UNECE FOREST SECTOR OUTLOOK STUDY III:
SELECTED SCENARIOS & PRELIMINARY RESULTS

Prakash Nepal1, Jeffrey Prestemon2

1Research Assistant Professor, Dept. of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC

2Project Leader and Senior Scientist, USDA Forest Service, Southern Research Station, Forest Economics and Policy Unit, Research Triangle Park, NC

Meeting on Exchange of Experience in FSOS and Related Work
Koli, Finland
February 14, 2019
Outline

- Introduction
- Scenario development and selection process
- Projection methods
 - Projections of global forest products markets
 - Projections of net carbon sequestration in forests and wood products
- Preliminary results
 - Reference scenarios
 - Alternative scenarios
- Conclusions

Photo: P. Nepal
Introduction

✦ UNECE FSOS III Background Report

✦ What does it contain?
 • The selected sets of reference and alternative scenarios
 • Projection methods
 • Projected forest and forest products sector outcomes for UNECE

✦ What’s the purpose?
 • Provide transparent information on the scenario selection and modelling process
 • Obtain feedback on the developed scenarios and modeling results
 • Ensure that most relevant forest sector policy debates in the UNECE are covered
 • Provide information for more detailed country-level forest sector and forest conditions projections and policy studies
UNECE/FAO ToS on FSOS and the Joint UNECE/FAO Working Party on FSEM developed a range of policy questions related to:

- Climate change mitigation & adaptation
- Structural changes in forest products demand and supply
- Green economy and sustainable development goals

<table>
<thead>
<tr>
<th>Possible scenarios</th>
<th>Average ranking (1=lowest, 3=highest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>2.8</td>
</tr>
<tr>
<td>Growth of specific products (construction, fibres, biorefineries)</td>
<td>2.8</td>
</tr>
<tr>
<td>Climate change adaptation</td>
<td>2.6</td>
</tr>
<tr>
<td>Upcoming market scenarios (China and Africa)</td>
<td>2.6</td>
</tr>
<tr>
<td>Economic disturbances</td>
<td>2.6</td>
</tr>
<tr>
<td>Natural disasters</td>
<td>2.4</td>
</tr>
<tr>
<td>Nature conservation</td>
<td>2.4</td>
</tr>
<tr>
<td>Trade barriers</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Scenario development/selection

Recommended alternative scenarios incorporating high priority questions

<table>
<thead>
<tr>
<th>The potential of C sequestration in wood products due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assumed increases in wood construction in the UNECE region or globally</td>
</tr>
<tr>
<td>2. Assumed increases in demand for traditional wood products in UNECE regions or globally</td>
</tr>
<tr>
<td>3. Assumed technological advances allowing a significant increase of wood fibre use (new products)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The potential of climate change mitigation through</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. (Re-) forestation due to assumed policy driven sig. increase of forest area in the UNECE regions</td>
</tr>
<tr>
<td>5. Changing silvicultural methods (update to the EFSOS II scenario “maximizing biomass carbon”)</td>
</tr>
<tr>
<td>6. Substitution in the energy sector through an increased use of energy</td>
</tr>
<tr>
<td>7. A combination of above scenarios to determine the maximum carbon sequestration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differences in supply of forest resources under the four representative concentration pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Differences in supply of forest resources under the four representative concentration pathways</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. increase in demand for wood in construction within UNECE region or outside (esp. China)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. A sig. increase in demand for wood in construction within UNECE region or outside (esp. China)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. increase in demand for wood-fibres for textiles and other products</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. A sig. increase in demand for wood-fibres for textiles and other products</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. economic collapse globally and/or in specific countries/regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. A sig. economic collapse globally and/or in specific countries/regions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The successful development of an alternative energy source reducing the demand for wood energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. The successful development of an alternative energy source reducing the demand for wood energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. decrease in demand for printing & paper coupled with increased demand for packaging paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. A sig. decrease in demand for printing & paper coupled with increased demand for packaging paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. increase in biorefinery capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. A sig. increase in biorefinery capacity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. increase in forest plantations outside of the UNECE region (e.g., in Africa and/or Asia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. A sig. increase in forest plantations outside of the UNECE region (e.g., in Africa and/or Asia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A sig. increase in the rate, severity, or extent of forest-based natural disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. A sig. increase in the rate, severity, or extent of forest-based natural disturbances</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The adoption of new and more highly restrictive trade barriers between countries and/or regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. The adoption of new and more highly restrictive trade barriers between countries and/or regions</td>
</tr>
</tbody>
</table>
13 different scenarios were selected based on 3 criteria:

- Availability of a global forest sector model that can model the majority of the recommended scenarios in an integrated way
- Existence of past studies that could answer the recommended questions without new modelling
- Availability of resources and expertise

SSP2
- High Forest Area (HFA)
- High Wood Cons. All (HWC All)
- High Wood Cons. Select (HWC Select)
- High Forest Area + High Wood Cons. All (HFA_HWC_All)

SSP3
- High Forest Area (HFA)
- High Wood Cons. All (HWC All)
- High Wood Cons. Select (HWC Select)

SSP5
- High Forest Area (HFA)
- High Wood Cons. All (HWC All)
- High Wood Cons. Select (HWC Select)
Scenario description: Reference

- Reference scenarios
 - The reference scenarios were directly adopted from the IPCC-inspired five shared socioeconomic pathways (SSPs)
 - SSP2, SSP3, SSP5 are included in the report
 - SSP1 & SSP4 are not included (results available)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Assumption</th>
<th>Projected outcomes</th>
</tr>
</thead>
</table>
| SSP2 | • “Middle-of-the-road” world vision
• Forest products market drivers
 • Income
 • Total population
 • Rural population density
 • Labor per unit of forest area
 • Total forest area
 • Planted forest area | • Total and planted forest areas
• Forest stocks
• Wood removals
• Prices
• Consumption
• Production
• Trade
• Forest sector carbon sequestration |
| SSP3 | • Poorer and less equal world
• Market drivers: same as above | Same as above |
| SSP5 | • Wealthier and more equal world
• Market drivers: same as above | Same as above |
Scenario description: Alternative

High Forest Area (HFA)

- Assumes global future efforts to mitigate climate change by policy driven significant increases in total forest area (planted + natural)
- Total forest and planted forest area increase by 10% by 2040, relative to the projected area in a reference scenario in 2040

High Wood Consumption in All Countries (HWC All)

- Represents assumed future worldwide structural changes in wood products demand for traditional and new wood products and increased use of wood fibre in biorefineries
- Sawnwood and panel products consumption double by 2040, relative to the projected consumption of those products in a reference scenario in 2040

High Wood Consumption in Selected Countries (HWC All)

- Assumes doubling of demand for structural and nonstructural wood products in six countries outside of the UNECE, by 2040, relative to demands in a reference scenario
- Six most populous non-UNECE countries: Brazil, China, India, Indon., Mexico, Pakistan

High Forest Area + High Wood Consumption in All Countries (HFA_HWC_All)

- Evaluates whether assumed increases in forest area coupled with increased wood product consumption would achieve max. C sequestration among selected scenarios
Scenario description: Alternative

Recommended alternative scenarios incorporating high priority questions

<table>
<thead>
<tr>
<th>The potential of C sequestration in wood products due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assumed increases in wood construction in the UNECE region or globally</td>
</tr>
<tr>
<td>2. Assumed increases in demand for traditional wood products in UNECE regions or globally</td>
</tr>
<tr>
<td>3. Assumed technological advances allowing a significant increase of wood fibre use (new products)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The potential of climate change mitigation through</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. (Re-) forestation due to assumed policy driven sig. increase of forest area in the UNECE regions</td>
</tr>
<tr>
<td>5. Changing silvicultural methods (update to the EFSOS II scenario “maximizing biomass carbon”)</td>
</tr>
<tr>
<td>6. Substitution in the energy sector through an increased use of wood for energy</td>
</tr>
<tr>
<td>7. A combination of above scenarios to determine the maximum carbon sequestration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differences in supply of forest resources under the four representative concentration pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Differences in supply of forest resources under the four representative concentration pathways</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increases in demand for wood products</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. A sig. increase in demand for wood in construction within UNECE region or outside (esp. China)</td>
</tr>
<tr>
<td>10. A sig. increase in demand for wood-fibres for textiles and other products</td>
</tr>
<tr>
<td>11. A sig. economic “collapse” globally and/or in specific countries/regions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The successful development of an alternative energy source reducing the demand for wood energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. The successful development of an alternative energy source reducing the demand for wood energy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increases in demand for packaging paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. A sig. decrease in demand for printing & writing paper coupled with increased demand for packaging paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increase in biorefinery capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. A sig. increase in biorefinery capacity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increase in forest plantations</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. A sig. increase in forest plantations outside of the UNECE region (e.g., in Africa and/or Asia)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increase in the rate, severity, or extent of forest-based natural disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. A sig. increase in the rate, severity, or extent of forest-based natural disturbances</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adoption of new and more highly restrictive trade barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. The adoption of new and more highly restrictive trade barriers between countries and/or regions</td>
</tr>
</tbody>
</table>
Scenario description: Alternative

- Existing studies can help answer three policy questions:
 - Impacts of trade barriers: Buongiorno and Johnston (2018)
 - Impact of forest plantations outside UNECE: Nepal et al. (in review)
 - Carbon benefit of wood substitution: Sathre and O’Connor (2010)

- Alternative approaches are being evaluated to model the effects of climate change:
 - Developing econometric models of forest growth
 \[
 \text{forest growth} = f(\text{temperature}, \text{precipitation}, \text{CO}_2 \text{ concentration})
 \]
 - Impute the effects of climate change on forest growth, based on existing studies

- The effects of future growth of wood fibres due to expanded demand by biorefineries will be assessed qualitatively

- Effects of assumed economic “collapse” can be gauged by comparing SSP3 outcomes with SSP2 or SSP5
Scenario development/selection

Recommended alternative scenarios incorporating high priority questions

The potential of C sequestration in wood products due to

1. Assumed increases in wood construction in the UNECE region or globally
2. Assumed increases in demand for traditional wood products in UNECE regions or globally
3. Assumed technological advances allowing a significant increase of wood fibre use (new products)

The potential of climate change mitigation through

4. (Re-) forestation due to assumed policy driven sig. increase of forest area in the UNECE regions
5. Changing silvicultural methods (update to the EFSOS II scenario “maximizing biomass carbon”)
6. Substitution in the energy sector through an increased use of energy/ wood substitution for nonwood
7. A combination of above scenarios to determine the maximum carbon sequestration

8. Differences in supply of forest resources under the four representative concentration pathways
9. A sig. increase in demand for wood in construction within UNECE region or outside (esp. China)
10. A sig. increase in demand for wood-fibres for textiles and other products
11. A sig. economic “collapse” globally and/or in specific countries/regions
12. The successful development of an alternative energy source reducing the demand for wood energy
13. A sig. decrease in demand for printing & writing paper coupled with increased demand for packaging paper
14. A sig. increase in biorefinery capacity
15. A sig. increase in forest plantations outside of the UNECE region (e.g., in Africa and/or Asia)
16. A sig. increase in the rate, severity, or extent of forest-based natural disturbances
17. The adoption of new and more highly restrictive trade barriers between countries and/or regions
Projection Methods: Forest Products Market

- Use of Global Forest Products Model (GFPM)
 - Widely used peer-reviewed global forest sector model, capable of modeling
 - both demand and supply of forest products
 - all UNECE subregions
 - the majority of the recommended scenarios
 - Provides market equilibrium projections of timber harvests, prices, & quantities of 14 wood products produced, consumed & traded

- Beginning year is 2014; projections are made to 2040

- Augmentation to GFPM for FSOS III modeling
 - A revised total forest area projection model, driven by income and demographic variables (rural pop. density and labor/forest area)
 - A planted forest projection model
Projection Methods: Forest sector carbon

- Carbon stored in above-and below-ground live biomass
 - Based on Johnston et al. (in press)
 - Relates to the projected changes in forest stocks
 - Based on estimated ratio of forest stocks and carbon pool data reported in the 2015 Global Forest Resource Assessment Report

- Carbon stored in harvested wood products
 - Based on Johnston et al. (in press)
 - Relates to wood products produced, consumed, and traded
 - Based on 2006 IPCC Guidelines for National GHG Inventories
 - The “production approach” is used (i.e., imported wood excluded)
Reference Scenarios: SSP2, SSP3, SSP5
Preliminary Results: Reference Scenarios

- **Key outcomes**

 - Comparing SSP2 and SSP5 against SSP3, we can conclude that wealthier and more equal worlds lead to:
 - Higher forest products consumption
 - Higher forest product prices
 - Higher roundwood removals
 - Higher production and trade of manufactured wood products
Total Forest Area—Reference Scenarios

Total forest area - World

- SSP2-REF
- SSP3-REF
- SSP5-REF

Total forest area - Europe

- SSP2-REF
- SSP3-REF
- SSP5-REF

Total forest area - North America

- SSP2-REF
- SSP3-REF
- SSP5-REF

Total forest area - Russian Federation

- SSP2-REF
- SSP3-REF
- SSP5-REF
Planted Forest Area - Reference Scenarios

Planted forest area - World

Planted forest area - Europe

Planted forest area - North America

Planted forest area - Russian Federation
Forest Stock-Reference Scenarios

Forest stock - World

- SSP2-REF
- SSP3-REF
- SSP5-REF

Forest stock - Europe

- SSP2-REF
- SSP3-REF
- SSP5-REF

Forest stock - North America

- SSP2-REF
- SSP3-REF
- SSP5-REF

Forest stock - Russian Federation

- SSP2-REF
- SSP3-REF
- SSP5-REF

UNECE
Food and Agriculture Organization of the United Nations
World Prices - Reference Scenarios
Roundwood Production—Reference Scenarios

Roundwood production - World

- SSP2-REF
- SSP3-REF
- SSP5-REF

Roundwood production - Europe

- SSP2-REF
- SSP3-REF
- SSP5-REF

Roundwood production - North America

- SSP2-REF
- SSP3-REF
- SSP5-REF

Roundwood production - Russian Federation

- SSP2-REF
- SSP3-REF
- SSP5-REF

Million m³

2015 2020 2025 2030 2035 2040

UNECE
Food and Agriculture Organization of the United Nations
Forest Biomass Carbon-Reference Scenarios

Forest biomass carbon - World

- **C stock (gt CO₂e)**
 - Range: -1,800 to 0
 - X-axis: 2015-20 to 2035-40

Forest biomass carbon - Europe

- **C stock (gt CO₂e)**
 - Range: -1,800 to 0
 - X-axis: 2015-20 to 2035-40

Forest biomass carbon - North America

- **C stock (gt CO₂e)**
 - Range: -300 to 0
 - X-axis: 2015-20 to 2035-40

Forest biomass carbon - Russia Federation

- **C stock (gt CO₂e)**
 - Range: -140 to 0
 - X-axis: 2015-20 to 2035-40

Legend

- SSP2, flux
- SSP3, flux
- SSP5, flux
- SSP2, stock
- SSP3, stock
- SSP5, stock
Wood Products Carbon-Reference Scenarios

Wood products carbon - World

- **Wood products carbon - Europe**

- **Wood products carbon - North America**

- **Wood products carbon - Russian Federation**

UNECE

[Logo]

Food and Agriculture Organization of the United Nations
Preliminary Results

Alternative Scenario: High Forest Area (HFA)
Shown for only SSP2 combination
Results: High Forest Area Scenario

- **Key outcomes (relative to SSP2 reference)**
 - Increased forest stocks
 - Increased forest biomass carbon
 - Reduced product prices
 - Increased global forest products production
 - Production increased or decreased in individual countries/regions, depending on relative changes in comparative advantages in producing products
 - Increased carbon in wood products
World Prices: High Forest Area Scenario

Industrial roundwood world price

![Graph showing industrial roundwood world price trends from 2015 to 2040 for SSP2-REF, SSP2-HFA, and % Change.](image)

Sawnwood world price

![Graph showing sawnwood world price trends from 2015 to 2040 for SSP2-REF, SSP2-HFA, and % Change.](image)

Panel world price (average)

![Graph showing panel world price (average) trends from 2015 to 2040 for SSP2-REF, SSP2-HFA, and % Change.](image)

Paper world price (average)

![Graph showing paper world price (average) trends from 2015 to 2040 for SSP2-REF, SSP2-HFA, and % Change.](image)
Production: High Forest Area Scenario
Forest Biomass Carbon: High Forest Area Scenario

Forest biomass carbon - World

<table>
<thead>
<tr>
<th>Year</th>
<th>2015-20</th>
<th>2020-25</th>
<th>2025-30</th>
<th>2030-35</th>
<th>2035-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>C flux, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C flux SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forest biomass carbon - Europe

<table>
<thead>
<tr>
<th>Year</th>
<th>2015-20</th>
<th>2020-25</th>
<th>2025-30</th>
<th>2030-35</th>
<th>2035-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>C flux, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C flux SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forest biomass carbon - North America

<table>
<thead>
<tr>
<th>Year</th>
<th>2015-20</th>
<th>2020-25</th>
<th>2025-30</th>
<th>2030-35</th>
<th>2035-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>C flux, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C flux SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forest biomass carbon - Russian Federation

<table>
<thead>
<tr>
<th>Year</th>
<th>2015-20</th>
<th>2020-25</th>
<th>2025-30</th>
<th>2030-35</th>
<th>2035-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>C flux, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C flux SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock, SSP2-REF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C stock SSP2-HFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Results

Alternative Scenario: High Wood Consumption in All Countries (HWC All)
Shown for only SSP2 combination
Results: High Wood Consumption in All Countries

- **Key outcomes (relative to SSP2 reference)**
 - Reduced forest stocks
 - Reduced forest biomass carbon
 - Increased product prices
 - Increased global production and net exports, except for paper products
 - Increased carbon in wood products
 - But not enough to offset the loss in forest biomass carbon
World Prices: High Wood Consumption, All

![Graphs showing world prices for industrial roundwood, sawnwood, panel, and paper](graphs.png)
Production: High Wood Consumption, All

Change in inst. rndwd. production
- **Europe**
- **North America**
- **Russian Federation**

Change in sawnwood production
- **Europe**
- **North America**
- **Russian Federation**

Change in panel production
- **Europe**
- **North America**
- **Russian Federation**

Change in paper production
- **World**
- **Europe**
- **North America**
- **Russian Federation**
Net Export: High Wood Consumption, All

Change in indst. rndwd. net export
- Europe
- North America
- Russian Federation

Change in sawnwood net export
- Europe
- North America
- Russian Federation

Change in panel net export
- Europe
- North America
- Russian Federation

Change in paper net export
- Europe
- North America
- Russian Federation
Forest Carbon: High Wood Consumption, All
Wood Carbon: High Wood Consumption, All

Wood product carbon - World

Wood products carbon - Europe

Wood product carbon - North America

Wood products carbon - Russian Federation
Preliminary Results

Alternative scenarios

High Wood Consumption in Selected Countries (HWC Select)

High Forest Area + High Wood Consumption in All Countries (HFA_HWC_All)

Shown for only SSP2 combination
Results: *HWC Select* and *HFA_HWC_All*

- **High Wood Consumption in Selected Countries (HWC Select)**
 - Projected effects were similar to the effects observed in the *HWC All* scenario, but of lesser magnitudes
 - Reduced forest stocks, reduced forest biomass carbon
 - Increased product prices
 - Increased global production, except for paper products
 - Increased carbon in wood products
 - Not enough to offset loss in forest biomass carbon

- **High Forest Area+Wood Consumption in All Countries (HFA_HWC_All)**
 - Projected effects were similar to the effects observed in the *HFA and HWC All* scenario, but of lesser magnitudes
 - Second highest C sequestration (after HFA)
 - Price decline smaller than in HFA
 - Production slightly greater than in HWC All
Conclusions

- An attempt to show how global forest sector modelling can provide the information needed to answer important policy questions.

- Varying insights into the likely effects of future forest sector policy and market changes on forests and forest products sectors.

- These effects are mainly related to projected changes in forest products prices, and by the associated impacts on:
 - Wood removals, forest stocks
 - Production, consumption, and trade of solidwood and paper products in individual countries.

- Projections suffer from inherent uncertainties:
 - The projected trends and differences in outcomes between scenarios are still valid.
Planned Next Steps

<table>
<thead>
<tr>
<th>Actions</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your feedback today</td>
<td>14 Feb 2019</td>
</tr>
<tr>
<td>Finalizing FSOS report outline</td>
<td>15 Feb 2019</td>
</tr>
<tr>
<td>Implementation of a climate change-induced adjustment in projected forest productivity (at least as an alternative scenario, implemented in one or more SSPs)</td>
<td></td>
</tr>
<tr>
<td>Revised model runs based on feedback and any other adjustments warranted by the core modeling team</td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td></td>
</tr>
<tr>
<td>Complete Draft Report</td>
<td>Late 2019</td>
</tr>
<tr>
<td>Review of Draft Report</td>
<td>Late 2019-Early 2020</td>
</tr>
<tr>
<td>Complete Final Report</td>
<td>Early 2020</td>
</tr>
<tr>
<td>Science delivery and distribution</td>
<td>2020-2021</td>
</tr>
</tbody>
</table>
Thank you

Comments, questions?

Contact: Prakash Nepal
 pnepal@ncsu.edu
 pnepal@fs.fed.us
 919-549-4067

Contact: Jeff Prestemon
 jprestemon@fs.fed.us
 919-549-4033

Photo: P. Nepal