Pedestrian Protection in Europe

The Potential of Car Design and Impact Testing

DEKRA Automobil GmbH, Accident Research
F. A. Berg, M. Egelhaaf

DaimlerChrysler AG, Accident Research
J. Bakker, H. Bürkle, R. Herrmann, J. Scheeerer
Fatality Rates in Europe *

* Data from Greece and Portugal not available
Fatality Rates for Pedestrians (Europe, USA, Japan)
Source: IRTAD-data

Pedestrians in Europe per 1 Mill. Inhabitants
Pedestrians in the USA per 1 Mill. Inhabitants
Pedestrians in Japan per 1 Mill. Inhabitants
Pedestrian Fatalities per Mill. Inhabitants
Source: German National Statistics

Year
- 1980
- 1984
- 1988
- 1992
- 1996
- 2000

- all ages
- till 6 years
- from 6 to 15 years
- over 65 years

* Reduction from 1980 data
Severely Injured Pedestrians per Mill. Inhabitants
Source: German National Statistics

-63%* -77%* -58%* -61%*

* Reduction from 1980 data
Trend of the European Pedestrian Fatalities and the Draft Phase-In

- Target of European Commision: 30% Reduction of the fatalities

30%-Reduction of fatalities expected (based on 1999 data)

Source: IRTAD-Data
Pedestrian Accidents in Germany
Comparison of the German National Data 2000 with the GIDAS data (n=415)

Sources: German National Data 2000
GIDAS (German In-Depth Accident Study) 1999-2001
Age Groups in Pedestrians Accidents

Source: German National Data 2000
Injuries and Contact Zones for AIS 2+ injuries
(n = 116 Injuries from 53 Pedestrians)

Source: GIDAS
Frequency of contacts for AIS 2+ - injuries, all body regions
(front-to-pedestrian impacts, only passenger cars, all impact speeds)

<table>
<thead>
<tr>
<th>Contact zones</th>
<th>GIDAS 100% = 116 injuries</th>
<th>IHRA (Europe) 100% = 1460 injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts of vehicle</td>
<td>share</td>
<td>share</td>
</tr>
<tr>
<td>front bumper</td>
<td>28%</td>
<td>21%</td>
</tr>
<tr>
<td>front panel and headlamps</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>bonnet leading edge</td>
<td>3%</td>
<td>10%</td>
</tr>
<tr>
<td>bonnet</td>
<td>8%</td>
<td>15%</td>
</tr>
<tr>
<td>Subtotal for vehicle front</td>
<td>44%</td>
<td>49%</td>
</tr>
<tr>
<td>windscreen and frame</td>
<td>18%</td>
<td>24%</td>
</tr>
<tr>
<td>ground surface</td>
<td>27%</td>
<td>13%</td>
</tr>
<tr>
<td>others</td>
<td>11%</td>
<td>14%</td>
</tr>
</tbody>
</table>
Frequency of contacts for AIS 2+ - injuries, head and face

front-to-pedestrian impacts, only passenger cars, all impact speeds

<table>
<thead>
<tr>
<th>Contact zones</th>
<th>GIDAS 100% = 45 injuries</th>
<th>IHRA (Europe) 100% = 512 injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts of vehicle</td>
<td>share</td>
<td>share</td>
</tr>
<tr>
<td>front bumper</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>front panel and headlamps</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>bonnet leading edge</td>
<td>0%</td>
<td>0,2%</td>
</tr>
<tr>
<td>bonnet</td>
<td>6%</td>
<td>16%</td>
</tr>
<tr>
<td>Subtotal for vehicle front</td>
<td>6%</td>
<td>17,2%</td>
</tr>
<tr>
<td>windscreen and frame</td>
<td>35%</td>
<td>51%</td>
</tr>
<tr>
<td>ground surface</td>
<td>49%</td>
<td>22%</td>
</tr>
<tr>
<td>others</td>
<td>10%</td>
<td>9,8%</td>
</tr>
</tbody>
</table>
Number of Contacts in Different Zones for AIS 1+ Head Injuries
Source: GIDAS
Frequency of contacts for AIS 2+ - injuries, lower extremities

(front-to-pedestrian impacts, only passenger cars, all impact speeds)

<table>
<thead>
<tr>
<th>Contact zones</th>
<th>GIDAS 100% = 55 injuries</th>
<th>IHRA (Europe) 100% = 572 injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts of vehicle</td>
<td>share</td>
<td>share</td>
</tr>
<tr>
<td>front bumper</td>
<td>all</td>
<td>61%</td>
</tr>
<tr>
<td></td>
<td>lower leg</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td>knee</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>femur</td>
<td>2%</td>
</tr>
<tr>
<td>front panel and headlamps</td>
<td>9%</td>
<td>6%</td>
</tr>
<tr>
<td>bonnet leading edge</td>
<td>all</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>pelvis</td>
<td>4%</td>
</tr>
<tr>
<td>bonnet</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Subtotal for vehicle front</td>
<td>82%</td>
<td>81%</td>
</tr>
<tr>
<td>windscreen and frame</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>ground surface</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>others</td>
<td>16%</td>
<td>14%</td>
</tr>
</tbody>
</table>

*including 5% “others”
Distribution of Vehicle Types in Pedestrian Accidents (AIS1+)
Source: GIDAS

- Passenger Cars: 75%
- Light trucks / Mini Buses: 3%
- Trucks, etc.: 6%
- Motorcycles: 1%
- Bicycles: 1%
- Off - Road Vehicles: 1%
- Unknown: 10%

Legend:
- Passenger Cars
- Off - Road Vehicles
- Light trucks / Mini Buses
- Trucks, etc.
- Motorcycles
- Bicycles
- Unknown
Impact Locations in Car-to-Pedestrian Accidents (AIS1+)
Source: GIDAS

- Front: 54%
- Side: 29%
- Rear: 5%
- Unknown/Other: 12%
Potential to Reduce Serious Injuries in the GIDAS data, AIS 2+, all body regions

Potential at the car front of about 18%
ACEA-phase 1 = 14.5% Potential left = 3.2%

Contact zones, potential of the EEVC-test 17.7%

- front-bumper: 11.3%
- bonnet: 3.2%
- front panel, headlamps: 2.0%
- bonnet leading edge: 1.2%

Rest: 25% injured by car (62%)

- Rest: 40% frontal impacts (54%) n=116 injuries

- Rest: 75% passenger cars (75%)

- All vehicles 100%

Factors of reduction

- Ground and other contacts: 38%
- Others than front: 46%
- Other vehicles: 25%
Potential to Reduce Serious Head Injuries in the GIDAS data, AIS 2+

Contact zones, potential of the EEVC-test 2.4%

- Windscreen and frame: 14.0%
- Front bumper: 0%
- Bonnet: 2.4%
- Front panel, headlamps: 0%
- Bonnet leading edge: 0%

Rest: 16%, injured by car (41%)
Rest: 40%, frontal impacts (54%), n=45 injuries
Rest: 75%, passenger cars (75%)

All vehicles: 100%

Factors of reduction

Ground and other contacts: 59%
Others than front: 46%
Other vehicles: 25%
Potential to Reduce Serious Injuries in the IHRA data, AIS 2+, all body regions

Potential at the car front of about 27%

ACEA-phase 1 = 19.7% Potential left = 7.1%

- Windscreen and frame 13.2%
- Front-bumper 11.5%
- Bonnet 8.2%
- Front panel, headlamps 1.6%
- Bonnet leading edge 5.5%

Contact zones, potential of the EEVC-test 26.8%

- Rest: 40% injured by car (73%)
- Rest: 55% $V_0 < 60 \text{ km/h}$ (74%) n=1460 injuries
- Rest: 75% passenger cars (75%)
- All vehicles 100%

Factors of reduction
- Ground and other contacts 27%
- Catastrophic impacts $>60 \text{ km/h}$ 26%
- Other vehicles 25%
Potential to Reduce Serious Head Injuries in the IHRA data, AIS 2+

Contact zones, potential of the EEVC-test 9.5%

Potential at the car front of about 9%
ACEA-phase 1 = 8.9%
Potential left = 0.6%

- Windscreen and frame 28.5%
- Front-bumper 0%
- Bonnet 8.9%
- Front panel, headlamps 0.5%
- Bonnet leading edge 0.1%

rest: 38% injured by car (68%)
rest: 55% $V_o < 60$ km/h (74%)
$n=512$ injuries
rest: 75% passenger cars (75%)
all vehicles 100%

- Ground and other contacts 32%
- Catastrophic impacts > 60 km/h 26%
- Other vehicles 25%

Factors of reduction
Potential of the tests for ACEA-phase 1 and EEVC WG17

AIS 2+, all body regions

<table>
<thead>
<tr>
<th>Description</th>
<th>ACEA Phase 1</th>
<th>Potential left</th>
<th>Potential of EEVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.5 (19.7) %</td>
<td>3.2 (7.1) %</td>
<td>17.7 (26.8) %</td>
</tr>
<tr>
<td>Ground and other contacts</td>
<td>11.3 (11.5) %</td>
<td>3.2 (8.2) %</td>
<td>11.3 (11.5) %</td>
</tr>
</tbody>
</table>

AIS 2+, head and face

<table>
<thead>
<tr>
<th>Description</th>
<th>ACEA Phase 1</th>
<th>Potential left</th>
<th>Potential of EEVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4 (8.9) %</td>
<td>0 (0.1) %</td>
<td>2.4 (9.5) %</td>
</tr>
<tr>
<td>Ground and other contacts</td>
<td>0 (0) %</td>
<td>0 (0.5) %</td>
<td>0 (0.5) %</td>
</tr>
</tbody>
</table>

GIDAS (IHRA) data

21.10.2002 20
Estimated Potentials of Pedestrian Protection Testing for Complete European Vehicle Fleet Exchange

<table>
<thead>
<tr>
<th></th>
<th>seriously injured</th>
<th>fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>European casualties 2000</td>
<td>74,494</td>
<td>6,143</td>
</tr>
<tr>
<td>GIDAS</td>
<td>8.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>see fig. 16</td>
<td>see fig. 17</td>
</tr>
<tr>
<td></td>
<td>(17.7%/2)</td>
<td>(2.4%/5)</td>
</tr>
<tr>
<td>Potential from ACEA-Phase 1</td>
<td>5,363 (7.2%)</td>
<td>30 (0.5%)</td>
</tr>
<tr>
<td>Potential left</td>
<td>1,191 (1.6%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total potential based on GIDAS-data for EEVC WG17</td>
<td>6,554</td>
<td>30</td>
</tr>
<tr>
<td>IHRA (Europe)</td>
<td>13.4%</td>
<td>1.9%</td>
</tr>
<tr>
<td></td>
<td>see table 19</td>
<td>see table 20</td>
</tr>
<tr>
<td></td>
<td>(26.8%/2)</td>
<td>(9.5%/5)</td>
</tr>
<tr>
<td>Potential from ACEA-Phase 1</td>
<td>7,375 (9.9%)</td>
<td>110 (1.78%)</td>
</tr>
<tr>
<td>Potential left</td>
<td>2,607 (3.5%)</td>
<td>7 (0.12%)</td>
</tr>
<tr>
<td>Total potential based on IHRA-data for EEVC WG17</td>
<td>9,982</td>
<td>117</td>
</tr>
</tbody>
</table>
Estimated Potential ACEA-phase 1 (left) Compared to Estimated Potential for EEVC WG17 tests (right)

Potential of fatalities by ACEA-phase 1

Potential of fatalities by EEVC WG17
Reduced collision speed by using a brake-assistant

Decelerations with different brake-systems

- **Brake-Assistant**: v_k = 25 km/h
- **Experienced driver**: v_k = 35 km/h
- **Standard driver**: v_k = 40 km/h

Start of braking, v_0 = 50 km/h

Impact with pedestrian
Conclusions

• Internationally, the fatality rate in Europe with 14 pedestrians per mill. Inhabitants is the lowest in the world. (US 17, Japan 23)

• Based on this positive trend, the target of the EU-Commision to reduce the fatalities by 30% and the seriously injured by 17% will be reached in 2010 without having any regulation.

• The potential of the EEVC WG17 tests is less than 2% of the pedestrian fatalities and about 8-13% of the seriously injured.

• ACEA-phase 1 is a good compromise for all parties

• Upper Leg test / Adult head test have no potential to reach targets estimated by the Commission

• Accident avoidance is much more promising to reduce casualties