ARISCC

Adapting Rail Infrastructure
to Climate Change

by Jerzy Wisniewski, Director Fundamental Values Dpt., UIC
for UNECE, Geneva, 8th of September 2010
UIC – a global association with almost 200 members around the world
UIC Mission

Promoting the development of rail transport at world level, in order to meet challenges of mobility and sustainable development

UIC – working for and with the members:

UIC is the global organisation for cooperation between and promotion of railways.

UIC has a strong tradition of working on sustainability issues, both in supporting members in improving their sustainability performance as well as communicating on the sector level towards external key stakeholders.
UIC & Climate Change
A systematic approach: Mitigation & Adaptation
Strategy – Improvement – Communication

Strategy:

Improvement:

Communication:

www.ecotransit.org

www.ecopassenger.org
UIC & Climate Change

Adapting Rail Infrastructure to Climate Change

Background
Adapting to the growing risks that the increasingly higher frequency of extreme weather events (with increasing higher intensity) is a newer challenge for society and for the rail sector.

ARISCC is about preparing rail infrastructure for when ‘today’s extreme weather becomes tomorrow’s normal weather’! (John Dora, Network Rail)

The results are needed by:

- Governments for long term planning and financing infrastructure projects,
- Infrastructure managers for planning and managing the risks,
- Companies within the risk assurance and construction business.
Adapting Rail Infrastructure to Climate Change

Why ARISCC?
Railways have an in extremely long life time and are constructed to withstand natural hazards, such as i.e. the 50 years flood. However, as number and intensity of incidents will arise, also the pressure on the capacity of the rail system will rise together with the costs of the sector in the future.

If the right measures are taken at the right time, the risk will be bearable!

International cooperation and coordination are needed for example when impacts that might be new for one region, already are well handled in other regions.

Better knowledge will help the rail sector to take the right decisions - and take the right concrete measures at the right time!
Adapting Rail Infrastructure to Climate Change

Possible consequences and events caused by extreme weather

- **Dry and hot summer**
- **Extreme storm events**
- **High and low water periods**
- **Freeze spell with increasing wet snow**
Adaptating Rail Infrastructure to Climate Change

Examples on extreme weather events’ impact on rail infrastructure

<table>
<thead>
<tr>
<th>Factor</th>
<th>Effect</th>
<th>Impact on Railways/Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High temperatures and heat waves</td>
<td>overheating</td>
<td>infrastructure & rolling stock equipment</td>
</tr>
<tr>
<td>Sudden temperature changes</td>
<td>tension</td>
<td>track buckling</td>
</tr>
<tr>
<td>Intense sunlight</td>
<td>overheating</td>
<td>track buckling, slope fires, signaling problems</td>
</tr>
<tr>
<td>Precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intense rainfall</td>
<td>soil erosion, land sides, flooding</td>
<td>damage to embankments, earthwork</td>
</tr>
<tr>
<td>Extended rain periods</td>
<td>slower drainage, soil erosion</td>
<td>other infrastructure assets, operation</td>
</tr>
<tr>
<td>Flooding: coastal, surface water, fluvial</td>
<td>landslides</td>
<td>drainage systems, tunnels, bridges</td>
</tr>
<tr>
<td>Drought</td>
<td>desiccation</td>
<td>earthworks desiccation</td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm/gale (inland)</td>
<td>higher wind forces</td>
<td>damage to installations, catenary</td>
</tr>
<tr>
<td></td>
<td>uprooting of trees</td>
<td>restrictions/disruption of train operation</td>
</tr>
<tr>
<td>Coastal storms & sea level raise</td>
<td>Coastal flooding</td>
<td>embankments, earthwork, operation</td>
</tr>
<tr>
<td>Lightning strikes & thunderstorms</td>
<td>Overvoltage</td>
<td>catenary and signaling</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Faster plant growth, new plants</td>
<td>vegetation management</td>
</tr>
</tbody>
</table>
Adapting Rail Infrastructure to Climate Change

How ARISCC?
ARISCC is combining existing expertise and management under today’s weather conditions and to use these to build a new level of nature hazard management and expertise, including solutions and strategies to prepare for the changing weather and climate conditions of the future, as well as cooperation with meteorological institutes.

• Identify risks/ vulnerabilities,
• Manage quantitative risk assessments,
• Classify and prioritise risks
• Learn from good practice
Adapting Rail Infrastructure to Climate Change

How ARISCC?
ARISCC focuses on integrating management of weather and climate related natural hazards such as flooding, severe storms, landslides, rock fall, avalanches, etc. in a way that strengthen the railway infrastructure performance and avoids or minimizes damage to railway infrastructure assets.

Risks from impacts by climate and natural hazards are already handled by the railways - example from Austria
ARISCC: Deliverables

D 1 Guidelines: Risk Analysis & Adaptation Measures

(guidance for integrated natural hazard management, easy to use document, example for concrete line)

D 2 Solutions and Examples

for Natural Hazard Management & Early Warning Systems (monitoring, impact assessment, vulnerability mapping, early warning, risk assessment)

D 3 Exchange of good practise:

Knowledge Base & Exchange Platform (good practice, pilot projects, competence mapping, country profiles, contacts...)

D 4 D5 Standards for new and existing Infrastructure (integration of climate change into standards, different procedures in Europe)

D 5 Case Studies: UK West Coast, Rhine Valley, Global Case Study
(mapping, risk & costs assessment, cost scenarios 2030 with/without adaptation) – Seaking for partners!
Thank you for your kind attention

Jerzy Wisniewski (wisniewski@uic.org), Fundamental Values Director UIC