Disclosure Risk Measurement with Entropy in Two-Dimensional Sample Based Frequency Tables

L. Antal N. Shlomo M. Elliot
laszlo.antal@postgrad.manchester.ac.uk

University of Manchester

Work Session on Statistical Data Confidentiality
Helsinki, 5 October 2015
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Idea and Notation

We would like to measure the disclosure risk of sample based frequency tables

A disclosure risk measure will be developed on the basis of information theoretical expressions

Notation

- Frequency table: \(F = (F_1, F_2, \ldots, F_K) \)
- Population size: \(N = \sum_{i=1}^{K} F_i \)
- Sample based table: \(f = (f_1, f_2, \ldots, f_K) \)
- Sample size: \(n = \sum_{i=1}^{K} f_i \)
- Set of individuals: \(I \)
- Set of sampled individuals: \(I_S \)
- Set of table cells (categories): \(C = \{c_1, c_2, \ldots, c_K\} \)
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Two Random Variables

Categorization of individuals into table cells

- Categorization of all individuals

\[X : I \rightarrow C \]

- Categorization of sampled individuals

\[Y : I_S \rightarrow C \]
Entropic and Conditional Entropy

Entropy

\[H(X) = - \sum_{i=1}^{K} \Pr(X = c_i) \cdot \log \Pr(X = c_i) \]

Conditional Entropy

\[H(X|Y) = - \sum_{j=1}^{K} \Pr(Y = c_j) \cdot \sum_{i=1}^{K} \Pr(X = c_i|Y = c_j) \cdot \log \Pr(X = c_i|Y = c_j) \]

\[0 \leq H(X|Y) \leq H(X) \]
Disclosure risk measure:

\[
R_1(F, \mathbf{w}) = w_1 \cdot \frac{|D|}{K} + w_2 \cdot \left(1 - \frac{H(X)}{\log K}\right) - w_3 \cdot \frac{1}{\sqrt{N}} \cdot \log \frac{1}{e \cdot \sqrt{N}}
\]

where

- \(\mathbf{w} = (w_1, w_2, w_3) \) is a vector of weights,
- \(D \) is the set of zeroes in the population based table,
- \(e \) is the base of the natural logarithm.
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Disclosure Risk Measure for Sample Based Tables

Disclosure risk measure:

\[R_2(F, f, \mathbf{w}) = w_1 \cdot \left(\frac{|D|}{K} \right)^{\frac{|D \cup E|}{|D \cap E|}} + \]

\[w_2 \cdot \left(1 - \frac{H(X)}{\log K} \right) \cdot \left(1 - \frac{H(X|Y)}{H(X)} \right) - w_3 \cdot \frac{1}{\sqrt{N}} \cdot \log \frac{1}{e \cdot \sqrt{N}} \]

where

\[E \] is the set of zeroes in the sample based table

\[R_2(F, f, \mathbf{w}) \leq R_1(F, \mathbf{w}) \]
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Log-linear Model

- There might be sample zeroes that are not zeroes in the population based table.
- Sample based tables might not reflect cell probabilities well.
- Log-linear models, applied to samples based tables, provide better estimates of cell probabilities.
- In two-dimension: only one model that is not saturated.

\[
\frac{n_{ij} \cdot n_{\cdot j}}{n}
\]
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Pólya Urn Model

- Balls in an urn
- f_1 balls of colour 1, f_2 balls of colour 2, etc.
- θ black balls, where θ is a parameter
- In each step we draw a ball from the urn
- If the ball is coloured, then we replace it and add a new ball of the same colour to the urn
- If the ball is black, then we replace it and add a ball of a new colour to the urn
- New colours compensate for sample zeroes
Estimation of θ

- Number of cells that are zeroes in the sample based table but positive in the population based table:

$$|E| - |D|$$

- Introduce

$$W_z = \begin{cases}
1 & \text{if the } z\text{th draw is a black ball} \\
0 & \text{if the } z\text{th draw is a coloured ball}
\end{cases}$$

- We obtain θ by solving the following equation (numerically):

$$|E| - |D| = \sum_{z=1}^{N-n} E(W_z) = \sum_{z=1}^{N-n} \frac{\theta}{n + \theta + z - 1}$$
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
Data

- Data: extract from 2001 UK census data
- 10 selected output areas
- Output area × religion table: $K = 90$ cells, $N = 2449$
- Generated and real data
- 1000 samples, 1000 estimated population based tables for each sample
- Original disclosure risk: average of 1000 values
- Estimated disclosure risk: average of $1000 \times 1000 = 10^6$ values
Numerical Results

<table>
<thead>
<tr>
<th>Generated and real data</th>
<th>Original disc. risk $R_2(F, f, (0.1, 0.8, 0.1))$</th>
<th>Log-linear model $R_2(\hat{F}, f, (0.1, 0.8, 0.1))$</th>
<th>Pólya urn model $R_2(\hat{F}, f, (0.1, 0.8, 0.1))$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sampling fr.</td>
<td>Mean</td>
<td>St. dev.</td>
</tr>
<tr>
<td>Generated table</td>
<td>0.1</td>
<td>0.1538</td>
<td>0.0043</td>
</tr>
<tr>
<td>(log-linear m.)</td>
<td>0.05</td>
<td>0.1427</td>
<td>0.0059</td>
</tr>
<tr>
<td>Generated table</td>
<td>0.1</td>
<td>0.1694</td>
<td>0.0049</td>
</tr>
<tr>
<td>(Pólya urn m.)</td>
<td>0.05</td>
<td>0.1535</td>
<td>0.0061</td>
</tr>
<tr>
<td>Real table</td>
<td>0.1</td>
<td>0.1697</td>
<td>0.0048</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.1535</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

Table: Results of disclosure risk measures on generated and real population based tables
Outline

1. Idea and Notation
2. Disclosure Risk Measure for Population Based Tables
3. Disclosure Risk Measure for Sample Based Tables
4. Models to Estimate Population Frequencies
 - Log-linear Model
 - Pólya Urn Model
5. Numerical Results
6. Summary
A disclosure risk measure for population based tables has been extended to measure the disclosure risk of sample based tables.

Two models have been used to estimate population frequencies.

The results show relatively good estimates of the disclosure risk.

Further research should be done to measure the disclosure risk of higher dimensional frequency tables.
Thank you for your attention!