Polycarbonates

Plastic Glazing - Scratch and Abrasion Tests

IGPG Meeting in Hamburg
2011-06-14
Overview re Scratch and Abrasion Tests

Three different test kinds and their potential to assess real wear performance

- **Common used Abrasion Tests for Glass**
 - Taber Abrasion
 - Oscillating Sand
 - Sand Trickling (Falling Sand)

- **Derived from Real Abrasion Situations in a Vehicle Life**
 - Car Wash
 - Wiper Resistance
 - Sand Blast

- **Further Abrasion or Single Scratch Methods**
 - Scrub Resistance
 - Scratch Test
Overview re Scratch and Abrasion Tests

Three different test kinds and their potential to assess real wear performance

- **Common used Abrasion Tests for Glass**
 - Taber Abrasion
 - Oscillating Sand
 - Sand Trickling (Falling Sand)

- **Derived from Real Abrasion Situations in a Vehicle Life**
 - Car Wash
 - Wiper Resistance
 - Sand Blast

- **Further Abrasion or Single Scratch Methods**
 - Scrub Resistance
 - Scratch Test

Based on this methods it is difficult to select suitable rigid plastics for glazing due to:

- missing correlation to real wear and
- high standard deviation in the case of Taber
- no finished part testing possible for Taber and Oscillating Sand

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 3
Overview re Scratch and Abrasion Tests

Three different test kinds and their potential to assess real wear performance

Common used Abrasion Tests for Glass
- Taber Abrasion
- Oscillating Sand
- Sand Trickling (Falling Sand)

Based on this methods it is difficult to select suitable rigid plastics for glazing due to
- missing correlation to real wear and
- high standard deviation in the case of Taber
- no finished part testing possible for Taber and Oscillating Sand

Derived from Real Abrasion Situations in a Vehicle Life
- Car Wash
- Wiper Resistance
- Sand Blast

Based on this methods suitable rigid plastics systems can be selected for glazing due to
- close approximation to real wear conditions

Further Abrasion or Single Scratch Methods
- Scrub Resistance
 - several kinds using different abrasives like steel wool, sponges, felt, brushes, paper etc. exists, but no one comes closer to real wear than a modification using commercial rubber blades

- Scratch Test
 - several kinds like pencil hardness, Erichsen scratch tester, nano indentation etc. exists, but since it is difficult to quantify the effect of a single scratch on the drivers vision these test do not help qualifying a tested material
Overview re Scratch and Abrasion Tests for rigid plastic glazing

<table>
<thead>
<tr>
<th></th>
<th>Taber Abrasion</th>
<th>Oscillating Sand</th>
<th>Sand Trickling</th>
<th>Car Wash</th>
<th>Wiper Resistance</th>
<th>Sand Blast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Finished part testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Correlation to reality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Other features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low repeat- & reproducibility at least for plastics</td>
<td>no precision statement</td>
<td>reference sample needed</td>
<td>correlation to outdoor use proven</td>
<td>precision not yet investigated</td>
<td>precision not yet investigated</td>
</tr>
</tbody>
</table>

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 5
Options for plastic glazing

Options to ensure the selection of suitable surface protection systems for plastic glazing regarding abrasion:

OPTION 1
keep the Taber test for glass and plastic glazing
- despite the fact that it is not suited to assess abrasion resistance of plastics and
- despite the fact that it is far away from real wear for vehicles

OPTION 2
keep the Taber test for glass and substitute it for plastics with a common abrasion test
- that at least leads to the same selection than a realistic test does like sand trickling test

OPTION 3
keep the Taber test for glass and substitute it for plastics with a realistic test
- that is standardized like the car wash test

OPTION 4
keep the Taber test for glass and substitute it for plastics with more than one realistic test to check different / all kinds of wear situations
- e.g. car wash for all glazing locations and
- additionally a wiper test for glazing locations with a wiper system

OPTION 5
keep the Taber test for glass and substitute it for plastics with one realistic test and one common abrasion test
- that at least leads to the same selection like sand trickling test
- in order to use only standardized tests

Polycarbonates
Test TABER ABRASION

Standards and Regulation

- ASTM D 1044
- ISO 3537
- ECE R43
- ANSI Z26.1

Settings

- see test setup on the right side
- number of cycles 100, 500 and 1000
- specific conditions (like wheel specification, refacing procedure and surface cleaning) depending on the applied standard

Correlation to Real Use

Neither the tested abrasion nor the test plaques have a known correlation!

Test Setup and Procedure

1. rotating specimen holder
2. abrasive wheel CS 10F (hard particles in a resilient binder)
3. abraded track on the test plaque
4. 500g load
Test TABER ABRASION

Pros and Cons

- Standardized
- Used since decades for glass without issues during real usage
- Correlation to real wear unknown / not existing
- Can only be measured on test pieces not on actual glazing parts
- Repeatability & reproducibility in case of coated plastics limited
- Single source with not shared specifications for decisive abrasion wheels
- Correlation of hurdles to safety requirements?

Microscope Image of the Abrasive Action

Typical Taber cross scratch pattern

Typical Values for Different Sample

<table>
<thead>
<tr>
<th>Taber Abrasion Test</th>
<th>△ haze [%] *</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 10F wheels (Gen IV); 1000 Cycles</td>
<td></td>
</tr>
<tr>
<td>Laminated automotive glass</td>
<td>0.5 - 1.5</td>
</tr>
<tr>
<td>Siloxane based wet coats on PC</td>
<td>2 - 7</td>
</tr>
<tr>
<td>UV curable head lamp lense coatings on PC</td>
<td>5 - 7</td>
</tr>
<tr>
<td>Uncoated plastics</td>
<td>30 - 40</td>
</tr>
</tbody>
</table>

* Typical values usually obtained with this kind of coating
Test OSCILLATING SAND

Standards and Regulation

- ASTM F 735

Settings

- see test setup on the right side
- 300 strokes per minute of reciprocating motion of approx. 100-mm travel
- quartz silica sand graded 4/10
- specimens having both sides substantially plane and parallel

Correlation to Real Use

Neither the tested abrasion nor the test plaques have a known correlation!

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 9
Test OSCILLILLATING SAND

Pros and Cons

- **Pros**
 - Standardized (national standard)
 - Combination of scratches and surface erosion

- **Cons**
 - Correlation to real wear unknown / not existing
 - Can only be measured on test pieces not on actual glazing parts
 - Number of strokes to be decided according to ASTM „no justifiable statement can be made on the precision of the procedure“
 - Up to now not used to assess safety glazing

Typical Values for Different Sample

<table>
<thead>
<tr>
<th>Oscillating Sand Test</th>
<th>Δ haze [%]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1kg sand; 40 double strokes</td>
<td>< 1</td>
</tr>
<tr>
<td>Laminated automotive glass</td>
<td>3 - 6</td>
</tr>
<tr>
<td>Siloxane based wet coats on PC</td>
<td>5 - 11</td>
</tr>
<tr>
<td>UV curable head lamp lense coatings on PC</td>
<td></td>
</tr>
<tr>
<td>Uncoated plastics</td>
<td>ca. 35</td>
</tr>
</tbody>
</table>

* Typical values usually obtained with this kind of coating

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 10
Test SAND TRICKLING (Falling Sand)

Standards and Regulation
- DIN 52348
 (ASTM D 968 uses a similar setup)

Settings
- see test setup on the right side
- natural silica sand (grain fraction 0.5/0.71 mm)
- two reference samples with known base values are part of each test series

Correlation to Real Use
The tested abrasion has no obvious correlation while it is possible to use real parts for the test!

Test Setup and Procedure
1. rotating specimen holder (at an angle of 45° to the vertical)
2. reservoir with 3kg sand
3. part or test sample down pipe 1.65m long
4. Sketch from DIN 52348
Test SAND TRICKLING (Falling Sand)

Pros and Cons

- Standardized (national standard)
- Testing of samples cut out of actual glazing parts possible
- Correlation to real wear not known
- Distinction between different systems not possible
- Test result correction using reference samples necessary (see DIN 52348)
- Up to now not used to assess safety glazing

Typical Values for Different Sample

<table>
<thead>
<tr>
<th>Trickling Sand Test</th>
<th>(\Delta) haze [%] *</th>
</tr>
</thead>
<tbody>
<tr>
<td>3kg sand; height of fall 1650mm</td>
<td></td>
</tr>
<tr>
<td>Laminated automotive glass</td>
<td>3,5 - 5,0</td>
</tr>
<tr>
<td>Siloxane based wet coats on PC</td>
<td>3,5 - 6,0</td>
</tr>
<tr>
<td>UV curable head lamp lense coatings on PC</td>
<td>5,0 - 7,0</td>
</tr>
<tr>
<td>Uncoated plastics</td>
<td>ca. 40</td>
</tr>
</tbody>
</table>

* Typical values usually obtained with this kind of coating

Microscope Image of the Abrasive Action

Impact based wear / surface erosion

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 12
Test CAR WASH

Standards and Regulation
- ISO 20566

Settings
- see test setup on the right side
- gloss or haze determination after 10 washing operations (double strokes) with a penetration depth of the bristle of 100mm using quartz powder as artificial dirt

Correlation to Real Use
Tested abrasion is realistic and can be performed on finished / actual glazing parts!

Tested abrasion is realistic and can be performed on finished / actual glazing parts!

Test Setup and Procedure
1. sample holder moving back and forth
2. rotating brush using x-shaped, spliced PE bristles
3. test sample
4. “1,5g quartz powder per 1l tap water” sprayed with 2,2 l/min at 300 kPa

Sketch from ISO 20566
Test CAR WASH

Pros and Cons

- Standardized (international standard)
- Test is used to assess paint coatings in the automotive industry
- Realistic test since it is a minimized setup used to clean cars
- Correlation to outdoor use proven

Up to now not used to assess safety glazing

Microscope Image of the Abrasive Action

Typical Values for Different Sample

<table>
<thead>
<tr>
<th>Car Wash Test</th>
<th>Δ haze [%]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 double strokes; 1.5g sand per 1l water</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Δ haze [%] **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated automotive glass</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Siloxane based wet coats on PC</td>
<td>0.5 - 1.1</td>
</tr>
<tr>
<td>UV curable head lamp lens coatings on PC</td>
<td>2 - 6 **</td>
</tr>
<tr>
<td>Uncoated plastics</td>
<td>10 - 15</td>
</tr>
</tbody>
</table>

* typical values usually obtained with this kind of coating
** depending on the type of UV curable coating
Test WIPER RESISTANCE

Standards and Regulation

- New or a modification of ISO 11998 (scrub resistance) needed

Settings

- To be defined e.g.:
- Wiper blade with 20 g/cm load and 14 cm/s speed
- 5000 double strokes using sand according to ISO 12103

Correlation to Real Use

Tested abrasion is realistic and can be performed on actual glazing parts!

Test Setup and Procedure

1. Holder for a wiper blade moving back and forth
2. Commercially available wiper blade
3. Fixed test sample
4. Basin for testing under wet conditions / with dirt or
5. Brush to recover the sample with dirt

Polycarbonates
Test WIPER RESISTANCE

Pros and Cons

- realistic test since it is a minimized setup of an actual glass wiper
- correlation to outdoor
- not standardized (possible via modifying ISO 11998)
- detailed test conditions to be defined (dry, wet with or without dirt)
- real conditions might vary depending on the used wiper system

Typical Values for Different Sample

<table>
<thead>
<tr>
<th>Wiper Resistance Test</th>
<th>Δ haze [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000 double strokes; dry with dirt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Δ haze [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated automotive glass</td>
<td>ca. 3</td>
</tr>
<tr>
<td>Siloxane based wet coats on PC</td>
<td>ca. 3 **</td>
</tr>
<tr>
<td>UV curable head lamp lense coatings on PC</td>
<td>ca. 4,5</td>
</tr>
<tr>
<td>Uncoated plastics</td>
<td>ca. 13,5</td>
</tr>
</tbody>
</table>

* typical values usually obtained with this kind of coating
** depending on the type of siloxane coating

Microscope Image of the Abrasive Action

scratches & chatter marks on the surface

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 16
Test SAND BLAST

Standards and Regulation
- new or a modification of the sand spray test described in ECE R112 (used to assess head lamp lenses covers) needed

Settings
- see test setup on the right side
- amount of sand, flow rate and angle of incidence are decisive parameters
- sand with grit size 200 - 250 µm

Correlation to Real Use
Test is intended to simulate abrasion behavior of particles like sand in the airstream or sand drift and can be performed on real parts.

Test Setup and Procedure
1. sample holder (angle 45° to the airstream)
2. funnel with 3,5g sand trickling into the pipe / airstream
3. test sample (in an airstream of 35m/s flow rate with well mixed in sand particles)
4. vacuum exhauster generating airstream (flow rate detection after particle filter)
Test SAND BLAST

Pros and Cons

- **Pros**:
 - Intended to simulate abrasion of drifting sand during driving (compared to other tests here a high relative speed with low contact force of an abrasive particle against a sample is tested).

- **Cons**:
 - Not standardized (compared to ECE R112 sand spray test here a sand airstream is used instead of a water jet with sand).
 - Up to now not used to assess safety glazing.

Typical Values for Different Sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Δ haze [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated automotive glass</td>
<td>ca. 2</td>
</tr>
<tr>
<td>Siloxane based wet coats on PC</td>
<td>ca. 3</td>
</tr>
<tr>
<td>UV curable head lamp lense coatings on PC</td>
<td>4 - 8 **</td>
</tr>
<tr>
<td>Uncoated plastics</td>
<td>ca. 15</td>
</tr>
</tbody>
</table>

- **Sand blast test**
 - 3.5g sand; 35m/s flow rate; 45° angle

* Typical values usually obtained with this kind of coating
** Depending on the type of UV curable coating.
Taber abrasion vs. real wear

Comparison of two different coating systems on polycarbonate

- Siloxane based wet coat
- Nano-composite based wet coats

Nano-composite based wet coats on plastic substrates can get an ECE approval.

Siloxane based wet coats show better real wear performance.

BUT based on Taber the wrong system is selected due to missing correlation to real wear.

Car wash after 30 washing operations according to ISO 20566

Laboratory car wash

Polycarbonates
Taber abrasion vs. real wear

Sun et al. in *Tribology Letters*, Vol. 13, **2002**, 49 (Eastern Michigan University with a coauthor from Exatec)

4. Conclusion

In conclusion, the Taber test is a useful test method in many applications and industries. However, in interpreting the results, attention must be paid to ensure that the abrasion condition of the Taber test matches the real application condition of the tested material. We have shown that, due to its crossed-scratch abrasion pattern, the Taber test is an unsuitable test to characterize the abrasion characteristics of automotive windows. Furthermore, when it is used to test layered materials, damages, such as delamination and chipping, occur occasionally, and the standard deviation will be larger than for solid materials.

Severe damage occasionally happening due to

- cross-scratch abrasion and
- some times applying relatively high forces due to size and shape distribution of the hard particle embedded in the rubber of the wheels

both not realistic in this application since "...the scratch resistance of windows in their real application, where the windows mostly suffer from abrasion in one direction by small to medium forces, ..."
Precision of the oscillating sand method

ASTM F 735 version 1994

11. Precision and Bias

11.1 Precision—A round robin has been completed. However, only five (5) laboratories, rather than six (6) per Practice E 691 were used, because no others were found to exist. Data is currently under evaluation and a precision statement will be formulated.

11.2 Bias—No justifiable statement can be made on the bias of the procedure in Test Method F 735 for measuring abrasion, because there is no standard material.

ASTM F 735 version 2006

11. Precision and Bias

11.1 Precision—No justifiable statement can be made on the precision of the procedure in Test Method F 735 for measuring abrasion, because no standard material has been designated.

11.2 Bias—No justifiable statement can be made on the bias of the procedure in Test Method F 735 for measuring abrasion, because no standard material has been designated.
Real Test CAR WASH

- **Test scope:**
 resistance against car wash conditions

- **Test conditions:**
 - test plaques getting dirty during outdoor use in Lev & cleaned once a week in a car wash
 - X-shaped, spliced, PE bristle-containing brushes
 - no wax / cleaning agent

- **Test advantage / disadvantage**
 - realistic
 - not standardized
Comparison of real vs. laboratory car wash

- good correlation between real and laboratory car wash for coated Polycarbonate
- test according to ISO 20566 (laboratory car wash) is suitable to check real wear resistance of glazing parts against car wash conditions

Polycarbonates
Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 23
Wiper resistance

Background Information:
- standardized tests verify cleaning efficiency and durability of the wiper system etc.
- BUT not the resistance of the wiped glazing part
- practical experience as base for suitable test conditions is missing
- existing plastic glazing parts with wiper systems (e.g. windscreens of police cars with special permission or vehicles which can not exceed 40km/h) “mostly” use engineering options as solution (water is automatically sprayed on the part before the wiper blade starts to move)

but first of all DUE TO missing specifications

► evaluation of influencing factors on the durability of the plastic glazing based on a laboratory wiper test
Wiper resistance - lab test

Test conditions:
- wipe speed 14cm/s
- wiper blade load 20g/cm
- artificial dirt: mixture of salt and oxides in water (according to ISO 6255 & ISO 12103) or only Arizona test dust (ISO 12103)
- haze measurement before and after abrasive action

variation of
- the type of rubber for the wiper blade
 - no decisive influence on performance of the glazing part found (different rubber types have varying durability)
- the wipe conditions (dry or wet; with or without standardized dirt)
- the type of samples

Polycarbonates
Wiper resistance - different conditions

Results:
- no influence on glass and polycarbonate coated with siloxane based wet coats
- little influence on polycarbonate coated with UV curable wet coats and
- heavy influence on uncoated plastics

Polycarbonates
Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 26
Wiper resistance - different type of samples

Combination conditions with increasing wipe cycles

Results:
- no issue with siloxane based wet coats on PC up to 33,000 double strokes
- BUT how many cycles correlate to life time in real use?
- abrasive action too low to see the performance limit of all the different systems

Polycarbonates

* 3000 double strokes include a sequence of 2500 under wet and 500 drying / dry conditions
Wiper resistance - different conditions

Further test set up modification using a brush behind the wiper blade at an angle of ca. 20° to ensure that the part is again covered with dirt after every half wipe cycles (half a double stroke) which of course leads to a surface cleaning.

- dirt in front of the moving wiper blade
- no dirt behind the moving wiper blade
- dirt again applied to the cleaned surface by the brush

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 28
Wiper resistance - different type of samples

harshest conditions (dry with dirt) with increasing wipe cycles

1. Visible to a naked eye
2. Not visible

Polycarbonates
Wiper resistance - different type of samples

Results:
1. since glass based automotive glazing with a haze level of 10% does not match with experience, these conditions obviously are harsher than real wear, or 10,000 double strokes under these conditions are more than lifetime.

2. at 10,000 double strokes all systems besides uncoated plastics have values around 10%.

3. at lower wipe cycle numbers there are larger deviations between the different systems.

4. some siloxane based wet coats perform similar to glass, especially they cross the border between visible and invisible at the same wipe cycle number.

5. with this test it is possible to distinguish between different siloxane based wet coats (so some would need a constructive solution (always wet conditions) other not.)

Polycarbonates

Global Innovations • Dr. Frank Buckel • 2011-06-14 • Page # 30
This information and our technical advice - whether verbal, in writing or by way of trails - is based on the state of the art of our technical knowledge. The information is given without any warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided - especially that contained in our safety data and technical information sheet - and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with current version of our General Conditions of Sale and Delivery.
Thank You For Your Attention

Contact
Dr. Frank Buckel
PCS-Global Innovations
+49 214 30 40353
frank.buckel@bayer.com

Polycarbonates