Presentation of a Side impact
Step 1 proposal

François RENAUDIN
Erik SALTERS
Yoann BRUNETIERE
Target

This a follow up of previous meeting. The target of this presentation is to propose a lateral test procedure for Step 1 approach:

• As realistic as possible regarding ISO PAS document
 – With *intrusion loading*
 – With assessment of occupant kinematics and energy Management

• Simple with small investments
Physics

Velocity change during a lateral impact when the reference is the ground

Bullet vehicle

Impacted vehicle

V

T_0

T_f
Physics

Intrusion Velocity during a lateral impact

\[V \]

\[T_0 \quad T_f \]

\[T \]
To simplify the test methodology:
- Reproduction of the intrusion velocity with a single sled.

Main input parameters from ISO close to R44 Rear impact pulse:
- Intrusion velocity (7 – 10 m/s)
- Intrusion (200 – 300 mm)
- Sled acceleration 10 – 14 g

Proposal: **R44 rear impact with modifications**
Input parameters

• 90° Rotation of the R44 bench on the sled
• Fixed door panel on the wall
 – The best solution would have been to have a fixed bench and a moving door on the sled. Due to time constraint (2 weeks to prepare the bench) this choice has not been made
• Modification of the Isofix anchorages
• R44 rear impact pulse (small decrease of initial velocity in a first step)
Presentation of Dorel Europe test bench

Modifications of the R44 bench

To allow displacement, positions of the isofix anchorage have been modified.

Original position

New position

20 cm maximum displacement possibility

+/- 5 mm

+/- 28 mm
Modifications of the R44 bench

Cutting up of the bench foam to reduce damage possibilities on the cushion
This impactor is fixed on the reaction mass, and the R44 bench is on the sled.
Padding material used on the door

- Chloroprene rubber foam (35 mm)
- Styrodur foam (20 mm)

Close to ISO conditions
Door Intrusion

At t=0 ms

At the end (stopping distance: 300 mm)
Global results

Repeatability on 21 crash tests (3 type of CRS)

Sled deceleration
Repeatability on 21 crash tests (3 type of CRS)
Input parameters

<table>
<thead>
<tr>
<th></th>
<th>ISO/PAS</th>
<th>Dorel (1st step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusion velocity</td>
<td>7 - 10 m/s</td>
<td>8 m/s</td>
</tr>
<tr>
<td>Extreme position of the door*</td>
<td>-50 mm</td>
<td>-50 mm</td>
</tr>
<tr>
<td>Sled Acceleration</td>
<td>10 - 15g</td>
<td>18g</td>
</tr>
</tbody>
</table>

* to the initial center line of the CRS
Presentation of tested seat

2 different seats installed with isofix

Seat n° A

Group 1 seat

Seat n° B

Group 0+ seat
Results on Seat A
with Q3 tested in sitting position
Results on Seat A

Maximum values occur during the deceleration phase
Results on Seat A

Comparison with R95 (renault mégane) & NPACS
Results on Seat B
with Q1.5
Results on Seat B

Maximum values occur during the deceleration phase
Results on Seat B

Comparison with R95 (renault mégane) & NPACS

In step 2 intrusion velocity was decreased (from 8 m/s to 7 m/s) in line with ISO recommendation
Conclusion

With a simplified test method:

• Intrusion taken into account in line with ISO recommendation and real world
• Good repeatability
 – Input
 – especially for head acceleration)
• Main loading parameters (intrusion velocity) not affected by the CRS
• Good correlation with FF / too much load with RF
• Possibility to use a conventional R44 rig very cheaply (about 10 k€)
Conclusion

Next steps:

• In agreement with ISO there is a need to adapt intrusion velocity to RF or FF configuration (20% difference)

• Influence of different deceleration devices to be investigated.

• Mean to manage isofix anchorages sliding motion?