Implementation of RFID Technology in Traffic Signs Database Inventory

Road Management Systems – Traffic Signs Maintenance

Marija Ferko
Table of Contents

• Introduction
• Traffic Signs Database Inventory
• About RFID Technology
• How the System Works
• Field Research
• Conclusions
Introduction

• The optimization of the road infrastructure management can lead to the decrease of road fatalities and accidents
• Having the updated inventory of traffic signs can be important factor to ensure road safety
• Today, many technologies are used in traffic and transport system, such as VIP or RFID
• Reduction in the number of road deaths in EU28 2011-2015 and valuation at 2015 prices and value, together with the additional savings

Data source: RANKING EU PROGRESS ON ROAD SAFETY, 10th Road Safety Performance Index Report, June 2016 (ETSC)
Traffic Signs Database Inventory

• Online traffic signs database

 o Easy and quick access for all end users
 o Contains information about each traffic sign, including their GPS location
 o Easy updating by using RFID technology (by driving on the road) – synchronization of the database and real-time information

• Benefits

 o Optimization of road maintenance activities
 o Optimization of road maintenance patrol schedule
 o New info generated by maintenance patrol
 o Useful in legal disputes
Traffic Signs Database Inventory

• Online traffic signs database contains information about each traffic sign:
 • Road / Road section
 • Sign code
 • Dimension
 • GPS location
 • Chainages
 • Photography
 • Retroreflection coefficient
 • Material class
 • Year of production
 • Manufacturer
 • Position relative to the road direction
 • Way of setting
 • Other remarks
 • Etc.
- Traffic signs database developed by Department of Traffic Signalization
About RFID Technology

• **Radio Frequency Identification**
• Have been used for vehicle tracking
• Advantages:
 – Low-cost, low power device
 – Less complicated algorithms than those used in VIP technology

• Components:
 • Tags / transponders
 • Passive
 • Active
 • Reader
 • Antennas
About RFID Technology

• An example of RFID system with testing during the drive
About RFID Technology

• An example of RFID system with testing during the drive
How the system works?

- Collecting data about each sign
- Installation of RFID tags on each sign
- Sign condition assessment
- Central online database
- Vehicle equipped with RFID reader and antenna and portable PC
- Road management
- Maintenance activities and maintenance patrol schedule
Field Research

• 6 tests were done with different combination of various antennas
• Testing various tag types and positioning
<table>
<thead>
<tr>
<th>ID</th>
<th>Test 1 A1 L 45º</th>
<th>Test 2 A1 L 0º</th>
<th>Test 3 A1 L 10º</th>
<th>Test 4 A1 K 90º</th>
<th>Test 5 A1 K 0º</th>
<th>Test 6 A4 K car</th>
<th>Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>102</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10E</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>114</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>116</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>119</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>120</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>106</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Uk.</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>% 55% 40% 55% 55% 80% 80% 40% 40% 50% 35% 45% 45% 40% 35% 40% 75% 70% 90% 20% 100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Field research results
• Looking for an optimal:

 - Distance (reading range)
 - Placing of the tag on the sign
 - Antenna angle
 - Antenna polarization type
 - Vehicle speed
Conclusions

• To improve road traffic safety and road management system, it is necessary to regularly maintain road infrastructure.

• Traffic signs database with data updating via RFID can be simple and efficient tool for an overview of all the signs on each road, and also for maintenance activities schedule.

• RFID technology is relatively cheap and simple to use to collect data on traffic signs or update online data base.
Thank you for your attention!

Questions?