Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

Classification criteria for substances and mixtures
Physical hazards
Physical hazards

1. Explosives (Chap.2.1)
2. Flammable gases (Chap.2.2)
3. Aerosols (Chap.2.3)
4. Oxidizing gases (Chap.2.4)
5. Gases under pressure (Chap.2.5)
6. Flammable liquids (Chap.2.6)
7. Flammable solids (Chap.2.7)
8. Self-reactive substances and mixtures (Chap.2.8)
9. Pyrophoric liquids (Chap.2.9)
10. Pyrophoric solids (Chap.2.10)
11. Self-heating substances and mixtures (Chap.2.11)
12. Substances and mixtures which, in contact with water, emit flammable gases (Chap.2.12)
13. Oxidizing liquids (Chap.2.13)
14. Oxidizing solids (Chap.2.14)
15. Organic peroxides (Chap.2.15)
16. Corrosive to metals (Chap.2.16)
17. Desensitized explosives (Chap.2.17)
Explosives (1)

The class of explosives comprises:

- Explosive substances and mixtures
- Explosive articles (except devices containing explosive substances or mixtures in such quantity or of such a character that their ignition or initiation shall not cause any effect external to the device); and
- Substances, mixtures and articles not mentioned above which are manufactured to produce a practical, explosive or pyrotechnic effect
Explosive substance or mixture:
Solid or liquid substance or mixture which, by chemical reaction, is in itself capable of producing gas at such a temperature and pressure and at such a speed as to cause damage to the surroundings

Pyrotechnic substance/mixture:
Substance/mixture designed to produce an effect by heat, light, sound, gas or smoke or a combination of these as the result of non-detonative self-sustaining exothermic chemical reactions

Explosive article:
Article containing one or more explosive substances or mixtures

Pyrotechnic article:
Article containing one or more pyrotechnic substances or mixtures
Explosives (3)

Explosives and articles of this class, not classified as unstable explosives are assigned to one of the 6 divisions below according to the hazards they present:

<table>
<thead>
<tr>
<th>Division</th>
<th>Type of hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mass explosion hazard</td>
</tr>
<tr>
<td>1.2</td>
<td>Projection hazard</td>
</tr>
<tr>
<td>1.3</td>
<td>Fire hazard and minor blast and or projection hazard</td>
</tr>
<tr>
<td>1.4</td>
<td>No significant hazard in case of ignition/initiation</td>
</tr>
<tr>
<td>1.5</td>
<td>Insensitive substances/mixtures with mass explosion hazard</td>
</tr>
<tr>
<td>1.6</td>
<td>Extremely insensitive substances/mixtures with no mass explosion hazard</td>
</tr>
</tbody>
</table>
Explosives and articles are classified and allocated to a division according to the results of Test Series 2 to 7 of Part I of the Manual of Tests and Criteria.

Three step procedure:

1. Ascertain if the substance/mixture has explosive effects: Test Series 1

2. Acceptance procedure (as explosive): Test Series 2 to 4

3. Assignment to a hazard division: Test Series 5 to 7
Explosives (5)

“Ammonium nitrate emulsions or suspensions or gels, intermediate for blasting explosives (ANE)” may be insensitive enough to be considered for classification as oxidizing liquids or solids.

Classification is made on the basis of the results of Test Series 8
A **flammable gas** is a gas having a flammable range with air at 20 °C and a standard pressure of 101.3 kPa

A **pyrophoric gas** is a flammable gas that is liable to ignite spontaneously in air at a temperature of 54 °C or below

A **chemically unstable gas** is a flammable gas that is able to react explosively even in the absence of air or oxygen

A flammable gas is classified in Category 1A, 1B or 2 according to the following table. Flammable gases that are pyrophoric and/or chemically unstable are always classified in Category 1A
Table 2.2.1: Criteria for categorisation of flammable gases

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A Flammable gas</td>
<td>Gases, which at 20 °C and a standard pressure of 101.3 kPa: (a) are ignitable when in a mixture of 13% or less by volume in air; or (b) have a flammable range with air of at least 12 percentage points regardless of the lower flammability limit unless data show they meet the criteria for Category 1B</td>
</tr>
<tr>
<td>Pyrophoric gas</td>
<td>Flammable gases that ignite spontaneously in air at a temperature of 54 °C or below</td>
</tr>
</tbody>
</table>
| Chemically unstable gas | A Flammable gases which are chemically unstable at 20°C and a standard pressure of 101.3 kPa
B Flammable gases which are chemically unstable at a temperature greater than 20°C and/or a pressure greater than 101.3 kPa |
| 1B Flammable gas | Gases which meet the flammability criteria for Category 1A, but which are not pyrophoric, nor chemically unstable, and which have at least either: (a) a lower flammability limit of more than 6% by volume in air; or (b) a fundamental burning velocity of less than 10 cm/s; |
| 2 Flammable gas | Gases, other than those of Category 1A or 1B, which, at 20 °C and a standard pressure of 101.3 kPa, have a flammable range while mixed in air |

NOTE 1: Ammonia and methyl bromide may be regarded as special cases for some regulatory purposes.

NOTE 2: Aerosols should not be classified as flammable gases. See Chapter 2.3.

NOTE 3: In the absence of data allowing classification into Category 1B, a flammable gas that meets the criteria for Category 1A is classified per default in Category 1A.

NOTE 4: Spontaneous ignition for pyrophoric gases is not always immediate, and there may be a delay.

NOTE 5: In the absence of data on its pyrophoricity, a flammable gas mixture should be classified as a pyrophoric gas if it contains more than 1% (by volume) of pyrophoric component(s).
Flammable gases (2)

To classify a flammable gas, data on its flammability, on its ability to ignite in air and on its chemical instability are required.

In case of categorisation in Category 1B, data on its lower flammability limit or its fundamental burning velocity are required. The classification is according to decision logic 2.2.
In the absence of data on its pyrophoricity, a flammable gas mixture should be classified as a pyrophoric gas if it contains more than 1% (by volume) of pyrophoric component(s).
Is it chemically unstable at a temperature greater than 20°C and/or a pressure greater than 101.3 kPa?

No

At 20 °C and a standard pressure of 101.3 kPa, does it:
(a) ignite when in a mixture of 13% or less by volume in air?; or
(b) have a flammable range with air of at least 12 percentage points regardless of the lower flammability limit?

No

Does it have a lower flammability limit > 6% by volume in air, and/or does it have a fundamental burning velocity < 10 cm/s?

No or unknown

Yes

Category 1A
Chemically unstable gas B
Danger

Category 2
No symbol
Warning

Category 1A
Danger

Category 1B
Danger
Aerosols (1)

Aerosols, this means aerosol dispensers, are any non-refillable receptacles made of metal, glass or plastics and containing a gas compressed, liquefied or dissolved under pressure, with or without a liquid, paste or powder, and fitted with a release device allowing the contents to be ejected as solid or liquid particles in suspension in a gas, as a foam, paste or powder or in a liquid state or in a gaseous state.
Aerosols (2)

Aerosols are classified in one of the three categories for this Class on the basis of:

- their flammable components (liquid, solid or gases classified as flammable according to the GHS).
- their chemical heat of combustion*
- the results of the tests:
 - Foam test** (for foam aerosols),
 - Ignition distance test** (for spray aerosols);
 - Enclosed space ignition test* (for spray aerosols);

* mainly transport/storage
** mainly worker/consumer
Category 1: Extremely flammable aerosol
Category 2: Flammable aerosol
Category 3: Non-flammable aerosol

Aerosols which do not meet the criteria for inclusion in Category 1 or Category 2 should be classified in Category 3.

Aerosols containing more than 1% flammable components or with a heat of combustion of at least 20 kJ/g, which are not submitted to the flammability classification procedures in chapter 2.3 of the GHS should be classified as aerosols, Category 1.
To classify an aerosol data on its flammable components, on its chemical heat of combustion and, if applicable, the results of the foam test (for foam aerosols) and of the ignition distance test and enclosed space test (for spray aerosols) are required.

Classification should be made according to:

- Decision logic 2.3 (a): for aerosols
- Decision logic 2.3 (b): for spray aerosols
- Decision logic 2.3 (c): for foam aerosols
To classify an aerosol as a flammable aerosol, data on its flammable components, on its chemical heat of combustion and, if applicable, the results of the foam test (for foam aerosols) and of the ignition distance test and enclosed space test (for spray aerosols) are required. Classification should be made according to decision logics 2.3 (a) to 2.3 (c).

Decision logic 2.3 (a) for flammable aerosols

- Does it contain $\leq 1\%$ flammable components and does it have a heat of combustion < 20 kJ/g?
 - Yes: Category 3
 - No symbol
 - Warning
 - No: Does it contain $\geq 85\%$ flammable components and does it have a heat of combustion ≥ 30 kJ/g?
 - Yes: Category 1
 - Danger
 - No: Aerosol

For spray aerosols, go to decision logic 2.3 (b);
For foam aerosols, go to decision logic 2.3 (c);
Decision logic 2.3 (b) for spray aerosols

Spray aerosol

In the ignition distance test, does ignition occur at a distance ≥ 75 cm?

Yes

Category 1
Danger

No

In the ignition distance test, does ignition occur at a distance ≥ 15 cm?

Yes

Category 2
Warning

No

Does it have a heat of combustion < 20 kJ/g?

Yes

Category 2
Warning

No

In the enclosed space ignition test, is:
(a) the time equivalent ≤ 300 s/m³; or
(b) the deflagration density ≤ 300 g/m³?

Yes

Category 2
Warning

No
In the foam test, is
(a) the flame height ≥ 20 cm and the flame duration ≥ 2 s; or
(b) the flame height ≥ 4 cm and the flame duration ≥ 7 s?

In the foam test, is the flame height ≥ 4 cm and the flame
duration ≥ 2 s?

Category 1
Danger

Category 2
Warning

Category 3
No symbol
Warning
Oxidizing gases (1)

An oxidizing gas is any gas which may, generally by providing oxygen, cause or contribute to the combustion of other material more than air does.

“Gases which cause or contribute to the combustion of other material more than air does” means pure gases or gas mixtures with an oxidizing power greater than 23.5% as determined by a method specified in ISO 10156:2010.

One single category for this class: Category 1
Oxidizing gases (2)

To classify an oxidizing gas, tests or calculation methods as described in ISO 10156:2010 “Gases and gas mixtures – Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets” should be performed.

Classification should be made according to decision logic 2.4
Decision logic 2.4 for oxidizing gases

Gaseous substance or mixture of gases

Does the gas contribute to the combustion of other material more than air does?

- Yes
 - Category 1
 - Danger

- No
 - Not classified
Gases under pressure (1)

Gases under pressure are gases contained in a receptacle at a pressure of 200 kPa (gauge) or more, or which are liquefied or liquefied and refrigerated.

This definition covers four types of gases or gas mixtures to cope with effects of pressure or freezing which may lead to serious damage to people/surroundings or death of people independently from other hazards gases may possess.
Gases under pressure (2)

According to their physical state when packaged they are classified as:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed gas</td>
<td>A gas entirely gaseous at -50 °C; (includes all gases with a critical temperature (\leq -50) °C).</td>
</tr>
<tr>
<td>Liquefied gas</td>
<td>Partially liquid at temperatures above -50 °C.</td>
</tr>
<tr>
<td></td>
<td>(a) High pressure liquefied gas: critical temperature between (-50) °C and +65 °C; and</td>
</tr>
<tr>
<td></td>
<td>(b) Low pressure liquefied gas: a gas with a critical temperature above +65 °C.</td>
</tr>
<tr>
<td>Refrigerated liquefied gas</td>
<td>Partially liquid because of its low temperature.</td>
</tr>
<tr>
<td>Dissolved gas</td>
<td>Dissolved in a liquid phase solvent.</td>
</tr>
</tbody>
</table>

Classification should be made according to decision logic 2.5
2.5.4 Decision logic and guidance

The decision logic and guidance, which follow, are not part of the harmonized classification system, but have been provided here as additional guidance. It is strongly recommended that the person responsible for classification studies the criteria before and during use of the decision logic.

2.5.4.1 Decision logic

Classification can be made according to decision logic 2.5.

Decision logic 2.5 for gases under pressure

- The substance or mixture is a gas

 - Is the gas contained in a receptacle at a pressure of 200 kPa (gauge) or more at 20°C, or is the gas liquefied or liquefied and refrigerated?
 - No: Not classified as a gas under pressure
 - Yes: Dissolved gas

 - Is the gas dissolved in a liquid phase solvent?
 - No: Refrigerated liquefied gas
 - Yes: Warning

 - Is the gas partially liquid because of its low temperature?
 - No: (Low pressure) Liquefied gas
 - Yes: (High pressure) Liquefied gas

 - Is its critical temperature above +65 °C?
 - Yes: Warning
 - No: (Low pressure) Liquefied gas

 - Is its critical temperature between –50 °C and +65 °C?
 - Yes: (High pressure) Liquefied gas
 - No: Compressed gas

 - Is the gas entirely in gaseous state at –50 °C?
 - Yes: Warning
Flammable liquids (1)

Flammable liquids are liquids having a flash point of not more than 93 °C. They are classified under one of the 4 categories of this class according to the following criteria:

Category 1: Extremely flammable liquid and vapour
– Flash point < 23 °C and initial boiling point ≤ 35 °C

Category 2: Highly flammable liquid and vapour
– Flash point < 23 °C and initial boiling point > 35 °C

Category 3: Flammable liquid and vapour
– Flash point ≥ 23 °C and ≤ 60 °C

Category 4: Combustible liquid
– Flash point > 60 °C and ≤ 93 °C

Classification should be made according to decision logic 2.6
Flammable liquids (2)

Gas oils, diesel and light heating oils in the flash point range of 55 °C to 75 °C may be regarded as a special group for some regulatory purposes.

Liquids with a flash point of more than 35 °C and not more than 60 °C may be regarded as non-flammable liquids for some regulatory purposes (e.g. transport) if negative results have been obtained in the sustained combustibility test L.2 of Part III, section 32 of the UN Manual of Tests and Criteria.

Viscous flammable liquids such as paints, enamels, lacquers, varnishes, adhesives and polishes may be regarded as a special group for some regulatory purposes (e.g. transport). The classification or the decision to consider these liquids as non-flammable may be determined by the pertinent regulation or competent authority.

Aerosols should not be classified as flammable liquids (see GHS, Chap. 2.3).
2.6.4 Decision logic and guidance

The decision logic and guidance, which follow, are not part of the harmonized classification system, but have been provided here as additional guidance. It is strongly recommended that the person responsible for classification studies the criteria before and during use of the decision logic.

2.6.4.1 Decision logic

Once the flash point and the initial boiling point are known, the classification of the substance or mixture and the relevant harmonized label information can be obtained according to decision logic 2.6.

Decision logic 2.6 for flammable liquids

1. Gas oils, diesel and light heating oils in the flash point range of 55 °C to 75 °C may be regarded as a special group for some regulatory purposes as these hydrocarbons mixtures have varying flash point in that range. Thus classification of these products in Category 3 or 4 may be determined by the pertinent regulation or competent authority.

2. Liquids with a flash point of more than 35 °C and not more than 60 °C may be regarded as non-flammable liquids for some regulatory purposes (e.g. transport) if negative results have been obtained in the sustained combustibility test L.2 of Part III, section 32 of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria.
Flammable solids are solids which are readily combustible, or may cause or contribute to fire through friction

Readily combustible solids are powdered, granular, or pasty substances which are dangerous if they can be easily ignited by brief contact with an ignition source, such as a burning match, and if the flame spreads rapidly

Flammable solids are classified in one of the 2 categories for this class according to the results of the burning rate test (Test method N.1: see Part III, sub-section 33.2.1 of the UN Manual of Tests and Criteria)
Flammable solids (2)

Category 1:
- Burning rate test:
 - Substances or mixtures other than metal powders:
 - (a) wetted zone does not stop fire; and
 - (b) burning time < 45 s or burning rate > 2.2 mm/s
 - Metal powders: burning time ≤ 5 min

Category 2:
- Burning rate test:
 - Substances or mixtures other than metal powders:
 - (a) wetted zone stops the fire for at least 4 min; and
 - (b) burning time < 45 s or burning rate > 2.2 mm/s
 - Metal powders: burning time > 5 min and ≤ 10 min

Classification should be made according to decision logic 2.7
2.7.4 Decision logic

The decision logic which follows, is not part of the harmonized classification system, but has been provided here as additional guidance. It is strongly recommended that the person responsible for classification studies the criteria before and during use of the decision logic.

To classify a flammable solid, the test method N.1 as described in Part III, sub-section 33.2.1 of the *UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria* should be performed. The procedure consists of two tests: a preliminary screening test and a burning rate test. Classification is according to decision logic 2.7.

Decision logic 2.7 for flammable solids

1. The substance/mixture is a solid
2. Screening test: positive
 - Burning rate test:
 - (a) For substances or mixtures other than metal powders: Burning time < 45 s or burning rate > 2.2 mm/s?
 - (b) Metal powders: Burning time ≤ 10 min?
3. Classification:
 - Category 1: Danger
 - Category 2: Warning
4. Not classified
Self-reactive substances and mixtures (1)

Self-reactive substances and mixtures are thermally unstable liquid or solid substances or mixtures liable to undergo a strongly exothermic decomposition even without participation of oxygen (air)

This definition excludes substances and mixtures classified under the GHS as explosives (Chapter 2.1), organic peroxides (Chapter 2.15) or as oxidizing (chapters 2.13 and 2.14)
Self-reactive substances and mixtures (2)

7 categories for this class (“types A to G”). Classification to be made according to the results of Test Series A to H described in Part II of the *UN Manual of Tests and Criteria*:

- Test series A: determine if there is propagation of detonation
- Test series B: determine if there is detonation in the package
- Test series C: determine if there is propagation of deflagration
- Test series D: determine if there is rapid deflagration in the package
- Test series E: determine the effect of heating under confinement
- Test series F: determine the explosive power
- Test series G: determine if there is thermal explosion in the package
- Test series H: determine the self-accelerating decomposition temp.

Classification is according to decision logic 2.8
Decision logic 2.8 for self-reactive substances and mixtures
Pyrophoric liquids and solids

Pyrophoric liquids/solids are liquids/solids which, even in small quantities, are liable to ignite within five minutes after coming into contact with air.

Pyrophoric liquids and solids are classified under one unique category for each class (Category 1) on the basis of the results of the following tests of the *Manual of Tests and Criteria*:

- **For liquids:** Test N.3 (Part III, sub-section 33.3.1.5); and
- **For solids:** Test N.4 (Part III, sub-section 33.3.1.6).

Classification of pyrophoric liquids is according to decision logic 2.9.

Classification of pyrophoric solids is according to decision logic 2.10.
Decision logic 2.9 for pyrophoric liquids

The substance/mixture is a liquid

Does it ignite within 5 min when poured into a porcelain cup filled with diatomaceous earth or silica gel?

Yes → Category 1 Danger

No

Does it ignite or char a filter paper within 5 min?

Yes → Category 1 Danger

No → Not classified
2.10.4.2 Guidance

The classification procedure for pyrophoric solids need not be applied when experience in production or handling shows that the substance or mixture does not ignite spontaneously on coming into contact with air at normal temperatures (i.e. the substance or mixture is known to be stable at room temperature for prolonged periods of time (days)).
A self-heating substance or mixture is a solid or liquid substance or mixture, other than a pyrophoric liquid or solid, which, by reaction with air and without energy supply, is liable to self-heat. These substances or mixtures differ from a pyrophoric liquid or solid in that they will ignite only when in large amounts (kg) and after long periods of time (hours or days).

Classification to be made according to the results obtained in test method N.4 (Part III, sub-section 33.3.1.6 of the UN Manual of Tests and Criteria). Test method N.4 determine the ability of the substance or mixture to undergo oxidative self-heating by exposure of it to air at temperatures of 100 °C, 120 °C or 140 °C in a 25 mm or 100 mm wire mesh cube.

2 categories for this class
Self-heating substances and mixtures (2)

Category 1:
A positive result is obtained in a test using a 25 mm sample cube at 140 °C

Category 2:
(a) A positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C and the substance or mixture is to be packed in packages with a volume of more than 3 m³; or

(b) A positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C, a positive result is obtained in a test using a 100 mm cube sample at 120 °C and the substance or mixture is to be packed in packages with a volume of more than 450 litres; or

(c) A positive result is obtained in a test using a 100 mm sample cube at 140 °C and a negative result is obtained in a test using a 25 mm cube sample at 140 °C and a positive result is obtained in a test using a 100 mm cube sample at 100 °C

Classification is according to decision logic 2.11
2.11.4.1 Decision logic

To classify a self-heating substance or mixture, test method N.4, as described in Part III, sub-section 33.3.1.6 of the *UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria*, should be performed. Classification is according to decision logic 2.11.

Decision logic 2.11 for self-heating substances and mixtures

```
Substance/mixture

Does it undergo dangerous self-heating when tested in a 100 mm sample cube at 140 °C?  
   No → Not classified
   Yes

   Does it undergo dangerous self-heating when tested in a 25 mm sample cube at 140 °C?  
      No → Not classified
      Yes

      Is it packaged in more than 3 m³?  
         No
         Yes → Category 1

   Yes → Category 1

   Does it undergo dangerous self-heating when tested in a 100 mm sample cube at 120 °C?  
      No → Not classified
      Yes

      Is it packaged in more than 450 litres volume?  
         No
         Yes → Category 2

   Yes → Category 2

   Does it undergo dangerous self-heating when tested in a 100 mm sample cube at 100 °C?  
      No
      Yes

      Does it undergo dangerous self-heating when tested in a 100 mm sample cube at 100 °C?  
         No
         Yes → Category 2

   No → Not classified
```
Substances and mixtures which, in contact with water, emit flammable gases (1)

Substances and mixtures which, in contact with water, emit flammable gases are substances or mixtures which, in contact with water, emit flammable gases are solid or liquid substances or mixtures which, by interaction with water, are liable to become spontaneously flammable or to give off flammable gases in dangerous quantities.

A substance of mixture shall be classified in one of the 3 categories of this class if:

(a) Spontaneous ignition takes place in any step of the test procedure; or
(b) There is an evolution of a flammable gas at a rate > 1 litre/kg of substance per hour

according to test method N.5 (Part III, sub-section 33.4.1.4 of the UN Manual of Tests and Criteria)
Substances and mixtures which, in contact with water, emit flammable gases (2)

Category 1:
Any substance or mixture which reacts vigorously with water at ambient temperatures and demonstrates generally a tendency for the gas produced to ignite spontaneously, or which reacts readily with water at ambient temperatures such that the rate of evolution of flammable gas is equal to or greater than 10 litres per kilogram of substance over any one minute

Category 2:
Any substance or mixture which reacts readily with water at ambient temperatures such that the maximum rate of evolution of flammable gas is equal to or greater than 20 litres per kilogram of substance per hour, and which does not meet the criteria for Category 1

Category 3:
Any substance or mixture which reacts slowly with water at ambient temperatures such that the maximum rate of evolution of flammable gas is equal to or greater than 1 litre per kilogram of substance per hour, and which does not meet the criteria for Categories 1 and 2

Classification is in accordance with decision logic 2.12
2.12.4 Decision logic and guidance

The decision logic and guidance which follow, are not part of the harmonized classification system, but have been provided here as additional guidance. It is strongly recommended that the person responsible for classification studies the criteria before and during use of the decision logic.

2.12.4.1 Decision logic

To classify a substance or mixture which, in contact with water emits flammable gases, test N.5 as described in Part III, sub-section 33.4.1.4 of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, should be performed. Classification is according to decision logic 2.12.

Decision logic 2.12 for substances and mixtures which, in contact with water, emit flammable gases

<table>
<thead>
<tr>
<th>Substance/mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>In contact with water, does it react slowly at ambient temperatures such that the maximum rate of evolution of flammable gas is ≥ 1 litre per kg of substance per hour?</td>
</tr>
<tr>
<td>No → Not classified</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>In contact with water, does the substance react vigorously with water at ambient temperatures and demonstrate generally a tendency for the gas produced to ignite spontaneously, or does it react readily with water at ambient temperatures such that the rate of evolution of flammable gas is ≥ 10 litres per kg of substance over any one minute?</td>
</tr>
<tr>
<td>Yes → Category 1 Danger</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>In contact with water, does it react readily with water at ambient temperatures such that the maximum rate of evolution of flammable gas is ≥ 20 litres per kg of substance per hour?</td>
</tr>
<tr>
<td>Yes → Category 2 Danger</td>
</tr>
<tr>
<td>No → Category 3 Warning</td>
</tr>
</tbody>
</table>
Oxidizing liquids (1)

An oxidizing liquid is a liquid which, while in itself not necessarily combustible, may, generally by yielding oxygen, cause, or contribute to, the combustion of other material.

Liquids are classified in one of the three categories of this class in accordance with test method O.2 (Part III, sub-section 34.4.2 of the *UN Manual of Tests and Criteria*).

The test results are assessed on the basis of:

a) Whether the mixture substance/cellulose spontaneously ignites; and

b) The comparison of the mean time taken for the pressure to rise from 690 kPa to 2070 kPa (gauge), with those of the reference substances.
Oxidizing liquids (2)

Category 1:
Any substance or mixture which, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, spontaneously ignites; or the mean pressure rise time of a 1:1 mixture, by mass, of substance and cellulose is less than that of a 1:1 mixture, by mass, of 50% perchloric acid and cellulose

Category 2:
Any substance or mixture which, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 40% aqueous sodium chlorate solution and cellulose; and the criteria for Category 1 are not met

Category 3:
Any substance or mixture which, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, exhibits a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 65% aqueous nitric acid and cellulose; and the criteria for Categories 1 and 2 are not met

Classification is in accordance with decision logic 2.13
2.13.4 Decision logic and guidance

The decision logic and guidance which follow, are not part of the harmonized classification system, but have been provided here as additional guidance. It is strongly recommended that the person responsible for classification studies the criteria before and during use of the decision logic.

2.13.4.1 Decision logic

To classify an oxidizing liquid test method O.2 as described in Part III, sub-section 34.4.2 of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria should be performed. Classification is according to decision logic 2.13.

Decision logic 2.13 for oxidizing liquids

1. **The substance/mixture is a liquid**
2. **Does it, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, exhibits a pressure rise ≥ 2070 kPa (gauge)?**
 - **Yes**
 - **No**
 - Not classified
3. **Does it, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, exhibit a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 65% aqueous nitric acid and cellulose?**
 - **Yes**
 - **No**
 - Not classified
4. **Does it, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, exhibit a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 40% aqueous sodium chlorate and cellulose?**
 - **Yes**
 - **No**
 - Category 3 Warning
5. **Does it, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, spontaneously ignite or exhibit a mean pressure rise time less than that of a 1:1 mixture, by mass, of 50% perchloric acid and cellulose?**
 - **Yes**
 - **No**
 - Category 2 Danger
6. **Does it, in the 1:1 mixture, by mass, of substance (or mixture) and cellulose tested, exhibit a mean pressure rise time less than or equal to the mean pressure rise time of a 1:1 mixture, by mass, of 50% perchloric acid and cellulose?**
 - **Yes**
 - **No**
 - Category 1 Danger
Oxidizing solids (1)

An oxidizing solid is a solid which, while in itself is not necessarily combustible, may, generally by yielding oxygen, cause, or contribute to, the combustion of other material.

Oxidizing solids are classified in one of the three categories of this class in accordance with test method O.1 in Part III, sub-section 34.4.1 or test O.3 in Part III, sub-section 34.4.3 of the *UN Manual of Tests and Criteria*.

The test results are assessed on the basis of:

(a) Whether the mixture substance/cellulose ignites and burns; and

(b) the comparison of the mean burning time with those of the reference mixtures.
Oxidizing solids (2)

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria using test O.1</th>
<th>Criteria using test O.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Any substance or mixture which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time less than the mean burning time of a 3:2 mixture, (by mass), of potassium bromate and cellulose.</td>
<td>Any substance or mixture which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning rate greater than the mean burning rate of a 3:1 mixture (by mass) of calcium peroxide and cellulose.</td>
</tr>
<tr>
<td>2</td>
<td>Any substance or mixture which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 2:3 mixture (by mass) of potassium bromate and cellulose and the criteria for Category 1 are not met.</td>
<td>Any substance or mixture which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning rate equal to or greater than the mean burning rate of a 1:1 mixture (by mass) of calcium peroxide and cellulose and the criteria for Category 1 are not met.</td>
</tr>
<tr>
<td>3</td>
<td>Any substance or mixture which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning time equal to or less than the mean burning time of a 3:7 mixture (by mass) of potassium bromate and cellulose and the criteria for Categories 1 and 2 are not met.</td>
<td>Any substance or mixture which, in the 4:1 or 1:1 sample-to-cellulose ratio (by mass) tested, exhibits a mean burning rate equal to or greater than the mean burning rate of a 1:2 mixture (by mass) of calcium peroxide and cellulose and the criteria for Categories 1 and 2 are not met.</td>
</tr>
</tbody>
</table>

Classification is in accordance with decision logic 2.14
Decision logic 2.14 for oxidizing solids

The substance/mixture is a solid

Yes

Does it, in the 4:1 or 1:1 sample-to-cellulose ratio, by mass, tested ignite or burn?

No → Not classified

Yes →

Does it, in the 4:1 or 1:1 sample-to-cellulose ratio, by mass, tested, exhibit a mean burning time less than or equal to the mean burning time of a 3:7 mixture, by mass, of potassium bromate and cellulose or a mean burning rate greater than or equal to the mean burning rate of a 1:2 mixture, by mass, of calcium peroxide and cellulose?

No → Not classified

Yes →

Does it, in the 4:1 or 1:1 sample-to-cellulose ratio, by mass, tested, exhibit a mean burning time less than or equal to the mean burning time of a 2:3 mixture, by mass, of potassium bromate and cellulose or a mean burning rate greater than or equal to the mean burning rate of a 1:1 mixture, by mass, of calcium peroxide and cellulose?

No → Warning

Yes →

Does it, in the 4:1 or 1:1 sample-to-cellulose ratio, by mass, tested, exhibit a mean burning time less than the mean burning time of a 3:2 mixture, by mass, of potassium bromate and cellulose or a mean burning rate than the mean burning rate of a 3:1 mixture, by mass, of calcium peroxide and cellulose?

No → Danger

Yes → Category 1 Danger

Not classified

Category 2

Category 3
Organic peroxides (1)

Organic peroxides are liquid or solid organic substances which contain the bivalent -0-0- structure and may be considered derivatives of hydrogen peroxide, where one or both of the hydrogen atoms have been replaced by organic radicals.

The term also includes organic peroxide formulations (mixtures)
Organic peroxides (2)

They are thermally unstable substances or mixtures which may:

– undergo exothermic self-accelerating decomposition
– be liable to explosive decomposition
– burn rapidly
– be sensitive to impact or friction
– react dangerously with other substances

will be regarded as possessing explosive properties when in laboratory testing the formulation is liable to detonate, to deflagrate rapidly or to show a violent effect when heated under confinement
Organic peroxides (3)

7 categories for this class ("types A to G")

Classification to be made according to the results of Test Series A to H described in Part II of the UN Manual of Tests and Criteria:

- Test series A: determine if there is propagation of detonation
- Test series B: determine if there is detonation in the package
- Test series C: determine if there is propagation of deflagration
- Test series D: determine if there is rapid deflagration in the package
- Test series E: determine the effect of heating under confinement
- Test series F: determine the explosive power
- Test series G: determine if there is thermal explosion in the package
- Test series H: determine the self-accelerating decomposition temp.

Classification is in accordance with decision logic 2.15
Decision logic 2.15 for organic peroxides
Corrosive to metals

Substance or a mixture which by chemical action will materially damage, or even destroy, metals.

Substances/mixtures corrosive to metals are classified in a single category for this class, according to the test in Part III, sub-section 37.4 of the *Manual of Tests and Criteria*

Classification is in accordance with decision logic 2.16
Decision logic 2.16 for substances and mixtures corrosive to metals

Substance/mixture

Does it corrode on either steel or aluminum surfaces at a rate exceeding 6.25 mm/year at a test temperature of 55 °C when tested on both materials?

No → Not classified

Yes → Category 1

Warning
Desensitized explosives are solid or liquid explosive substances or mixtures which are phlegmatized to suppress their explosive properties in such a manner that they do not mass explode and do not burn too rapidly and therefore may be exempted from the hazard class “Explosives”

- Solid:
 explosive substances or mixtures which are wetted with water or alcohols or are diluted with other substances, to form a homogeneous solid mixture to suppress their explosive properties. *(This includes desensitization achieved by formation of hydrates of the substances)*

- Liquid:
 explosive substances or mixtures which are dissolved or suspended in water or other liquid substances, to form a homogeneous liquid mixture to suppress their explosive properties
Desensitized explosives shall be classified as packaged for supply and use in one of the four categories of this class depending on the corrected burning rate \((A_C)\) using the test “burning rate test (external fire)” described in Part V, sub-section 51.4 of the Manual of Tests and Criteria, according to Table 2.17.1:

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Desensitized explosives with a corrected burning rate ((A_C)) equal to or greater than 300 kg/min but not more than 1200 kg/min</td>
</tr>
<tr>
<td>2</td>
<td>Desensitized explosives with a corrected burning rate ((A_C)) equal to or greater than 140 kg/min but less than 300 kg/min</td>
</tr>
<tr>
<td>3</td>
<td>Desensitized explosives with a corrected burning rate ((A_C)) equal to or greater than 60 kg/min but less than 140 kg/min</td>
</tr>
<tr>
<td>4</td>
<td>Desensitized explosives with a corrected burning rate ((A_C)) less than 60 kg/min</td>
</tr>
</tbody>
</table>

Classification is in accordance with decision logic 2.17
2.17.4.1 Decision logic

To classify desensitized explosives, data for the explosive potential and the corrected burning rate should be determined as described in Part V of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria. Classification is according to decision logic 2.17.1.

Decision logic 2.17.1 for desensitized explosives

1. The substance/mixture is a solid or liquid?
2. Does it contain an explosive substance or mixture which is phlegmatized to suppress the explosive properties?
3. Is the exothermic decomposition energy less than 300 J/g?

 No Not classified as a desensitized explosive

 Yes May fall within the scope of other physical hazard classes

Test 6 (a), 6 (b)

4. Is the result a mass explosion?

 No Yes Explosive

 Explosive Division 1.1 Danger

 Yes Explosive Division 1.1 Danger

 No Burning rate test (Part V, sub-section 51.4)

5. Is the result a mass explosion?

 No Yes Explosive

 Explosive Division 1.1 Danger

 Yes Hazard class “Explosives” (see criteria in Chapter 2.1)

 No Not classified as a desensitized explosive

 Yes May fall within the scope of other physical hazard classes

 No Explosive

 Explosive Division 1.1 Danger

 Yes Hazard class “Explosives” (see criteria in Chapter 2.1)
No

\[A_c \geq 300 \text{ kg/min but } \leq 1200 \text{ kg/min?} \]

No

\[A_c \geq 140 \text{ kg/min but } < 300 \text{ kg/min?} \]

No

\[A_c \geq 60 \text{ kg/min but } < 140 \text{ kg/min?} \]

No

\[A_c < 60 \text{ kg/min?} \]

Yes

Category 1

Danger

Yes

Category 2

Danger

Yes

Category 3

Warning

Yes

Category 4

Warning
Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

End of classification criteria for substances and mixtures
Physical hazards