Impacts of Climate Change on Seaports: Results of a Global Survey

Joint United Nations Economic Commission for Europe/
United Nations Conference on Trade and Development Workshop
Climate Change Impacts on International Transport Networks

Austin Becker, Stanford University

Prof. Pam Matson, School of Earth Sciences
Prof. Martin Fischer, Department of Civil and Environmental Engineering
Prof. Satoshi Inoue, Visiting Professor, National Graduate Institute for Policy Studies
Why Ports?

- Critical infrastructure in local and global economy
 - 80% of world freight moves by ship
- Highly dependent on specific locations
 - Deep water, protective harbors, multi-modal connections
- Difficult or impossible to relocate
- Highly vulnerable locations
 - Often estuaries or river deltas that provide ecosystem services
 - Prone to flooding, storm surge, and SLR
Climate Change Scenarios

- Sea levels to rise 0.6 – 2 meters by 2100
 - The world is not a bathtub!
- Doubling of Cat 4 and 5 storms*
- Ocean storm tracks shifting
- Inland flooding

Impacts of Storms

IKE
$2.4 Billion Damage
to TX ports/waterways

Katrina
$100 Million in Damage to
3 MS Ports

$1.7 Billion in damage
to Southern LA ports

Just eleven spills
released approximately
7 million gallons of oil

Photos from Alabama State Port Authority
Global Ports Survey Objectives

- **Climate Change Impacts** – An issue for ports?
- **Climate Assumptions** – What impacts do ports foresee?
- **Adaptation Strategies** – What kinds of changes are ports considering with respect to climate change impacts?
- **Categories** - Are certain categories of ports or port directors considering these issues more than others?
Climate Change Survey Respondents
IAPH and AAPA

- Sampled IAPH/AAPA
- Survey Monkey
- Designed/Pretested with IAPH/AAPA
- 30 Questions
- Distributed Summer 2009
- 93 Usable Responses
Finding 1 – Issue relevance

Respondents are concerned, but feel uninformed

Impacts of climate change is something that needs to be addressed by the port community.

I feel sufficiently informed about how climate change will impact my port operations.

N = 93
Finding 2 – Sea Level Rise By 2100
69% felt **EXPECTED SLR would not be a problem**

- **Don't Know**: 17%, 13%
- **Decrease**: 4%, 3%
- **None**: 7%, 6%
- **< .5 meters**: 27%, 12%
- **.5 - 1 meters**: 33%, 39%
- **1-2 meters**: 58%
- **>2 meters**: 1%

N = 90
Finding 3 – Perceived Impacts

48% SLR

60% Storm related

38% Greening operations

storm-impacts

sea-level-rise

greening-operations

increase-shipping

higher-design-costs

personal-health

impacts-on-surrounding-community

population-migration

failure-of-storm-protection

revision-of-design-standards

market-shifts

modal-shifts

dredging-concerns

operation-delays
Finding 4 – Ports are building infrastructure

Design standards do not address climate change

Plans for expansion within the next 10 Years*

<table>
<thead>
<tr>
<th>% of surveyed ports</th>
<th>Quays/berths</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>5%</td>
<td>2%</td>
</tr>
<tr>
<td>10%</td>
<td>9%</td>
<td>6%</td>
</tr>
<tr>
<td>20%</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>30%</td>
<td>40%</td>
<td>35%</td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design Standard Used

- Better than 100-year flood event
- 100-year flood event
- Less than 100-year flood event
- Not sure/no answer
- Does not consider historic storm events

*16% of these plan new storm protection
Finding 5 – Climate Change Adaptation Policies

- Addressed in port strategic plan
- Carries specific climate change insurance
- Funded as a line item in the budget
- Has specific climate change planning document
- Holds staff meetings to discuss adaptation
- Part of design guidelines or standards
- Other policy noted

1 POINT EACH
Finding 4: Port Categories and Adaptation Scores
Most ports have few climate policies in place

<table>
<thead>
<tr>
<th>Category (of ports)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAPH (37)</td>
<td>0.9</td>
</tr>
<tr>
<td>AAPA (37)</td>
<td>1.3</td>
</tr>
<tr>
<td>Both (14)</td>
<td>1.8</td>
</tr>
<tr>
<td>Private entity (5)</td>
<td>1.0</td>
</tr>
<tr>
<td>Private/public (30)</td>
<td>1.0</td>
</tr>
<tr>
<td>Public entity (36)</td>
<td>1.3</td>
</tr>
<tr>
<td>In hurricane zone (40)</td>
<td>1.2</td>
</tr>
<tr>
<td>Not in hurricane zone (48)</td>
<td>1.3</td>
</tr>
<tr>
<td>Group/co-op insurance (7)</td>
<td>0.9</td>
</tr>
<tr>
<td>Self-insured (17)</td>
<td>1.1</td>
</tr>
<tr>
<td>Standard insurance (40)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

N = 88
Max = 5
Min = 0
Mean = 1.2
Std. Dev = 1.3
Finding 5: Global Comparisons

- Asia (16) 0.6
- Europe (15) 1.2
- Africa (4) 1.3
- Oceania (3) 1.3
- N. America (43) 1.4
- S/Cent. America (7) 1.7
- Lower-middle-income (4) 0.5
- Low-income (3) 0.7
- Upper-middle-income (10) 1.0
- High-income (71) 1.3
Questions

How do different stakeholders in a port system characterize impacts, objectives and alternatives with respect to storm-hazard mitigation?

What strategies for reducing vulnerabilities could be considered “optimal” by a port system?

Does the current system configuration allow storm impacts to be reasonably addressed?
Next Steps: Comparative Case Study
Risk... and Responsibility

- Env. Agencies
- Coastal Agency
- NGOs
- Insurers
- Engineers
- Insurers
- Reinsurers
- Port Authorities
- Private Firms
- Engineers
- Coastal Agency
- City Planners
- Statewide Planners
- Taxpayers
- Employees
- World Bank
- Army Corps
- Taxpayers

Climate Change Impacts
- Environment
- Local/Regional Economic
- National/Global Economic
- Infrastructure Damage and Cleanup
Acknowledgements

The Survey Respondents
Meg Caldwell, Center for Ocean Solutions
Ben Schwegler, Walt Disney Imagineering
Mike Mastrandrea, IPCC/Woods Institute
Prof. Steve Schneider
Meredith Martino, AAPA
CEE 129/229 Class

Funding support from a McGee Grant from the Stanford School of Earth Sciences and from a Planning Grant from the Sustainable Built Environment Initiative of the Woods Institute for Environment at Stanford University

Contact Austin Becker
austinb@stanford.edu
http://stanford.edu/~austinb
Extra Slides Below