Development of rules from administrative data

Michelle Simard
Statistics Canada
UNECE Worksessions on Statistical Disclosure Control Methods
Helsinki, October 2015
Outline

• Progress Status - Canada
• Administrative Data
• Proposed solutions
 • for risk: the Companion
 • for method: The Layered Perturbation Method
• Future
Current Status

• **G- CONFID**
 - For skewed data - mostly business surveys
 - Primary (PCS) and Complementary Cell suppression (CCS)

• New in 2015:
 - Additive controlled rounding (G-TAB)

• For Fall 2016, the automated treatment of:
 - Data in the presence of waivers
 - Variables containing both positive and negative values
 - Absolute values
 - Linear combinations including proxy variables
 - Survey weights
Current Status – Social Surveys

• Real Time Remote Access (RTRA)
 • Started in 2009
 • Currently 29 social surveys (+ cycles), 5 administrative files
 • International Users

• Generalized Tabulation System (G-TAB)
 • Integration with our common tools infrastructure, generalized systems and our new dissemination model
 • GUI, Engine and Confidentiality modules
 • Starting transition of social surveys to G-TAB
 • Both tools share the same Engine and Confidentiality modules
Current Status – G-TAB

• Created efficiencies, robustness and responsiveness in our process
• Improved quality and standardization (rules, methods, metadata)
• Accelerated data availability
• SDC methods developed for
 • Counts, means, percentiles, quartiles, proportions, ratios, Gini coefficient, geometric means, level change, percentage change, moving averages, Z-tests
• Additive and Controlled rounding
 • Other rules: Min cells rule, no 0 and no 1 rules, etc...
• Quality indicators (C.V., S.E)
• What’s next?
 Administrative data and TOTAL
Administrative Data

- Why not treating them like survey
 - Census of a given population
 - No sampling, no weights
 - Outside StatCan
 - Different ownership, governance and policy framework (STC)
 - Often acquired under a legal framework from known institutions
 - Own dissemination approach
 - Release is still under the Statistics Act

- Continuous increase of administrative data in all programs

- Our dissemination activities and our business evolved
 - More complex than what it used to be internally
 - In the past 3 years: defined or created new
 - division, policies, governance, ownership framework ...
Administrative Data: some definitions

- **Type A:**
 - Discrete variables or continuous variables with no dominance
 - Institutions-type files

- **Type B:**
 - Continuous variables, fiscal-type information, skewed distribution
 - Taxation files, immigration database

- **Other types:**
 - Census linked with one administrative file
 - Linkage of administrative files and/or survey files

- Dealt with types A and B
Develop options considering also
- Users (internal vs. external)
- Types
- Governance

Impossible to develop a “no risk” approach
Different types, different ways of using them
 - Risk management has to be integrated
 - Needed a framework more than just methods
Administrative Data – The Approach

- Disclosure control framework - 3 R: the rules, the risks, the roles

 - Risk: the Companion
 - Support, guide, help and TEACH the analysts, users, directors about the disclosure risk

 - SDC rules
 - Introducing the Layered Perturbation Method (LPM)

 - Roles and responsibilities
 - Confidentiality methodologists GTAB/RTRA
 - Administrative data (data sources) methodologists
 - Administrative data (data sources) analysts
 - Directors (owner of the acquired files)
The Companion

• Disclosure risk management tool
 • To be implemented for various systems, outputs and tools
 • Provides decision-support information
 • Does not replace the expertise

• Plans for G-TAB Companion
 • Scan of the outputs (tabular, statistical analyses)
 • Provide a quick assessment on how sensitive a table is (with a global score or a color-code)
 • Provide a detailed log of the potential disclosure risks of a table or model
 • Suggest possible solutions

• Users can then decide to
 • Release or not the table as is
 • Take appropriate measures to ensure that the risk is more manageable
The risk is measured based on:

1. Geographic levels
 - National
 - Provincial
 - Sub-provincial – High level
 - Sub-provincial – Low level

2. Sensitive values
 (ex: Rare type of cancer)

3. Proportion of cells with low counts (1 or 2)

4. Presence of full cells

5. Presence of dominance (Type B: means and totals)

6. Presence of derived variables

Score Function

Requires client’s input

Automated process

The Companion
The Layered Perturbation Method

- Developed for personal taxation data in a custom tabulation environment
- Few dominant units in a cell total
- Covers residual disclosure from multiple tabular requests (focus on differencing)

Benefits
- Protection of ratios
- Treatment of zeroes and negative values
- Maintenance of data quality (minimal loss information)
- Minimal manual intervention
- Computational simplicity
The Layered Perturbation Method

- Suppress sensitive cells only (no CCS)
- Perturb units in all other cells (e.g., using Evans-Zayatz-Slanta (EZS) multiplicative noise $w_i=1+\varepsilon_i$ for $\varepsilon_i \sim (0, \sigma^2)$)
- Largest units perturbed consistently
- Median units perturbed semi-consistently
- Smallest units not perturbed
Basic idea 1: Pseudo-random hash numbers (h_i)
- Attached to each unit
- E.g., $h_i \sim \text{Uniform}(0,1)$ used to determine unit-specific noise w_i
- h_i' used to determine unit-cell-specific noise w_i'

Basic idea 2: Layered perturbation
- Largest n_1 units are always perturbed consistently using w_i
- Next n_2 units are perturbed semi-consistently
 - Use a mixture of w_i & w_i' for those n_2 units (unit-specific and cell-specific)
- Remaining units are not perturbed (no noise)

Similar to ABS TableBuilder
Basic idea 3: Focus on differencing problem

- Increase noise for top 3 units, if needed
- Set w_i from $(-1)^{i+1} \varepsilon_i$ to increase variance of differences
- Noises change direction if a top contributor is removed (even-ranked)
- Lessens risk when small unit is added/removed

Suppress sensitive (e.g. p%-rule) and small cells (e.g. $n<15$)

Perturb largest n_1+n_2 units in other cells following the method

Future

- Social data issues
 - Residual Disclosure
 - Monitoring the situation for social surveys
 - Increasing usage of Administrative Data
 - Big data
 - Linkages
 - Governance/Approval protocols before releasing

- Census
 - Reengineering their tabulation system