APROSYS
Car to pole side impact activities

Ton Versmissen
TNO
The Netherlands
Content

• APROSYS project
• Side impact activities
• Car to pole side impact
 – Full scale test
 – Numerical simulations
 – Main conclusions
Content

• APROSYS project
• Side impact activities
• Car to pole side impact
 – Full scale test
 – Numerical simulations
 – Main conclusions
APROSY / Main goal

To improve passive safety for all European road users in all relevant accident types and accident severities.
APROSY'S Motivation

- Need to reduce European road casualty problem
- EUCAR Masterplan 2000: “Safety in road traffic stays a top priority for the automotive industry”
- White Paper for Transport: “50% reduction in number of fatalities in next decade”
- Roadmap of Future Automotive Passive Safety Technology Development (APSN)
Project name:
Advanced Protection Systems - APROSYS

Coordinator:
TNO

Consortium:
48 partners (OEM, Suppliers, RTDs, Universities)

Core group members & sub project leaders:
- Daimler
- Renault
- FIAT
- Continental
- TNO
- CIDAUT
- TRL
- TUG
- INRETS
- Altair
- Volkswagen
- CIC

Starting Date:
01 April 2004

Ending Date:
30 March 2009

Budget Total / Funding:
30 MEURO / 18 MEURO
Project “Statistics” (at start)

- 47 APROSYS consortium partners
 - 7 car manufacturers (DC, Regienov, PSA, FIAT, VW, Skoda, Toyota-Europe), 11 suppliers (Siemens, Faurecia, etc.), 13 universities and 14 research institutes
- 12 EU countries
General project objectives

1. New injury criteria and injury tolerances
2. New mathematical models of the human body
3. New world-wide harmonized crash dummy
4. New knowledge and tools for intelligent safety systems
5. Enhancement of virtual testing technology
6. New test methods (for advanced safety systems)
7. Advanced protection systems
GRSP / PSI meeting / Brussels / March 3rd, 2011

APROSYS objectives linked to the 10 Main Results

MR 1:
New human body mathematical models

MR 2:
WorldSID 5th percentile female dummy for side impact

MR 3:
Side impact protection system for car occupants

MR 4:
Generic assessment methodology for advanced safety systems

MR 5:
Generic car mathematical models

MR 6:
Virtual testing methodology

MR 7:
Test methods for vulnerable road users

MR 8:
Full width frontal test for Europe

MR 9:
New side impact test methods

MR 10:
New protection systems for vulnerable road users
Main Result 9:
Advanced side impact test method
Content

• APROSYS project
• Side impact activities
• Car to pole side impact
 – Full scale test
 – Numerical simulations
 – Main conclusions
Side impact / Background

- In Europe ~10,000 car occupant fatalities in side impact crashes annually
- At 2005 ESV conference a 4 part draft test procedure was published by IHRA
 - Car to car test / AE-MDB
 - Car to narrow objects (car to pole)
 - Free motion headform tests
 - Side Out Of Position
- Further development of proposed procedures and evaluation of applicability for Europe
Side impact / Activities

Multi vehicle lateral crashes
- AE-MDB development
 - Car to car / AE-MDB tests
 - LCW calibration tests
- AE-MBD / IIHS barrier comparison
- ES2/WorldSID 50th/WorldSID 5th
- Supporting simulation activities

Car to narrow object crashes
- Oblique / perpendicular impacts
- Euro NCAP <> NPRM 214
- Full scale tests / numerical studies
- Velocity / angle / impact location / pole
- Effect of ESC (literature review)

Head protection
- Update of EEVC WG13 protocol
- FMH tests and feasibility checks
- Definition of impact angle
- Selection of impact locations
- Reproducibility

Side Out of position
- Based on IHRA / TWG proposal
- Focus on European situation
- Hybrid-III 3yo, 6yo, SIDIIIs
- Additional tests with CRS
Side impact / Main Findings

Multi vehicle lateral crashes
- Updated test protocol
 - V3 improvement of V2
 - V3.9 representative for c2c
 - More severe as ECE R95
- ES-2 / WorldSID50th/WorldSID 5th
 - Test information available
 - Waiting for injury criteria

Car to narrow object crashes
- Euro NCAP & NPRM 214 possible
- Preference for perpendicular test
 - Dummy>> oblique loading
- Oblique possible for harmonization
- ESC: significant effect on number

Head protection
- Updated protocol / flowchart
- Good reproducibility
- Evaluation workshop scheduled

Side Out of position
- No need in Europe (yet ?!?)
- Sub-set TWG scenario’s feasible in EU
- Change to type approval regulation
- Booster seats included
Content

• APROSYS project
• Side impact activities
• Car to pole side impact
 – Full scale test
 – Numerical simulations
 – Main results
 – Conclusions
Car to pole tests / Introduction

• Full scale tests
 – Feasibility / practicality NPRM 214 car to pole
 – ES-2 / WorldSID 50th
 – Impact location variation

• Simulation study
 – Test parameter variations
Car to pole tests / Test program

<table>
<thead>
<tr>
<th>Subaru Legacy</th>
<th>Test S1</th>
<th>Test S2</th>
<th>Test S3</th>
<th>Test S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle/speed</td>
<td>75° / 32 km/h</td>
<td>90° / 32 km/h</td>
<td>75° / 32 km/h</td>
<td>90° / 29 km/h</td>
</tr>
<tr>
<td>impact location</td>
<td>NPRM-214</td>
<td>Euro NCAP</td>
<td>NPRM-214</td>
<td>Euro NCAP</td>
</tr>
<tr>
<td>dummy</td>
<td>WorldSID 50%</td>
<td>WorldSID 50%</td>
<td>ES-2</td>
<td>ES-2</td>
</tr>
<tr>
<td>project</td>
<td>APROSYS</td>
<td>APROSYS</td>
<td>APROSYS</td>
<td>APROSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toyota Avensis</th>
<th>Test T1</th>
<th>Test T2</th>
<th>Test T3</th>
<th>Test T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle/speed</td>
<td>75° / 32 km/h</td>
<td>75° / 32 km/h</td>
<td>75° / 32 km/h</td>
<td>90° / 29 km/h</td>
</tr>
<tr>
<td>impact location</td>
<td>NPRM-214</td>
<td>NPRM 214</td>
<td>Euro NCAP</td>
<td>Euro NCAP</td>
</tr>
<tr>
<td>project</td>
<td>APROSYS</td>
<td>APROSYS/DOTARS</td>
<td>APROSYS</td>
<td>APROSYS</td>
</tr>
</tbody>
</table>

APROSYs
<table>
<thead>
<tr>
<th>Pole diameter</th>
<th>254 ± 6 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole height</td>
<td>Bottom no more than 102 mm above the lowest point of the tires. Top extended above the highest point of the vehicle</td>
</tr>
</tbody>
</table>
| Test velocity | APROSYS / NPRM-214 32 ± 0.5 km/h
Euro NCAP / FMVSS-201 29 ± 0.5 |
| Angle of impact | APROSYS / NPRM-214 75 ± 3 °
Euro NCAP / FMVSS-201 90 ± 3 ° |
| Impact location | APROSYS / NPRM-214 On a reference line on the vehicle where the vehicle side wall intersects with a vertical plane passing the head COG of the seated driver dummy at an angle of 75° from the vehicle’s X-axis.
Euro NCAP / FMVSS-201 On a reference line on the striking side of the vehicle where a transverse vertical plane passes through the COG of the head of the seated dummy. |
| Impact location accuracy | ± 20 mm | all tests |
| Vehicle preparation | According to the Euro NCAP Pole protocol V4.1 April 2004 |
| Seat and dummy position | WorldSID
Euro NCAP / FMVSS-201 | According to UMTRI protocol:
• ATD_positioning_procedure.PDF
• ATD_positioning_templateV4.xls
According to Euro NCAP side impact protocol V4.1 |
Full scale test set-up (NPRM 214)
Full scale tests / Example (NPRM 214)
Car to pole / Simulation program

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle model</td>
<td>‘Generic’ model of a 4-doors passenger car (GCM3)</td>
</tr>
<tr>
<td>Impact angles θ [°]</td>
<td>90 (FMVSS-201) / 82.5 / 75 (NPRM-214)</td>
</tr>
<tr>
<td>Test velocities V [km/h]</td>
<td>29 (FMVSS-201) / 32 (NPRM-214) / 36</td>
</tr>
<tr>
<td>Impact point</td>
<td>-100, 0 and 100 mm shifted from specified, along vehicle for-aft axis</td>
</tr>
<tr>
<td>Pole diameters Φ [mm]</td>
<td>254 (NPRM-214) / 350 (ISO)</td>
</tr>
<tr>
<td>Dummy</td>
<td>ES-2 model (EEVC specification)</td>
</tr>
</tbody>
</table>

![Diagram of car to pole simulation](image)
Car to pole / Simulation example
Full scale test / results

<table>
<thead>
<tr>
<th>Subaru Legacy</th>
<th>Test S1</th>
<th>Test S2</th>
<th>Test S3</th>
<th>Test S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test ID</td>
<td>045106JI</td>
<td>O3QQ</td>
<td>PB31RZP</td>
<td>EA82RZP</td>
</tr>
<tr>
<td>Laboratory</td>
<td>IDIADA</td>
<td>TRL</td>
<td>Subaru</td>
<td>Subaru</td>
</tr>
<tr>
<td>Dummy</td>
<td>WorldSID</td>
<td>WorldSID</td>
<td>ES-2</td>
<td>ES-2</td>
</tr>
<tr>
<td>Test mass</td>
<td>1725 kg</td>
<td>1730 kg</td>
<td>1789 kg</td>
<td>1681 kg</td>
</tr>
<tr>
<td>Test angle</td>
<td>75°</td>
<td>90°</td>
<td>75°</td>
<td>90°</td>
</tr>
<tr>
<td>Test velocity</td>
<td>31.8 km/h</td>
<td>31.7 km/h</td>
<td>31.5 km/h</td>
<td>29.0 km/h</td>
</tr>
<tr>
<td>Impact accuracy</td>
<td>4 mm fore</td>
<td>8 mm aft</td>
<td>2 mm/*</td>
<td>6 mm/*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toyota Avensis</th>
<th>Test T1</th>
<th>Test T2</th>
<th>Test T3</th>
<th>Test T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test ID</td>
<td>F044703</td>
<td>F051701</td>
<td>14497</td>
<td>04NQ</td>
</tr>
<tr>
<td>Laboratory</td>
<td>TNO</td>
<td>TNO</td>
<td>Fiat</td>
<td>TRL</td>
</tr>
<tr>
<td>Test mass</td>
<td>1500 kg</td>
<td>1505 kg</td>
<td>1501 kg</td>
<td>1506 kg</td>
</tr>
<tr>
<td>Test angle</td>
<td>75°</td>
<td>75°</td>
<td>75°</td>
<td>90°</td>
</tr>
<tr>
<td>Test velocity</td>
<td>32.4 km/h</td>
<td>31.9 km/h</td>
<td>32.5 km/h</td>
<td>29 km/h</td>
</tr>
<tr>
<td>Impact accuracy</td>
<td>4 mm fore</td>
<td>7 mm fore</td>
<td>7 mm fore</td>
<td>14 mm aft</td>
</tr>
</tbody>
</table>
Full scale test / results

Subaru

S4

lower speed

Airbag:

Difference in airbag trigger time observed
Full scale test / results

Subaru

- Similar maximum deformations
- Small longitudinal shift

APROSYS - Subaru Legacy Pole Impact - Row D (TRL) and Row 3 (IDIADA)

- X Direction in Relation to the Badge Centre (mm)
- Distance from Centre Line of Vehicle (mm)

TRL Pre-Test

TRL Post Test Aligned with Pre-Test Badge

R-point position

IDIADA Pre Test

IDIADA Post-Test

Rear

Front
Full scale test / results

Toyota

T1 – T2

Repeatability

Airbag:
No significant differences in trigger timing
Full scale test / results

Toyota
- Small difference
- Test & vehicle variations
Full scale test / Summary of results

- General
 - No practical problems to carry out tests
- Dummies
 - Subaru results difficult to compare by variation in airbag timing
 - Repeatability of ES-2 tests is good
 - Changing impact location increased rib deflection values
 - NPRM-214 results in lower injury rib values and higher values for the other body regions
- Deformations
 - Toyota NPRM-214 tests quite similar
 - Maximum deformations of Subaru NPRM-214 and perpendicular test were about equal
Car to pole tests / Simulation results

Impact angle

V 32 kph
Pole 254 mm
X 0 mm
Car to pole tests / Simulation results

Impact Location

\[\begin{align*}
 V & = 32 \text{ kph} \\
 \phi & = 90^\circ \\
 \text{Pole} & = 254 \text{ mm}
\end{align*} \]
Car to pole tests / Simulation results

Pole diameter

- $v = 32$ kph
- $\phi = 90^\circ$
- $x = 0$ mm
Simulations / Summary of results

- Dummy injuries increase with higher impact velocity
- The 75° oblique test configuration results in higher dummy injury criteria values, for the abdomen and pelvis regions, compared to the perpendicular case
- The dummy injury values for the 75° oblique test configuration are approximately equivalent to those for a perpendicular test with the impact location contact point on the car shifted 100 mm forward.
- Pole diameter has only a minor effect on test results
- The study shows that a change in the airbag firing time from 16 msec to 40 - 50 ms can result in large changes in the dummy injury criteria of the order of those seen by changing the test configuration parameters.
Final conclusions

- Repeatability oblique tests
 - Toyota tests showed good repeatability
- Oblique vs perpendicular and impact location
 - Oblique needs test equipment modifications
 - ES2 and WorldSID more accurate in perpendicular loading
 - Impact location more important than impact angle
 - Perpendicular test to be preferable for Europe
 - However oblique test acceptable for international harmonisation
- Impact speed / Pole diameter
 - No need to alter the proposed speed of 32 km/h
 - No needs to change the current diameter of 254 mm
- WorldSID vs ES2
 - No significant problems with one of the dummies
 - Design changes needed for oblique loading (WorldSID ongoing)
More information

• Contact
 – Ton Versmissen / ton.versmissen@tno.nl

• Download
 – APROSYS deliverable D1.1.2A
 – www.aprosys.com/
Acknowledgments

- WP1.1 partners
 - BAST
 - Cellbond
 - CRF
 - FIAT
 - IDIADA
 - INSIA UPM
 - TK-P
 - TNO
 - Toyota
 - TRL
 - TUG
 - VW

- European Commission DG-TREN
- Test vehicles
 - Subaru
- Test and simulation results
 - Subaru
- Support / additional tests
 - DOTARS, Australian
 - RDW, the Netherlands