Powerpack evaluation for HD hybrid powertrains

Morgan Andreae

Cummins Inc.

March 16, 2011

Agenda

- Introduction
- Role of simulation in development
- Pre-transmission powerpack procedures

Introduction

- Objectives of this material:
 - Discuss advantages/challenges for use of simulation in hybrid evaluation
 - Review powerpack concept
 - Review pre-transmission procedures

Background

- Cummins is working with industry partners and EPA to help define hybrid evaluation procedures for the new CO2 rule
- Work has included providing hardware for testing at EPA
 - Engine for powertrain evaluation with Eaton hybrid system
 - Prototype hybrid system for pre-transmission powerpack testing
- Current status
 - Hardware installed in test cell
 - Testing to demonstrate procedures beginning

Simulation allows for highly repeatable evaluation

- Simulation highly repeatable
- Accuracy depends on model validation

Analysis Led Design Engine Development

Hardware In the Loop

- Engine Parameter Studies
- Coupled Torque, Flow, Temperature
- Steady State and Transient

- Real Engine and Aftertreatment Controls Interactions
- Real Engine Performance and Emissions
- Drive Cycle Transients

Simulation is an ideal environment for certain work Simulation is not a low cost solution for all work Some work is best done in hardware

Use of simulation

- When should simulation be used?
 - When models are accurate
 - When model development is lower cost than hardware testing
 - When hardware testing would be impractical
- When should simulation be avoided?
 - Hardware test is lower cost
 - Models are not accurate
 - Models are difficult to validate

Chassis Dyno

Simulated Hardware Road Load Vehicle

Post-Transmission Powerpack Simulated Chassis Dyno

^{*} System could instead be a series, 2 mode, or other hybrid powertrain

Pre-Transmission Powerpack Hybrid Engine Dyno

EIL

Simulated

Road Load

Vehicle

Transmission

Hybrid components

Hardware

Engine

Controllers

HILS

Pure Simulation

<u>Simulated</u>

Road Load

Vehicle

Transmission

Hybrid components

Engine

NPRM for CO2: Hybrid Certification Options

- NPRM provides flexibility for first phase of CO2 rule
 - 3 options for evaluation
 - Allows for learning
 - Recognizes diversity of commercial market
- Initial options include hybrid components in hardware

Hybrid Evaluation Should Build on Existing Engine Certification

- Existing transient engine dyno test accurately describes vehicle power requirements for a wide range of vocational applications
- Significant industry experience with engine test procedures and protocols

- Use the normalized engine form of the cycle
- Engine torque curve defines actual speed and torque for certification test
- Emissions: g/hp-hr
- Integrate only positive work (motoring work not included)

Hybrid Evaluation of Pre-Transmission Hybrids

- Pre-transmission powerpack could utilize existing procedures and protocols with minor modifications
- For many hybrid systems this approach would allow hardware evaluation of engine, motor, battery, etc.
- One certification, many applications
 - Uses same simplifying assumptions as conventional certifications
- Allow comparative performance evaluation with conventional engine

Post-Transmission Power Pack Evaluation

- Pre-transmission powerpack certification not viable for all hybrid architectures
- Post-transmission powerpack certification would work for series and other transmission integrated hybrid systems
- Cycle based on engine test cycle would allow comparative evaluation with conventional and pre-trans hybrid

Hybrid Evaluation: Post-Transmission Option

- Use normalized posttransmission test cycle(s)
- Post-transmission system torque curve defines actual speed and torque for certification test
- Emissions: g/hp-hr
- Allow capture of energy during braking portions of cycle
- Count only positive work (as with conventional engines)

Post-Transmission Power Pack Evaluation

- Pre-transmission powerpack certification not viable for all hybrid architectures
- Post-transmission powerpack certification would work for series and other transmission integrated hybrid systems
- Cycle based on engine test cycle would allow comparative evaluation with conventional and pre-trans hybrid

Hybrid Evaluation: Post-Transmission Option

- Use normalized posttransmission test cycle(s)
- Post-transmission system torque curve defines actual speed and torque for certification test
- Emissions: g/hp-hr
- Allow capture of energy during braking portions of cycle
- Count only positive work (as with conventional engines)

Pre-Transmission Powerpack Procedures: Modifications of existing engine test procedures

- Definition of torque curve
 - Use system transient torque capability to define torque curve
- Energy storage management
 - Follow same procedures as other test methods
 - SAE J2711 describes requirements for energy storage management
- Allow energy capture during motoring portions
 - Define upper limit on regen capture:
 - Motoring torque curve as 40% of positive torque curve per 40 CFR 1065.510
 - Define vehicle cycle and use to calculate available regen energy capture (upper limit).
- Allow zero speed during idle portions
- Count only positive work
 - Same as conventional engine

Summary

- Simulation will play a role in any evaluation method
 - Simulation can reduce cost
 - Challenges for great use of simulation include:
 - How are models validated?
 - How broadly can validated models be applied?
 - Who owns and maintains models?
- In near term, building on existing test procedures simplifies introduction of new hybrid evaluation methods
 - Powerpack procedures can be implemented quickly
- Flexibility is needed for commercial market
 - Wide range of applications and architectures
 - Outside of Europe, vertical integration is less common