Present and future research on controlled tabular adjustment

Jordi Castro
jordi.castro@upc.edu

José Antonio González
jose.a.gonzalez@upc.edu

Dept. of Statistics and Operations Research
Group of Numerical Optimization and Modelling
Universitat Politècnica de Catalunya
Barcelona

This work has been supported by grants MTM2009-08747 of the Spanish Ministry of Science and Innovation, SGR-2009-1122 of the Government of Catalonia, and the project DwB INFRA-2010-262608 of the EU FP7
1 Introduction

2 Outline of minimum distance CTA

3 A heuristic approach for CTA

4 CTA for on-line tabular data servers

5 Conclusions and future work
Contents

1 Introduction

2 Outline of minimum distance CTA

3 A heuristic approach for CTA

4 CTA for on-line tabular data servers

5 Conclusions and future work
Introduction

Broad classification

Tabular data protection methods

- Pre-tabular
 - Perturbative
 - Additivity preserved (CTA)
 - Nonperturbative
 - Additivity not preserved
- Post-tabular
CTA features

CTA is a tool based on mathematical optimization:

- flexible with user requirements (additivity, subtotals, cell perturbations, etc.);
- applicable to any type of table;
- customizable:
 - L_1, L_2 or other distances,
 - accuracy limit,
 - time limit,
 - different solvers (CPLEX, Xpress, free solvers as CBC, GLPK...).

However, finding an optimal solution may not be an easy task.
Contents

1. Introduction

2. Outline of minimum distance CTA

3. A heuristic approach for CTA

4. CTA for on-line tabular data servers

5. Conclusions and future work
Outline of minimum distance CTA

Parameters for the MILP CTA model

- Set of cells \(a_i, i = 1, \ldots, n \).
- Set \(S = \{i_1, i_2, \ldots, i_s\} \subseteq \{1, \ldots, n\} \) of indices of sensitive cells.
- Linear relations \(A a = b \).
- Lower and upper protection level for each sensitive cell \(i \in S \): \(l_{pl_i} \) and \(u_{pl_i} \).
- Lower and upper bound for each cell: \(l_{a_i} \) and \(u_{a_i} \).
- Cell weights \(w_i \) for cost of adjustment of each cell.
Aim of CTA

Find released values x_i such that:

- Remain near a_i (distance considered: absolute value).
- Satisfy the linear relations $Ax = b$
- Satisfy the bounds: $l_{a_i} \leq x_i \leq u_{a_i}$
- Satisfy the protection levels: **either** $x_i \geq a_i + upl_i$ **or** $x_i \leq a_i - lpl_i$.

The optimization problem is:

$$
\min_{x} \quad \|x - a\|_L \\
\text{subject to} \\
Ax = b \\
l_x \leq x \leq u_x \\
x_i \leq a_i - lpl_i \text{ or } x_i \geq a_i + upl_i \quad i \in S.
$$
Defining cell deviations as: $z_i = x_i - a_i$,

and introducing binary variables for sensitive cells: $y_i, i \in S$ (e.g., when $y_i = 1$, the protection sense is up: $x_i \geq a_i + upl_i$; when $y_i = 0$, the protection sense is down: $x_i \leq a_i - lpl_i$).

The MILP model is:

$$
\begin{align*}
\min_{z^+, z^-, y} & \quad \sum_{i=1}^{n} w_i(z_i^+ + z_i^-) \\
\text{subject to} & \quad A(z^+ - z^-) = 0 \\
& \quad 0 \leq z^+ \leq u_z, \quad 0 \leq z^- \leq -l_z \\
& \quad y \in \{0, 1\}^s \\
& \quad upl_i y_i \leq z_i^+ \leq u_z y_i \\
& \quad lpl_i(1 - y_i) \leq z_i^- \leq -l_z(1 - y_i) \\
\end{align*}
$$
Contents

1. Introduction
2. Outline of minimum distance CTA
3. A heuristic approach for CTA
4. CTA for on-line tabular data servers
5. Conclusions and future work
The Block Coordinate Descent (BCD) strategy is based on the solution of a sequence of CTA subproblems, where some sensitive cells are free while the remaining ones have a fixed protection sense.

At each iteration, the MILP solution affects only a reduced set of binary variables. Once solved the subproblem, these variables remain fixed at their new state and another set is optimized.

Caution: convergence to an optimum is not guaranteed, but satisfactory behaviour in practice.
Finding a feasible starting point

We need an initial, feasible assignment for sensitive cells (up or down).

The SAT method is an approach which has proven to be successful in many instances:

1. For each constraint with at least one sensitive cell, detect any combination of these leading to infeasibility.

2. Collect all the infeasible combinations and look for a join assignation of the binary variables such that every combination is feasible.
SAT. An example

Every one of these combinations produces an infeasible problem:

(1) \(y_1 = 1, \ y_2 = 0, \ y_3 = 1, \ y_4 = 1 \) \(\Rightarrow \ y_1 \cap \neg y_2 \cap y_3 \cap y_4 \)

(2) \(y_3 = 1, \ y_2 = 1, \ y_4 = 1 \) \(\Rightarrow \ y_3 \cap y_2 \cap y_4 \)

(3) \(y_5 = 1, \ y_2 = 0, \ y_1 = 1 \) \(\Rightarrow \ y_5 \cap \neg y_2 \cap y_1 \)

Therefore, we need to make TRUE (SATisfiable) the logical negation:

\[\text{NOT (1)} \ \text{AND} \ \text{NOT (2)} \ \text{AND} \ \text{NOT (3)} \]

For instance: \(\neg y_1 \cap \neg y_3 \), i.e., \(y_1 = 0 \) and \(y_3 = 0 \). The other variables can take any value.

Solvers for the Satisfiability problem are very efficient.
Branch and cut vs Heuristics: some results

Dimensions of instances

<table>
<thead>
<tr>
<th>instance</th>
<th>n</th>
<th>s</th>
<th>m</th>
<th>N. coef.</th>
<th>cont.</th>
<th>bin.</th>
<th>constr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>case 35</td>
<td>499298</td>
<td>55527</td>
<td>20747</td>
<td>1007124</td>
<td>998596</td>
<td>55527</td>
<td>242855</td>
</tr>
<tr>
<td>case 36</td>
<td>1200439</td>
<td>107743</td>
<td>45638</td>
<td>2417196</td>
<td>2400878</td>
<td>107743</td>
<td>476610</td>
</tr>
<tr>
<td>case 37</td>
<td>296004</td>
<td>42652</td>
<td>10904</td>
<td>597057</td>
<td>592008</td>
<td>42652</td>
<td>181512</td>
</tr>
<tr>
<td>case 38</td>
<td>572373</td>
<td>81359</td>
<td>18873</td>
<td>1152345</td>
<td>1144746</td>
<td>81359</td>
<td>344309</td>
</tr>
</tbody>
</table>
Results

A heuristic approach for CTA

(UNECE/Eurostat. Tarragona 26-28 Oct/11) Present and future research on CTA
Contents

1. Introduction
2. Outline of minimum distance CTA
3. A heuristic approach for CTA
4. CTA for on-line tabular data servers
5. Conclusions and future work
Features of on-line tabular data servers should include:

- **Consistency on input**: if a cell in different tables, always sensitive or nonsensitive.

- **Consistency on output**: same protection sense for a cell in different tables.

- **Efficiency**: quick solution.

- **Reliability**: a solution always provided.
A possible CTA-like approach:

First stage: compute parameters of the CTA model and protection senses of sensitive cells.

Pros: ★ sensitivity rules satisfy consistency on input.
★★ fixed protection senses satisfy consistency on output.

Cons: risk of bad assignment of senses, making problem infeasible.

Second stage: solution of CTA problem (without binary variables);

Pros: Linear problem guarantees efficiency.

Cons/Opp. “Soft constraints” to deal with possible infeasibilities. This guarantees reliability.
Contents

1. Introduction
2. Outline of minimum distance CTA
3. A heuristic approach for CTA
4. CTA for on-line tabular data servers
5. Conclusions and future work
Conclusions

- The use of heuristics to solve CTA problems is highly advisable. BCD + SAT achieves good solutions in a reasonable amount of time.

- On-line data servers provide new challenges: keeping tables consistency and reliability with fast delivery of results.

- Future CTA versions implemented for on-line servers may solve continuous (fast) problems, at the expense of considering “soft-constraints”.

- The above tasks will be included to the RCTA package in the DwB project.
Thanks for your attention!