from $L_{\text{urban_ASEP}}$ sound pressure level; value to be reported to the first decimal place</td>
</tr>
<tr>
<td>α</td>
<td></td>
<td>Annex 7</td>
<td>5.2</td>
<td>gear to be determined for the reference sound assessment according to the type of transmission</td>
</tr>
<tr>
<td>L_{ref}</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>5.3.</td>
<td>reference sound pressure level for reference sound assessment; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$n_{BB'_ref}$</td>
<td>1/min</td>
<td>Annex 7</td>
<td>5.3.</td>
<td>Reference vehicle test engine speed for reference sound assessment</td>
</tr>
<tr>
<td>$V_{BB'_ref}$</td>
<td>km/h</td>
<td>Annex 7</td>
<td>5.3.</td>
<td>reference vehicle test speed for reference sound assessment</td>
</tr>
<tr>
<td>k_{P_ASEP}</td>
<td></td>
<td>Annex 7</td>
<td>6.2.</td>
<td>partial power factor determined for the $L_{\text{urban_ASEP}}$ principle of ASEP</td>
</tr>
<tr>
<td>$L_{\text{null_ASEP}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>6.2.</td>
<td>vehicle sound pressure level measured for the $L_{\text{urban_ASEP}}$ principle of ASEP; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$L_{\text{urban_ASEP}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>6.2.</td>
<td>Estimated urban sound pressure level determined for the $L_{\text{urban_ASEP}}$ principle of ASEP; value to be reported and used for calculations to the first decimal place</td>
</tr>
<tr>
<td>$L_{\text{urban_measured_ASEP}}$</td>
<td>dB(A)</td>
<td>Annex 7</td>
<td>6.2.</td>
<td>interim result for calculation of $L_{\text{urban_ASEP}}$; value to be reported and used for calculations to the first decimal place</td>
</tr>
</tbody>
</table>
Insert a new paragraph 2.25., to read:

"2.25. Modes

2.25.1. "Mode" means a distinct driver-selectable condition which does affect the sound emission of the vehicle."

Insert a new paragraph 2.26., to read:

"2.26. Stable acceleration

2.26.1. "Stable acceleration" applicable when acceleration needs to be calculated is given when the acceleration ratio between a\textsubscript{wot_testPP-BB} and a\textsubscript{wot_test} is less than or equal to 1.2. from line AA’ to PP’ has a low variation to the acceleration from line PP’ to BB’.

2.26.2. "Unstable acceleration" means a deviation from the stable acceleration during acceleration.

2.26.2.1. Unstable acceleration might occur as well during the start of acceleration from low speeds when the powertrain will react by bumping and jerking on the acceleration request."

Paragraph 6.2.3.3., amend to read:

"6.2.3.3. In applying for type approval, the manufacturer shall provide a statement, in conformity with the Appendix 1 of Annex 7, that the vehicle type to be approved complies with the requirements of paragraph 6.2.3. of this Regulation."

Annex 3, paragraph 3.1.2.1.4.1., amend to read:

"3.1.2.1.4.1. Vehicles with manual transmission, automatic transmissions, adaptive transmissions or CVTs tested with locked gear ratios

…

In the case of a vehicle not exempted from ASEP according to paragraph 6.2.3., gear i shall be tested and values reported (L\textsubscript{wot_i}, B\textsubscript{wot_BB_i}, V\textsubscript{wot_BB_i}) in order to perform tests of Annex 7."

Annex 7, amend to read:

"Annex 7

Measuring method to evaluate compliance with the Additional Sound Emission Provisions

Only applicable for vehicles as specified in paragraph 6.2.3. of this Regulation

1. General
This annex describes a measuring method to evaluate compliance of the vehicle with the additional sound emission provisions (ASEP) conforming to paragraph 6.2.3. of this Regulation.

It is not mandatory to perform actual tests when applying for type-approval. The manufacturer shall sign the declaration of compliance set out in Appendix 1. The approval authority may ask for additional information about the declaration of compliance and carry out the tests described below.

The procedure set out in this annex requires the performance of a test in accordance with Annex 3.

If the tests according to Annex 7 are carried out in the course of type approval, all tests either for Annex 3 and for Annex 7 shall be carried out on the same test track and, if possible, under similar environmental conditions.

If Annex 7 tests are carried out when type approval has already been granted, e.g. during tests for conformity of production or for in-use compliance, the tests in motion specified in Annex 3 shall be repeated with the same mode, gear(s)/gear ratio(s), and gear weighting factors k and partial power factor k_p as determined during the type approval process.

The test specified in Annex 3 shall be carried out on the same test track under conditions similar to those required in the tests prescribed in this annex.

2. Measuring method

2.1. Measuring instruments and condition of measurements

Unless otherwise specified, the measuring instruments, the conditions of the measurements and the condition of the vehicle are equivalent to those specified in Annex 3, paragraphs 1. and 2.

If the vehicle has different modes that affect sound emission, all modes shall comply with the requirements in this annex. In the case where the manufacturer has performed tests to prove to the approval authority compliance with the above requirements, the modes used during those tests shall be reported in a test report.

2.2. Method of testing

Unless otherwise specified, the conditions and procedures of Annex 3, paragraphs 3.1. to 3.1.2.1.2.2, shall be used. For the purpose of this annex, one single test run per test condition is measured and evaluated.

2.3. Control range

The ASEP requirements apply to every gear ratio κ that leads to test results within the control range as defined below.

2 Measurements for Annex 7 for a particular vehicle type may be carried out on a different test tracks or under different environmental conditions, each according to the provisions of this Regulation, if the test results L_{out} and L_{crs} for the gear κ_1, representing the anchor point, do not differ by more the +/- 1.0 dB from the test results at the time when the tests according to Annex 3 have been carried out.
Operation conditions are as follows:

Vehicle speed \(V_{AA, ASEP} \):

\[v_{AA} \geq 20 \, \text{km/h} \]

Vehicle acceleration \(a_{WOT, ASEP} \):

\[a_{WOT} \leq 5.0 \, \text{m/s}^2 \]

Engine speed \(n_{BB, ASEP} \):

\[n_{BB} \leq 2.0 \times \text{PMR}^{0.222} \times S \] or

\[n_{BB} \leq 0.9 \times S, \text{ whichever is the lowest} \]

Vehicle speed \(V_{BB, ASEP} \):

- If \(n_{BB, ASEP} \) is reached in one gear, \(v_{BB} \leq 70 \, \text{km/h} \)
- In all other cases, \(v_{BB} \leq 80 \, \text{km/h} \)

If the vehicle, in the lowest valid gear, does not achieve the maximum engine speed below 70 km/h, the vehicle speed limit is 80 km/h.

If the vehicle in the lowest valid gear does not achieve the maximum engine speed \(n_{BB, ASEP} \) below 70 km/h, the vehicle speed limit is increase the vehicle speed in that gear to reach the maximum engine speed \(n_{BB, ASEP} \), but not beyond 80 km/h.

For any other gear, the maximum vehicle speed is 70 km/h.

For vehicles tested in non-locked transmission conditions, the maximum vehicle speed is 80 km/h.

Gears \(\kappa \leq \text{gear } i \) as determined in Annex 3

<table>
<thead>
<tr>
<th>Annex 3 gear selection</th>
<th>Annex 7 gear selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked-condition</td>
<td>**Gear}_{i}, \ldots</td>
</tr>
<tr>
<td>Non-locked</td>
<td>Non-locked</td>
</tr>
</tbody>
</table>

2.4. Gear ratios

The ASEP requirements apply to every gear ratio \(\kappa \) that leads to test results within the control range as defined in paragraph 2.3. of this annex.

In case of vehicles with automatic transmissions, adaptive transmissions and CVTs tested with non-locked gear ratios, the test may include a gear ratio change to a lower range and a higher acceleration. A gear change to a higher range and a lower acceleration is not allowed. A gear shift which leads to a condition that is not in compliance with the boundary conditions should shall be avoided. In such a case, it is permitted to establish and use electronic or mechanical devices, including alternate gear selector positions.

2.4.5. Target conditions

The sound emission shall be measured in each valid gear ratio at the four test points as specified below. For all test points the boundary conditions as specified in paragraph 2.3. shall be met.

The gear ratio is valid if all four points and the anchor point meet the specifications of paragraph 2.3. above. Any gear ratio for which this criteria is not fulfilled is invalid and not analysed further.
The first test point P_1 is defined by using an entry speed $v_{AA,\kappa 1}$ of $20 \text{ km/h} \leq v_{AA,\kappa 1} < 20 \text{ km/h} + \pm 3 \text{ km/h}$.

For P_1, if a stable acceleration condition cannot be achieved according to 2.26.2.1. in the definition section of this Regulation, the speed $v_{AA,\kappa 1}$ shall be increased in steps of 5 km/h until a stable acceleration is reached.

For all points, if a stable acceleration condition cannot be achieved according to 2.26.1. the acceleration $a_{\text{test}_{PP-BB}}$ shall be calculated according the formula given in paragraph 3.1.2.1.2. of Annex 3.

In case of non-locked automatic transmission conditions where n_{BB_ASEP} is exceeded during the test, the following measures shall be considered separately or together:

- provisions of paragraph 2.5.1.
- increased speed in steps of 5 km/h.

The test speed for the fourth test point P_4 in any gear is defined by the maximum vehicle speed at BB' in that gear ratio within the boundary conditions according to paragraph 2.3.

- $0.95 \times n_{BB_ASEP} \leq n_{BB,\kappa 4} \leq n_{BB_ASEP}$ or
- $v_{BB_ASEP} - 3 \text{ km/h} \leq V_{BB,\kappa 4} \leq V_{BB_ASEP}$ with V_{BB_ASEP} as defined in paragraph 2.3.

The test speed for the other two test points is defined by the following formula:

Test Point P_j: $v_{BB,\kappa j} = v_{BB,\kappa 1} + ((j - 1) / 3) \times (v_{BB,\kappa 4} - v_{BB,\kappa 1})$ for $j = 2$ and 3 with a tolerance of $\pm 3 \text{ km/h}$

Where:

$v_{BB,\kappa 1}$ = vehicle speed at BB' of test point P_1
$v_{BB,\kappa 4}$ = vehicle speed at BB' of test point P_4

Tolerance for $v_{BB,j}$: $\pm 3 \text{ km/h}$

For all test points, the boundary conditions as specified in paragraph 2.3. shall be met.

2.5.6. Test of the vehicle

The path of the centreline of the vehicle shall follow line CC' as closely as possible throughout the entire test, starting from the approach of the reference point according to definition 2.11. of the main body to line AA' until the rear of the vehicle passes line BB'.

At line AA' the accelerator shall be fully depressed. To achieve a more stable acceleration or to avoid a downshift between line AA' and BB' pre-acceleration before line AA' may be used according to the provisions of paragraphs 3.1.2.1.2.1. and 3.1.2.1.2.2. of Annex 3. The accelerator shall be kept in depressed condition until the rear of the vehicle reaches line BB'.

In case of non-locked transmission conditions, in case of vehicles with automatic transmissions, adaptive transmissions and CVT's tested with non-locked gear ratios, the test may include a gear ratio change to a lower range and a higher acceleration. A gear change to a higher range and a lower acceleration is not allowed.
If possible, the manufacturer shall take the measures to avoid a gearshift which leads to a condition that is not in compliance with the boundary conditions. For that In such a case, it is permitted to establish and use electronic or mechanical devices, such as including–alternating gear selector positions. If no such measures can be applied, the rationale shall be provided and documented in the technical report.

2.5.2. Measurements reading:

Per test point, one single run is carried out.

For every separate test run, the following parameters shall be determined and noted:

The maximum A-weighted sound pressure level of both sides of the vehicle, indicated during each passage of the vehicle between the two lines AA' and BB', shall be mathematically rounded to the first decimal place \(L_{\text{wot},\kappa_j} \). If a sound peak obviously out of character with the general sound pressure level is observed, the measurement shall be discarded. Left and right side may be measured simultaneously or separately. For further processing, the higher sound pressure level of both sides shall be used.

The vehicle speed readings at AA', PP' and BB' shall be rounded and reported with the first significant digit after the decimal place. \(v_{\text{AA},\kappa_j}; v_{\text{PP},\kappa_j}; v_{\text{BB},\kappa_j} \)

If applicable, the engine speed readings at AA' and BB' shall be reported as a full integer value \(n_{\text{AA},\kappa_j}; n_{\text{BB},\kappa_j} \).

2.5.3. The calculated acceleration shall be determined in accordance to the formula in paragraph 3.1.2.1.2. of Annex 3 and reported to the second digit after the decimal place \(a_{\text{wot,test},\kappa_j} \).

3. Analysis of results

Analysis method 1: Slope-Assessment

3.1. Determination of the anchor point for each gear ratio

The anchor point is the same for each gear ratio \(\kappa \) falling under the control range according to paragraph 2.3. The parameters for the anchor point are taken from the acceleration test of Annex 3 as follows:

- \(L_{\text{wot},\kappa_j} \) is the maximum sound level of left and right side of gear ratio \(\kappa \);
- \(n_{\text{BB},\text{wot},\kappa_j} \) is the average of \(n_{\text{BB},\text{wot},\kappa_j} \) of the 4 runs of gear ratio \(\kappa \) reported from Annex 3;
- \(v_{\text{BB},\text{wot},\kappa_j} \) is the average of \(v_{\text{BB},\text{wot},\kappa_j} \) of the 4 runs of gear ratio \(\kappa \) reported from Annex 3.

3.2. Slope of the regression line for each gear ratio \(\kappa \)

The sound measurements shall be evaluated as function of engine speed according to paragraph 3.2.1.
3.2.1. Calculation of the slope of the regression line for each gear ratio \(\kappa \)

The linear regression line is calculated using the anchor point and the four correlated additional measurements with the results for engine speeds and sound levels as reported under 2.5.2. of this annex.

\[
\text{Slope}_\kappa = \frac{\sum_{j=1}^{5} (n_j - \bar{n})(L_j - \bar{L})}{\sum_{j=1}^{5} (n_j - \bar{n})^2} \quad \text{(in dB(A)/1,000 min}^{-1})
\]

With \(\bar{L} = \frac{1}{5} \sum_{j=1}^{5} L_j \) and \(\bar{n} = \frac{1}{5} \sum_{j=1}^{5} n_j \); where \(n_j \) = engine speed measured at line BB'

3.2.2. Slope of the regression line for each gear ratio \(\kappa \)

The slope \(\kappa \) of a particular gear for the further calculation is the derived result of the calculation in paragraph 3.2.1. rounded to the first decimal place, but not higher than 5 dB(A)/1,000 min\(^{-1}\).

In case of non-locked conditions automatic transmission, if \(\text{Slope}_\kappa < 0 \), the selected transmission setup is not valid. In that case the \(L_{\text{urban}} \) assessment as specified in paragraph 4. shall be applied.

3.3. Calculation of the linear sound level increase expected for each measurement

The sound level \(L_{\text{ASEP}, \kappa j} \) for measurement point \(j \) and gear ratio \(\kappa \) shall be calculated using the engine speeds measured for each measurement point, using the slope specified in paragraph 3.2. above to the specific anchor point for each gear ratio.

For \(n_{BB, \kappa j} \leq n_{\text{anchor}, \kappa} \):

\[
L_{\text{ASEP}, \kappa j} = L_{\text{anchor}, \kappa} + (\text{Slope}_\kappa - Y) * (n_{BB, \kappa j} - n_{\text{anchor}, \kappa}) / 1,000
\]

For \(n_{BB, \kappa j} > n_{\text{anchor}, \kappa} \):

\[
L_{\text{ASEP}, \kappa j} = L_{\text{anchor}, \kappa} + (\text{Slope}_\kappa + Y) * (n_{BB, \kappa j} - n_{\text{anchor}, \kappa}) / 1,000
\]

Where \(Y = 1 \)

3.4. Additional samples

On request of the type approval authority, two additional runs within the boundary conditions according to paragraph 2.3. of this annex shall be carried out.

4.3.5. Interpretation of results Specifications

Every individual sound measurement shall be evaluated.

The sound level of every specified measurement point shall not exceed the limits given below:

\[
L_{\kappa j} \leq L_{\text{ASEP}, \kappa j} + x
\]

With:
x = 3 dB(A) + limit value3 - L_{urban} of Annex 3 for vehicle tested with a non-lockable automatic transmission or non-lockable CVT.

x = 2 dB(A) + limit value3 - L_{urban} of Annex 3 for all other vehicles tested with locked transmission conditions.

If the measured sound level at a point exceeds the limit, two additional measurements at the same point shall be carried out to verify the measurement uncertainty. The vehicle is still in compliance with ASEP, if the average of the three valid measurements at this specific point fulfils the specification.

6. 4. Evaluation of ASEP using the principle of L_{urban} Analysis method 2: L_{urban} Assessment

6. 4.1. General

This evaluation procedure is an alternative selected by the vehicle manufacturer to the procedure described in paragraph 3. of this annex and is applicable for all vehicle technologies. It is the responsibility of the vehicle manufacturer to determine the correct manner of testing. Unless otherwise specified, all testing and calculation shall be as specified in Annex 3 to this Regulation.

The measurement method is defined in paragraph 2. Each testing point shall be evaluated individually.

6. 4.2. Calculation of $\Delta L_{urban, ASEP}$

4.2.1. Data-processing

From any $L_{wot, ASEP}$ as measured according to this annex, $\Delta L_{urban, ASEP}$ shall be calculated as follows:

(a) Calculate $a_{wot, test, ASEP}$ using acceleration calculation from paragraph 3.1.2.1.2.1. or 3.1.2.1.2.2. of Annex 3 to this Regulation, as applicable;

(b) Determine the vehicle speed ($V_{BB, ASEP}$) at BB during the $L_{wot, ASEP}$ test;

(c) Calculate $k_{p, ASEP}$ as follows:

$$k_{p, ASEP} = 1 - \left(\frac{a_{urban}}{a_{wot, test, ASEP}} \right)$$

Test results where $a_{wot, test, ASEP}$ are less than a_{urban} shall be disregarded.

(d) Calculate $L_{urban, measured, ASEP}$ as follows:

$$L_{urban, measured, ASEP} = L_{wot, ASEP} - k_{p, ASEP} \times (L_{wot, ASEP} - L_{CRS, rep})$$

For further calculation, use the L_{urban} from Annex 3 to this Regulation without rounding, including the digit after the decimal (xx.x).

(e) Calculate $L_{urban, normalized}$ to normalize the speed from $V_{BB, ASEP}$ to 50 km/h as follows:

$$L_{urban, normalized} = L_{urban, measured, ASEP} - L_{urban}$$

$$L_{urban, normalized} = L_{urban, measured, ASEP} - (0.15 \times (V_{BB, ASEP} - 50))$$

3 As applicable for the approved type of vehicle
Calculate the deviation $\Delta L_{\text{urban_ASEP}}$ relative to L_{urban} as follows:

$$L_{\text{urban_ASEP}} = L_{\text{urban_normalized}} - (0.15 \cdot (V_{BB_{\text{ASEP}}} - 50))$$

$$\Delta L_{\text{urban_ASEP}} = L_{\text{urban_normalized}} - L_{\text{urban}}$$

4.2.2. Specifications

Compliance with limits:

$$\Delta L_{\text{urban_ASEP}} \text{ shall be less than or equal to } 3.0 \text{ dB(A)} \pm \text{ limit value}^4 - L_{\text{urban of Annex 3}}.$$

5. Reference sound assessment

The reference sound is assessed at a single point in one discrete gear, simulating an acceleration condition starting with an entry speed at v_{AA} equal to 50 km/h and assuming an exit speed at v_{BB} equal to 61 km/h. The sound compliance at this point can either be calculated using the results of paragraph 3.2.2. and the specification below or be evaluated by direct measurement using the gear as specified below.

5.1. General

The reference sound can be obtained by simulation or from direct measurement. The result of one assessment method has to comply with the specification of 5.4.

5.1.1. Conditions for Simulation method

For simulation, the reference sound is assessed at a single point in one discrete gear, simulating an acceleration condition assuming an exit speed at v_{BB} equal to 61 km/h. The sound compliance is calculated using the slope results of paragraph 3.2.2.

If the result of slope of 3.2.2. is not available for the gear specified in paragraph 5.2, the slope of the missing gear can be determined according to paragraphs 2.4., 3.1. and 3.2.

5.1.2. Conditions for Direct measurement method

For direct measurement, the reference sound is assessed at a single run in an acceleration condition started at line AA’ as specified in paragraph 2.5. The gear shall be as specified in paragraph 5.2. for vehicles tested in locked position condition or in a gear selected position for normal driving as specified by the manufacturer for vehicles tested in non-locked position condition.

The target test speed v_{AA} is equal to 50 km/h ± 1 km/h unless v_{BB} exceeds 61 km/h.

If v_{BB} exceeds 61 km/h, the target test speed v_{BB} shall be set to 61 km/h ± 1 km/h. The entry speed shall be adjusted to achieve the target test speed.

^4 As applicable for the approved type of vehicle

^5 Simulation may not always be applicable as the test result of Annex 3 and the elaborated slopes according to paragraph 3. of Annex 7 might not provide consistent data for the simulation. In that case, it is recommended to carry out direct measurements.
5.2 The determination of gear $a \kappa$ is as follows:

- $a \kappa = 3$ for all manual transmission and for automatic transmission tested in locked position with up to 5 gears;
- $a \kappa = 4$ for automatic transmission tested in locked position with 6 or more gears. If the acceleration calculated from AA to BB + vehicle length in gear 4 exceeds 1.9 m/s², the first higher gear $a \kappa > 4$ with an acceleration lower than or equal to 1.9 m/s² shall be chosen.

For vehicles tested under non-lockable condition automatic transmissions or non-lockable CVTs, the gear ratio for further calculation shall be determined from the acceleration test result in Annex 3 using the reported engine speed and vehicle speed at line BB'.

5.3 Data-processing for simulation assessment

5.3.1 Determination of reference engine speed $n_{BB'_ref_a \kappa}$

The reference engine speed, $n_{BB'_ref_a \kappa}$ shall be calculated using the gear ratio of gear $a \kappa$ at the reference speed of $v_{BB'_ref} = 61$ km/h.

5.3.2 Calculation of L_{ref}

$$L_{ref} = L_{anchor_a \kappa} + \text{Slope}_{a \kappa} \times \left(n_{BB'_ref_a \kappa} - n_{anchor_a \kappa} \right) / 1,000$$

5.4 Specifications

For vehicles of category M1, L_{ref} shall be less than or equal to 76 dB(A).

For vehicles of category M1 fitted with a manual transmission gear-box having more than four forward gears and equipped with an engine developing a rated maximum net power greater than 140 kW (according to Regulation No. 85) and having a maximum-power/maximum-mass ratio greater than 75, L_{ref} shall be less than or equal to 79 dB(A).

For vehicles of category M1 fitted with an automatic transmission gear-box having more than four forward gears and equipped with an engine developing a rated maximum net power greater than 140 kW (according to Regulation No. 85) and having a maximum-power/maximum-mass ratio greater than 75, L_{ref} shall be less than or equal to 78 dB(A).

For vehicles of category N1 with a technically permissible maximum laden mass below 2,000 kg, L_{ref} shall be less than or equal to 79 dB(A).

For vehicles of category N1 with a technically permissible maximum laden mass above 2,000 kg and below 3,500 kg, L_{ref} shall be less than or equal to 79 dB(A).

For vehicles of category M1 and N1 equipped with a compression-ignition and direct injection internal combustion engine, the sound level shall be increased by 1 dB(A).

For vehicles of category M1 and N1 designed for off-road use and with a technically permissible maximum laden mass above 2 tonnes, the sound level shall be increased by 1 dB(A) if they are equipped with an engine having a rated maximum net power of less than 150 kW (according to Regulation No. 85) or by 2 dB(A) if they are equipped with an engine having a rated maximum net power of 150 kW (according to Regulation No. 85) or above.
6. Evaluation of ASEP using the principle of L_{urban}

6.1. General

This evaluation procedure is an alternative selected by the vehicle manufacturer to the procedure described in paragraph 3. of this annex and is applicable for all vehicle technologies. It is the responsibility of the vehicle manufacturer to determine the correct manner of testing. Unless otherwise specified, all testing and calculation shall be as specified in Annex 3 to this Regulation.

6.2. Calculation of $L_{\text{urban, ASEP}}$

From any $L_{\text{wot, ASEP}}$ as measured according to this annex, $L_{\text{urban, ASEP}}$ shall be calculated as follows:

(a) Calculate $a_{\text{wot, test, ASEP}}$ using acceleration calculation from paragraph 3.1.2.1.2.1. or 3.1.2.1.2.2. of Annex 3 to this Regulation, as applicable;

(b) Determine the vehicle speed ($v_{\text{BB, ASEP}}$) at BB during the $L_{\text{wot, ASEP}}$ test;

(c) Calculate $k_{P, ASEP}$ as follows:

$$k_{P, ASEP} = 1 - \frac{a_{\text{urban}}}{a_{\text{wot, test, ASEP}}}$$

Test results where $a_{\text{wot, test, ASEP}}$ are less than a_{urban} shall be disregarded.

(d) Calculate $L_{\text{urban, measured, ASEP}}$ as follows:

$$L_{\text{urban, measured, ASEP}} = L_{\text{wot, ASEP}} - k_{P, ASEP} \cdot (L_{\text{wot, ASEP}} - L_{\text{crs}})$$

For further calculation, use the L_{urban} from Annex 3 to this Regulation without rounding, including the digit after the decimal ($xx.x$).

(e) Calculate $L_{\text{urban, normalized, ASEP}}$ as follows:

$$L_{\text{urban, normalized, ASEP}} = L_{\text{urban, measured, ASEP}} - L_{\text{urban}}$$

(f) Calculate $L_{\text{urban, ASEP}}$ as follows:

$$L_{\text{urban, ASEP}} = L_{\text{urban, normalized, ASEP}} - (0.15 \cdot \left(v_{\text{BB, ASEP}} - 50 \right))$$

(g) Compliance with limits:

$L_{\text{urban, ASEP}}$ shall be less than or equal to 3.0 dB(A).
Annex 7 – Appendix 1

Statement of compliance with the additional sound emission provisions

(Maximum format: A4 (210 x 297 mm))

.......................... (Name of manufacturer) attests that vehicles of this type (type with regard to its sound emission pursuant to Regulation No. 51) comply with the requirements of paragraph 6.2.3. of Regulation No. 51.

.......................... (Name of manufacturer) makes this statement in good faith, after having performed an appropriate evaluation of the sound emission performance of the vehicles.

Date: ..

Name of authorized representative: ...

Signature of authorized representative:
Figure 1
Flowchart for the assessment concept for ASEP according to Annex 7

Annex 7 – Appendix 2

ASEP Annex 7

Statement of Compliance or Test

Manufacturer Statement of Compliance

Perform Type Approval Test according to Annex 3; Report $L_{w0',n_{ref},n_{bb},V_{w0',n_{bb},w0}}$

Establish Test Conditions According to Paragraphs 2.1. and 2.2.

Perform ASEP Tests Within the Control Range According to Paragraphs 2.3. to 2.5.

Assessment According to Paragraphs 3. "Slope-Assessment"

Select Analysis Method

Assessment According to Paragraph 4. "L_{urban}-Assessment"

Evaluation According to Paragraph 5. "Reference Sound Assessment"

Manufacturer Statement of Compliance Based on the ASEP Tests
Figure 2
Flowchart for the vehicle sound assessment according to Annex 7, paragraph 5. "Reference sound assessment"

1. ASEP - Annex 7 (Paragraph 5.) "Reference Sound Assessment"
2. Test or Calculation?
 - Test:
 1. Determine the target speed according to paragraph 5.1.2.
 2. Determine the correct gear α as given in paragraph 5.2.
 3. Perform test and report the maximum sound level.
 - Calculation:
 1. Determine the correct gear α as given in paragraph 5.2.
 2. Determine $n_{\text{ref,}\alpha}$ for specified gear according to 5.3.1.
 3. Take or determine slope α for gear α according to paragraphs 2.4., 3.1. up to 3.2.2.
 4. Calculate sound level according to paragraph 5.3.2.
3. Sound level \leq Limit?
 - Yes: Vehicle Compliant with provisions of the "Reference Sound Assessment"
 - No: Vehicle NON-Compliant with provisions of the "Reference Sound Assessment"
Figure 3
Flowchart for the determination of the individual test points P_j according to Annex 7, paragraph 2. "Measurement method"

1. Choose lowest gear (e.g. first gear)

 - Gear $\kappa \leq i$
 - Move on to Paragraph 3. "Slope-Assessment" or Paragraph 4. "Lurban-Assessment"

 - Test P1
 - Target: $V_{AA} = 20 \text{ km/h}$ (or 25, 30, … km/h)
 - $a_{ASEP,not} \leq 5 \text{ m/s}^2$
 - YES
 - $n_{BB} \leq n_{BB,ASEP}$ or $v_{BB} \leq 80 \text{ km/h}$
 - YES
 - Lowest valid gear
 - Test P4
 - Target: 80 km/h or $n_{BB,ASEP}$
 - YES
 - $a_{ASEP,not} \leq 5 \text{ m/s}^2$
 - YES
 - Test P2 and P3
 - Target calculated using P1 and P4 measurement
 - $a_{ASEP,not} \leq 5 \text{ m/s}^2$
 - NO
 - Non Valid Gear
 - YES
 - Valid Gear κ, report data for P_1 to P_4
 - NO
 - Non Valid Gear
 - NO
 - Select next higher gear
II. Justification

1. In order to propose a testing procedure, which is more consistent and clearly defined, the following technical modifications and extensions were introduced.

1.1. New definitions for Annex 7, which are also applicable for Annex 3:

(a) Definitions for gear, gear ratio, geari and geari+1 were added for clarity;

(b) The missing definition for mode was added and taken over from the first part of Global Technical Regulation No. 15;

(c) Definitions for "Stable" and "Unstable" accelerations were introduced to avoid ambiguity.

1.2. The ambiguous principle of target speed 70 or 80 km/h was replaced by:

(a) 80 km/h target speed (depending on nBB_ASEP) for locked transmission for the lowest valid gear and non-locked transmission, to make sure that, at the lowest gear, the vehicle is tested closest to the requested maximum engine speed;

(b) 70 km/h target speed was considered for all gears other than the lowest, as none of the higher gears can provide the maximum engine speeds higher than those achieved in the lowest gear.

1.3. Paragraph 2.4. was deleted. Its first part was moved to paragraph 2.3., as it contains the requirements for the control range. The second part was moved to paragraph 2.5.1., as it deals with the testing of the vehicle.

1.4. For the slope assessment, the "slopeκ < 0 on non-locked automatic transmission, the selected transmission setup not valid" was enhanced by the provision that, in this case, the Lurban-assessment shall be used. Otherwise, it would not be clear what should happen in this situation.

1.5. The paragraph was deleted. Its content was moved to paragraph 3., as it belonged to the slope assessment, which is now totally covered under paragraph 3.

1.6. In order to uniform the limit concept extra margin (limit value - Lurban of Annex 3) for "silent vehicle" defined in the slope assessment method for vehicles with locked transmission, this concept was also applied to vehicles with non-locked transmission and for the Lurban-assessment.

1.7. In order to be technology neutral and to respect the rapid changes in technology towards high gear number transmissions, an additional condition to determine the gear to be tested was introduced for reference sound assessment for automatic transmission tested in locked position with 6 or more gears. An acceleration of 1.9 m/s² was defined from 50 km/h at AA to 61 km/h at BB + 5 m length vehicle to reflect the typical type approval condition under the 02 series of amendments to Regulation No. 51.

1.8. The missing limits from the 02 series of amendments to Regulation No. 51 in the reference sound assessment were introduced:

(a) For N₁ vehicles, the limits of the 02 series of amendments to Regulation No. 51 were overtaken and +2 dB(A) added, using the same principle already defined in the reference sound assessment for vehicles of category M₁; for a category/sub-category, limit reference assessment equal to limit in the 02 series of amendments to Regulation No. 51 + 2 dB(A);

(b) The tolerances of the 02 series of amendments to Regulation No. 51 for direct injection diesel and off-road vehicles.
1.9. The part on "L_{urban} - assessment" was moved before the reference sound assessment, to have the right order of assessment.

1.10. The conditions for direct measurement and simulation were separated and precised.

1.11. Speed normalization \(0.15 \times (V_{BB_{ASEP}} - 50)\) was moved from \(L_{urban_{ASEP}}\) to \(L_{urban_{normalized}}\) and \(L_{urban_{ASEP}}\) was renamed \(\Delta L_{urban_{ASEP}}\).

1.12. Flowcharts were introduced.

2. To facilitate reading and understanding, the text was re-structured.

2.1. Some paragraphs were renumbered.

2.2. The sentences of paragraph 2.4. were moved to paragraphs 2.3. and 2.5.1.

2.3. Some sentences were moved inside their parts.

2.4. The reference assessment part was moved after the \(L_{urban}\) assessment part.

2.5. The titles of several parts were changed.

3. In order to avoid misunderstanding and confusion which may induce different interpretations of application, the text was clarified.

3.1. Editorial corrections were introduced ("measuring" replaced by "measurement", "gear box" instead of "transmission", etc.)

3.2. References to paragraphs in the main body, Annex 3 and Annex 7 were introduced.

3.3. Some explanations, notes and words were modified or introduced.

3.4. The test conditions of Annex 7 compared to Annex 3 (track, environmental conditions, etc.) were made precise in order to take into account practical situations. A note was introduced.

3.5. It was highlighted that "the gear ratio is valid if all four points and the anchor point meet the specifications of paragraph 2.3./boundary conditions".

3.6. Tolerances for speed were applied on each test point (P1, P2, P3 and P4) and a tolerance for engine was introduced.

3.7. Clarification was made about the non-locked automatic transmission where \(n_{BB_{ASEP}}\) is exceeded during the test.

3.8. A table for valid gears was introduced in Annex 7 regarding the Annex 3 gear selection.

3.9. In case of non-locked automatic transmission where \(n_{BB_{ASEP}}\) is exceeded during the test, additional measures were indicated to take into account some cases.

3.10. Processing of the sound pressure level of both sides was added.

3.11. The vehicle speed at PP and round rules were added.

3.12. The anchor point’s level, engine speed and speed was clarified in relation to Annex 3 results.

3.13. For the reference sound assessment, gear \(\alpha\) was introduced instead of \(\kappa\) to avoid confusion with the slope assessment.