„Integrative tools and solutions in urban and regional public transport” – from the perspective of Budapest

János MONIGL
Chief engineer for transportation system planning at FÖMTERV Ltd
Private professor at TU Budapest – Transportation Faculty

Conference on „Rethinking sustainable transport and mobility to meet the challenges of a new era”
by the United Nations – Economic Comission for Europe – ITC
(Palais des Nations)

Deciding changes in the last decades

- Disappearing of the big state owned companies – rising of new more „disperse” activities: SMEs, banks, insurances,
- Declining in public transport usage, worsening quality of services
- Opening the market of cars – increasing motorisation and car usage, congestions in the dense urban areas
- Environmental problems – sensibility at the population – more cycling and “sustainability” by civil organisations
- Changes in the transport policy – improving accessibility by pushing to more environ-friendly modes; helping seamless travel by better intermodality
- Seeking for new tools and solutions (“push and pull” measures: e.g. make more attractive PT (beside of renewal the fleet e.g. coordination of urban and regional services (transport association), e-payment, etc.) & car access fee?
Budapest – bird-ey-view – inner city area
Overloaded inner city – liveability deficit

Reasons: high activity density, missing ring roads, increasing car traffic
Budapest – Modal use of groups (~60:40) > shifts to car?

A budapesti lakossági csoportok módválasztási arányai (%)

Főváros és környéke célforgalmi háztartásfelvétel 2004

Groups by: car ownership of HHs; activity status of persons; monthly pass availability
Budapest – border crossing trips (~40:60)
Some possible policies, measures, developments

- Promoting sustainable life and mobility
- Reduction social (internal- & external-) costs
- Influencing transport modal use and shares (better PT, more cycling)

Making public transport more attractive:
- Extention of track-bound modes
- Renewal of vehicle fleet
- PT assotion & integrated fare system
- Applying electronic payment system

Restricting road traffic conditions:
- Calming measures, stricter parking
- Adopting good city logistic solutions
- Amending ring network elements
- Introducing access fee in inner area
Area: Budapest (~ 1.7 Million IHs) ~180 other settlements (~1.4 Million IHs)
Main operators: Budapest Transport Co (BKV); Hungarian Rail (MÁV-Start); Volánbusz
Commuting purpose and mode use
Actor and regulation model frame for PT

Legal framework

Regional government

Local governments

Association

Operon 1

Operon 2...

Citizens

Passengers

Election

publicly owned

Contract

(requirements, subsidies, …)

privately owned

Network

Service

Fares

Operators

Subsidies

Association: Shared service provision responsibilities – Coordinated services – Integrated fare system – Common subsidising!!! – Intermodal developments
Integrated tariff and e-payment system

Important aspects:
Technical and security requirements
Coverage for all transport groups (+car users)
Co-operative urban and regional systems (isle?)
Feasible and robust technical solutions
Sufficient central and back office system
Easy and multi-point access to fare media
Demand fitting new fare products
Passenger help-centres
Data for travel & service processes & revenues
e-Card: as important data generator

- Public service contracting
- Cost subsidising
- Supply
- Costs
- Fares
- Fare setting
- Other applications
- Passenger info
- Traffic control
- Demand (Passengers)
- Revenues
- Taxation
- Fare subsidising

Revenues
Fares
Demand (Passengers)
Supply
Costs
Public service contracting
Cost subsidising
Fare setting
Other applications
Changes of car traffic because access fee

Acces fee for screen line crossing - realetd to PT-single ticket price (~ 1,5?)
Integrated think-way in transport planning!!!

<table>
<thead>
<tr>
<th>Analysis > Development target groups</th>
<th>Development tools and measures (Examples)</th>
<th>Development impacts (indicators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Improve travel condit. by mode and area different</td>
<td></td>
<td>- Investment costs</td>
</tr>
<tr>
<td>- Minimise environmental intrusion and damages</td>
<td>- Reconstr. transp..infrastr.</td>
<td>- Operation costs</td>
</tr>
<tr>
<td>- Enhance accessibility and development chances</td>
<td>- Renewing vehicle fleet</td>
<td>- Modal share!</td>
</tr>
<tr>
<td>- Ensure maximal econ. and social efficiency</td>
<td>- Unifying fare system</td>
<td>- Transport time costs</td>
</tr>
<tr>
<td>- Keep transport financeable</td>
<td>- Coordinating urban & regional services</td>
<td>- Transport user costs</td>
</tr>
<tr>
<td></td>
<td>- Introducing e-ticketing</td>
<td>- Accident costs</td>
</tr>
<tr>
<td></td>
<td>- Implementing passenger information system</td>
<td>- Air pollution</td>
</tr>
<tr>
<td></td>
<td>- Applying city access fee</td>
<td>- Noise</td>
</tr>
<tr>
<td></td>
<td>- Construct transp.infrastr.</td>
<td>- Accesibilities!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Location potentials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Efficiency (CBA,MCA)</td>
</tr>
</tbody>
</table>
Many thanks for your attention!