Management Summary

Two proposals for ASEP are evaluated by the GRBIG ASEP, Proposal 1 (the OICA proposal) and proposal 2 (the NL proposal). The two proposals are identical on 80%. The main difference between the two proposals is summarized in the pictures below:

- **R51.02** is a point check. Based on this point the sound emission was expected to increase linear as function of engine speed with a slope around 5 dB/100 rpm.

- Legally it is possible in R51.02 to design a sound curve which behaves non-linear. The database shows various vehicles with this behavior; mainly high performance sport cars. Various sources of information show that this kind of technology is now being introduced in lower classes of vehicles with higher market shares.

- The main difference between the OICA and the NL proposal focuses on the question how stringent the ASEP limit line above the anchor point should be.

- For many vehicles the OICA and NL proposal differ only marginally (1 or 2 dB(A)). Especially for high performance vehicles with a high rated engine speed, the NL proposal is significantly more stringent than the OICA proposal (sometimes up to 20 dB(A))
Introduction

In GRB 50 (September 2009) two ASEP proposals were introduced. Proposal 1 was discussed earlier in the GRB IG ASEP and originally designed by OICA. Proposal 2 was introduced by the Netherlands in GRB 50 and not discussed earlier in the informal group. GRB has asked the informal group to discuss both proposals and report GRB on its findings. This report summarizes the essentials of the two proposals and highlights especially the differences.

Goal of ASEP:
- to set requirements to the sound emission of vehicles in addition to Annex 3
- in a wider operating range around Annex 3
- in order to prevent that the sound emission deviates too much from what can be normally expected on the basis of the Annex 3 test results

How ASEP works:

Both proposals have in common:
- ASEP is a set of demands; The manufacturer has to sign a declaration that the vehicle fulfills these demands; Verification tests may be carried out, but are not necessary.
- ASEP tests can be carried out within a control range of valid vehicle operation conditions. Boundary conditions are set to vehicle speed, engine speed and vehicle acceleration.
- The ASEP limit is a line as function of engine speed
- The anchor point for the limit curve comes from the Annex 3 test results.
- All individual ASEP test results have to remain below the ASEP limit line

Besides a lot of similarities, the two proposals have some differences as well.
Main differences

<table>
<thead>
<tr>
<th>Issue 1</th>
<th>proposal 1 (OICA)</th>
<th>proposal 2 (NL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of ASEP limit line above the anchor point</td>
<td>The limit line is constructed with one point and a slope: The point is based on the anchor point, which comes from Annex 3. The slope comes from linear regression of ASEP measurements and is limited to X dB/1000 rpm. The Edging of Y is added to that as uncertainty margin on slope.</td>
<td>The limit line is constructed with two points. The first point is based on the anchor point, which comes from Annex 3. The second point is a Not To Exceed point. The noise level of the NTE point is based on the limit of Annex 3 increase by a fixed value of Y dB(A). The engine speed of the NTE point is determined by the maximum engine speed within the ASEP control range in that gear.</td>
</tr>
</tbody>
</table>

| Clarification and Aspects | Requirement takes into consideration the physical behavior of current technology | Requirements are independent of the design |
| remarks | The values given are typical and depend on the ASEP coefficients XYZ and the individual vehicle. | |

<table>
<thead>
<tr>
<th>OICA proposal</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NL proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue 2</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Maximum allowable noise within ASEP control range</td>
</tr>
<tr>
<td>Clarification and Aspects</td>
</tr>
<tr>
<td>remarks</td>
</tr>
</tbody>
</table>
vehicle 1-44
pmr = 76 kW/t
diesel
rated engine speed: 4000 rpm

OICA limit slightly lower than NL limit
Vehicle passes both OICA and NL ASEP

vehicle 2-03
pmr = 94 kW/t
petrol
rated engine speed: 5000 rpm

both limits comparable
vehicle passes OICA ASEP marginally and fails NL ASEP marginally (0.3 dB(A))

vehicle 200-09
pmr = 159 kW/t
petrol
rated engine speed: 7000 rpm

OICA limit up to 18 dB(A) higher than NL limit
Vehicle passes OICA ASEP and fails NL ASEP by 13 dB(A)
Issue 3

<table>
<thead>
<tr>
<th></th>
<th>proposal 1 (OICA)</th>
<th>proposal 2 (NL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stringency compared to</td>
<td>With the default OICA XYZ coefficients about 2% of the vehicles in de dBase fail the limit line. Typically vehicles with a non linear sound curve fail this demand.</td>
<td>About 26% of the vehicles in the dBase fail this ASEP demand.</td>
</tr>
<tr>
<td>R51.03 Annex 3 and R51.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarification and Aspects</td>
<td>Especially vehicles with a non linear sound design (e.g. due to valves) will fail this demand. The ASEP sets demands over a wider area, where R51.02 is a point check. Some members of the group argue that any requirement outside of the R51.02 operating condition is more stringent than the point check of R51.02. Some members of the group argue that at the R51.02 operating condition for several vehicles significant room exists to increase the sound compared to R51.02. (some up to 10 dB(A)) Some non-linear sound curves may be adjusted (and approved) by increasing the sound of the more silent parts. (ref GRBIG-ASEP 13-008, 009 and 011)</td>
<td>Especially vehicles are detected with a non linear or steep sound curve. The amount of vehicles failing is comparable to the amount of vehicles that fail the R51.02 demand (22%). At the R51.02 operating condition the NL ASEP requirement is slightly less stringent compared to the R51.02 demand (typically 1 a 2 dB(A)).</td>
</tr>
</tbody>
</table>

Remarks
- The values depend on the ASEP coefficients XYZ and the individual vehicle. The numbers given are for the XYZ coefficients as proposed by OICA and Netherlands. Finetuning of the XYZ coefficients may change this picture.
- Several options have been mentioned to reduce the potential noise increase at the R51.02 operating condition of proposal 1:
 - KBA proposal
 - Remove 2 m/s² limit in Annex 3
 - Set limit to Lwot,i
The type approval point of R51.02 and the expected noise emission as function of engine speed: linear and with a moderate slope around 5 dB/1000 rpm

Since R51.02 is a point check, the non linear curves as depicted are currently legal. Such sound design is currently used for various sports cars.

Discussion focuses on the question how the ASEP limit above the anchor point should look like: For many normal vehicles there is not much difference between the OICA proposal and the Netherlands proposal. For high performance vehicles the Netherlands proposal is closer to the green curve and the OICA proposal is closer to the orange curve.
With the KBA proposal, the ASEP limit shall remain below a certain limit point (yellow).

With removal of the 2 m/s² boundary in Annex 3, the anchor point for the ASEP limit moves to higher engine speed (only relevant for a limited number of vehicles).

With a limit on Lwot,i the anchor point for the ASEP limit shall remain below a certain limit.
Secondary differences

<table>
<thead>
<tr>
<th>Issue</th>
<th>proposal 1 (OICA)</th>
<th>proposal 2 (NL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine speed of reference point</td>
<td>Only lowest gear (highest engine speed)</td>
<td>Weighted average of two gears</td>
</tr>
<tr>
<td>Clarification and Aspects</td>
<td>Anchor point may swap depending on test results</td>
<td>More stable</td>
</tr>
<tr>
<td>remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of ASEP limit line below the anchor point</td>
<td>Based on regression analysis</td>
<td>Fixed slope of 3 dB/1000 rpm</td>
</tr>
<tr>
<td>remarks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope of limit line based on ASEP measurements or independent from measurements</td>
<td>Slope is based on measurements and limited to a X dB/1000 rpm</td>
<td>Independent from measurements</td>
</tr>
<tr>
<td>remarks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>