concawe

CONCAWE Project Update: Heavy Fuel Oil (UN 3082) air emissions and worker exposure during barge loading

Jan Urbanus (Shell) for Concawe
ADN Safety Committee
28 Aug. 2013

Presentation contents

- 1. Project background
- 2. Theoretical considerations
- 3. Preliminary results from laboratory study
- 4. Planned field work
- 5. Timeline for project completion

Note: Contents of this presentation represent 'work-in-progress' and should not be cited or relied upon for any action

Project background

- Re-classification of Heavy Fuels Oils of category UN 3082 for environmental effects in 2010 led to introduction of the requirement that the gas/air mixture shall be returned ashore through a gas recovery or compensation pipe during loading operations.
- All HFO's are classified for human health effects as carcinogenic, mutagenic and toxic to reproduction
 - These effects have been observed in whole-product studies and are attributed mainly to 4-6 ring polycyclic aromatic compounds (PAC's)
- Vapours released from HFO and resulting worker inhalation exposures have not widely been studied
 - But are assumed to be low-level
 - And not to contain significant quantities of the key PAC's
- These assumptions are being tested in a 2013 project funded by CONCAWE and with results for discussion by the ADN Safety Committee

The nature of Heavy Fuel Oils (UN 3082)

- HFO's are substances produced in refineries and depots to a product specification such as viscosity
- Desired viscosity achieved by a combination of components and storage/handling temperature (typically 70-90 °C)
 - Typical loading temperature up to 80 °C.
- Product constituents boil at different temperatures:
 - Typical 'boiling point distribution': 5% of product boils off at 265 °C (carbon number C_{14}), 90% boils off at 715 °C (carbon number C_{98}) data from Concawe report 12/7 (2012)
- Emissions to air, and worker inhalation exposure, are determined by vapour pressure of product
 - Varies between products mainly due to presence of lighter ('gas oil-like') components used as cutter stocks
 - Some of the vapour emitted at elevated temperature during loading will condense to mist in ambient air

Theoretical considerations

Commissioned a desk top study from an environmental consultant

- Using models recommended by Concawe; UK Environment Agency; and US Environmental Protection Agency
- Calculated 10-20 grams/tonne loaded product at 80 °C
- Equates to 130-260 kg of emission when loading a large 13,000 tons barge over 10 hours
 - Although typical barges hold 3,000 6,000 tons

Preliminary results laboratory study

Concawe contracted the Fraunhofer Institute for Toxicology and Environmental Medicine (Prof. Wolfgang Koch) to:

- Set up a laboratory system to simulate vapour emission from the surface of heated HFO in bunkers during barge loading (using a real product at its standard operational temperature)
- Collect the vapour (by condensation) to study composition and biological activity
- Support Concawe member companies in field studies of emissions and worker exposures

Note: the principles applied are based on similar studies on bitumen conducted by Fraunhofer ITEM which were published in the scientific literature

Boiling point distribution of 2 HFO bulk samples

Set-up to generate and collect vapours from HFO

CONCAWE Boiling point distributions of HFO bulk and vapour (3 tests)

Some initial HFO vapour data from the laboratory

Sample HFO PA, held at 90 °C (worst case):

- Boiling point range (5-95%): 150 260 °C
 - For comparison, kerosine boils over 90 − 320 °C; diesel fuel boils over 140 − 500 °C
- Tested fluorescence at 415 nm calibrated against Diphenyl anthracene
 - Indicative of overall PAC content
 - Vapour sample 1600 times less fluorescence than bulk sample
- Further HFO samples from other sources will be studied
 - Fluorescence
 - Chemical composition
 - Modified Ames test to characterise mutagenicity (and carcinogenicity potential)

Planned field studies at HFO barge loading jetties

- Static air sampling near central vent on barge
- Personal sampling on crew member who monitors loading
- Personal sampling of jetty operator during loading (connection/disconnection of hose), product sampling, jetty supervision
- Analytical strategy aimed at comparing field data with lab generated vapour – based on same products and temperature in lab and in field
- Air Sampler designed to collect <u>vapour and mist in the same way as a person breathes in air</u>

Air sampler used for HFO vapour/mist collection

Timeline to complete study

- Field work scheduled for July October
 - Attempts in July/August in Rotterdam and Hamburg areas not successful due to last-minute barge loading changes
 - Next survey scheduled for Vlissingen (NL), w/c 29th August
- Laboratory work was started in April, to continue until November
- Data interpretation, report writing in Q4/2013
- Next presentation to ADN Safety Committee in January 2014

Thank you for your attention!

Questions?