Modified wood: processes, products and markets

Holger Militz

Wood Biology and Wood Technology Georg-August-University Göttingen GERMANY

content

- Why modification?
- How (principles)
 - Processes

- Products
- Markets

Wood: material of the future

- Ecological
- Sustainable
- Renewable
- Esthetical
- Technologically diverse
- Modern

Wood: material of the future

Energy efficient

End-of-life: energy

Wood: material of the future?

Weak points:

- Moisture sensitive
- UV-stability
- •Dimensional unstable
- •Resistance against fungi
- Soft surface

Wood: material of the future?

How to solve these problems?

- Use wood with high natural quality (as many tropical hardwoods)
 - Availability (mid term, long term)
 - Sustainability
- Use of wood preservatives
 - Toxicity issues
 - New biocides with low impact
 - Only durability item solved
- Use of new technologies for wood treatment!!

What is "wood modification"?

Principles of wood modification

Lumen filling	Cell wall filling	Reaction with wood polymers	Cross linking	Degradation of cell wall
				<u> </u>

Bilder: Sandermann (1963)

Modification methods

Modification method	Commercial	Principle
Heat treatment	X	
Acetylation (Accoya)	X	
Melamine resin	(X)	
DMDHEU (Belmadur)	X	
Furfurylation(Kebony)	X	
Silicone/Silane	(x)	
oil / wax/ parafins	X	
Chitosan		

Treatment steps

- → liquid, catalyst
- → vacuum-pressure impregnation
- drying and reaction
- → drying temp: above 100 C

Thermo treatment (TMT, Thermowood)

Process:

- no chemicals
- temperature 180°C to 220°C
- many wood species used
- difference between producers: technology

used

Producers (Europe)

- Finland
- The Netherlands
- France
- Austria
- Germany
- Russia

Plato

Production (2007): approx.100.000 m³ ?

Acetylation

Process:

- impregnation with acetic anhydride
- reaction at elevated temperatures
- post treatment (acetic acid)

Holz und Essigsäure-Anhydrid → acetyliertes Holz und Essigsäure

Production site "Accoya"

Quelle: www.titanwood.com

Accsys Chemicals PLC (UK) Production since 2007

Furfurylation

silicon based compounds

Silanes, silicones

degussa.

creating essentials "water shade effects" www.holz.uni-goettingen.de cmai@gwdg.de

Wrinkle free wood?

- Dimensionally stable
- Crease resistant
- "Easy care" "Non-iron"

Polymerisable chemicals

Belmadur® Technology

Room temperature

Temperature > 100°C

First application in Germany: Fa. Becker/ Brakel

Fa. Becker: Furnierformholz

Solid wood-veneers-fibres

Material properties

Water uptake

Shrinkage and swelling

Resistance against fungi ENv 807

Brinell hardness (parket flooring)

Production and markets

Market survey "modified wood" Status quo: production

* Production heat treated wood in Europe: approx. 100.000 m³

* Production other wood modification treatments: approx. 50.000 m³

markets

- Biocide treated wood
 - Costs!!
 - Special products
- Markets of tropical hardwoods
 - Hazard classes 1-5
 - "high quality"
- Special products

esthetics

Foto Parkett: Hamberger, Ro

(Photos by Mitteramskogler/ Austria)

(Photos by Mitteramskogler/ Austria)

(Photos by Mitteramskogler/ Austria)

(Photos by Thermowood Association, Finland)

products: hazard classes 1-5

BASF The Chemical Company

Basis materials for wood modification

- Fast growing
- Easy "treatable"
- Large quantaties

Basis materials for wood modification

- Pines
- Poplars
- •Beech?
- Eucalypts
- •Other fast growing wood species!

Outlook "modified wood"

- 1. New methods will get to market
- 2. Will get larger market share
- 3. Will be introduced in high quality/ special products
- Must be marketed as "new material"
- New type of industry will develop ("wood modifiers") between chemical industry and wood industry
 - get involved in this new business!

Thank you for your attention!

