THE SAFETY BELT PROBLEM IN BUS ROLLOVER ACCIDENT

How to prevent the ejection of passengers?

(Explanation to informal document GRSG-103-04)

Presented by
Dr. MATOLCSY, Mátyás
Hungarian delegate

103rd GRSG meeting
Geneva, October, 2012
SAFETY BELT

• Safety belt was developed to prevent projection in frontal collision.
• The coach seats have to be equipped with safety belts.
• It was thought that in rollover the safety belt also prevents:
 ▪ both projection and ejection.
 ▪ both partial and total ejection.
• 2 pts belt (airplane) and 3 pts belt was proposed and discussed.
• Questions:
 – what about the standing passengers? (Class II)
 – how to make sure the obligatory use of the safety belt during a long journey?
 – is the safety belt really effective in rollover?
 – does safety belt have disadvantages?
SAFETY BELT

Quasi static and dynamic tilting tests were carried out in Hungary (AUTOKUT):

- to study the effectiveness of safety belt in rollover
- to compare the 2 pts and 3 pts belts
- to compare the behaviour of 50% male Hybrid III dummy and real passenger (human body), approximately with the same size
- to study (measure) the releasing force of safety belt after the tilting test, when the belt is loaded
- to study the possible disadvantage of the safety belt in rollover
SAFETY BELT

- strong, steel tilting frame
- real coach seat with 2 pts and 3 pts safety belt installation
- for safety reason the seat was shifted ~ 300 mm away from the „theoretical side wall”
- first the tilting frame was slowly rotated (quasi static motion) and reaching the equilibrium position it rotates quickly (dynamic motion) until reaching the ground
SAFETY BELT

Three tilting positions

Dummy with 3 pts belt

\[\alpha = 20^\circ \]

\[\alpha = 25^\circ \]

\[\alpha = 30^\circ \]
SAFETY BELT

Three tilting positions

Dummy with 2 pts belt

$\alpha = 20^\circ$

$\alpha = 25^\circ$

$\alpha = 30^\circ$
SAFETY BELT

Three tilting positions

Human body with 2 pts belt

\[\alpha = 20^\circ \]

\[\alpha = 25^\circ \]

\[\alpha = 30^\circ \]

It is impossible to be sitting on the seat without strong grasping, even at \(\alpha = 20^\circ \)
Comparing the 3 tests

The dummy can not simulate the real passenger motion and behaviour

The dummy is too rigid in crosswise direction
SAFETY BELT

How to release the safety belt

Dummy with 3 pts

a) The dummy is hanging on the seat belt, only its feet are touching the ground

b) Trying to release the safety belt through a force transducer (380 N)

c) The dummy fell out from the seat after releasing the belt
SAFETY BELT

Comparing 3 pts and 2 pts belts with dummy, in final position

3 pts belt, dummy is hanging on the belt
(Belt releasing force: 380 N)

2 pts belt, dummy is hanging on the belt, but its head and arms are supported by the ground.
(Belt releasing force: 310 N)

Empty seat in normal position, belt releasing force: 29 N
SAFETY BELT

Just a notion, an estimation about the passenger’s position

- think about 4 passengers in one row of seats
- consider panic after a rollover
- in case of a fire, there are only 3-5 minutes to evacuate the bus
- are the safety belts really „safe” in rollover?
SAFETY BELT

VOLVO rollover test

Starting (original) position Final position after 3¼ rotations
MAIN CONCLUSIONS

• Safety belt can not solve the partial ejection (neither 3 pts nor 2 pts belt)

• If the bus is lying on its side or standing on its roof, the belted passengers are hanging on the belt and it is impossible to release the safety belt.

• The Hybrid III. dummies are not appropriate to simulate the human body’s behaviour in rollover (neither in test, nor in computer simulation), They are very rigid in cross-wise direction.