Assessing risk in statistical disclosure limitation

Silvia Polettini
Department of Statistics
University of Naples *Federico II*
Italy

Julian Stander
Department of Mathematics and Statistics
University of Plymouth
UK
Disclosure Risk

- The release of microdata files for research may lead to disclosure.
Disclosure Risk

- The release of microdata files for research may lead to disclosure.

Disclosure: a correct re-identification operation achieved by comparing a target individual in a released sample with a list that contains individual identifiers from an archive or population.
Disclosure Risk

- The release of microdata files for research may lead to disclosure.

Disclosure: a correct re-identification operation achieved by comparing a target individual in a released sample with a list that contains individual identifiers from an archive or population.

<table>
<thead>
<tr>
<th>Spy:</th>
<th>Name</th>
<th>KV 1: Sex</th>
<th>KV 2: Age</th>
<th>KV 3: Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Released:</td>
<td>KV 1: Sex</td>
<td>KV 2: Age</td>
<td>KV 3: Region</td>
<td>Income</td>
</tr>
</tbody>
</table>
Disclosure Risk

- The release of microdata files for research may lead to disclosure.

Disclosure: a correct re-identification operation achieved by comparing a target individual in a released sample with a list that contains individual identifiers from an archive or population.

<table>
<thead>
<tr>
<th>Spy:</th>
<th>Name</th>
<th>KV 1: Sex</th>
<th>KV 2: Age</th>
<th>KV 3: Region</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Released:</th>
<th>KV 1: Sex</th>
<th>KV 2: Age</th>
<th>KV 3: Region</th>
<th>Income</th>
</tr>
</thead>
</table>

- Social surveys: the released variables are often categorical and usually comprise publicly available variables (sex, age, region).
Disclosure Risk

• The release of microdata files for research may lead to disclosure.

> Disclosure: a correct re-identification operation achieved by comparing a target individual in a released sample with a list that contains individual identifiers from an archive or population.

<table>
<thead>
<tr>
<th>Spy:</th>
<th>Name</th>
<th>KV 1: Sex</th>
<th>KV 2: Age</th>
<th>KV 3: Region</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Released:</th>
<th>KV 1: Sex</th>
<th>KV 2: Age</th>
<th>KV 3: Region</th>
<th>Income</th>
</tr>
</thead>
</table>

> Social surveys: the released variables are often categorical and usually comprise publicly available variables (sex, age, region).

• Public variables that allow identification are called key variables (KV).
Disclosure Risk

- The release of microdata files for research may lead to disclosure.

- **Disclosure:** a correct re-identification operation achieved by comparing a target individual in a released sample with a list that contains individual identifiers from an archive or population.

 - **Spy:** Name KV 1: Sex KV 2: Age KV 3: Region

 - **Released:** KV 1: Sex KV 2: Age KV 3: Region Income

- Social surveys: the released variables are often categorical and usually comprise publicly available variables (sex, age, region).

- Public variables that allow identification are called key variables (KV).

- **Disclosure risk** is specific to a cell in the contingency table built by cross-tabulating the key variables.
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the **population** belonging to cell k, $k = 1, \ldots, K$
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the population belonging to cell k, $k = 1, \ldots, K$

(K: the number of combinations in the population).
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the **population** belonging to **cell** k, $k = 1, \ldots, K$
 (K: the number of combinations in the population).

- Let f_k be the corresponding observed **sample** frequency for **cell** k.
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the population belonging to cell k, $k = 1, \ldots, K$
 (K: the number of combinations in the population).
- Let f_k be the corresponding observed sample frequency for cell k.
- Given F_k, the **probability of re-identifying** an individual coming from cell k is
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the population belonging to cell k, $k = 1, \ldots, K$ (K : the number of combinations in the population).
- Let f_k be the corresponding observed sample frequency for cell k.
- Given F_k, the **probability of re-identifying** an individual coming from cell k is

 $$1/F_k.$$
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the population belonging to cell k, $k = 1, \ldots, K$

 (K: the number of combinations in the population).

- Let f_k be the corresponding observed sample frequency for cell k.

- Given F_k, the **probability of re-identifying** an individual coming from cell k is

 $$1/F_k.$$

- F_k unknown:

 We define the **re-identification risk** as
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the population belonging to cell k, $k = 1, \ldots, K$ (K: the number of combinations in the population).
- Let f_k be the corresponding observed sample frequency for cell k.
- Given F_k, the probability of re-identifying an individual coming from cell k is $1/F_k$.

- F_k unknown:

 - We define the **re-identification risk** as

 $$\mathbb{E}(1/F_k \mid f_1, \ldots, f_K).$$
Our **measure of disclosure risk** as follows:

- Let F_k be the number of individuals in the population belonging to cell k, $k = 1, \ldots, K$ (K: the number of combinations in the population).
- Let f_k be the corresponding observed sample frequency for cell k.
- Given F_k, the probability of re-identifying an individual coming from cell k is
 \[1/F_k. \]

- F_k unknown:
 - We define the **re-identification risk** as
 \[
 \mathbb{E} \left(\frac{1}{F_k} \mid f_1, \ldots, f_K \right).
 \]

 [Fienberg and Makov (1998); Omori (1998); Takemura (1998); Forster (2004); Benedetti and Franconi (1998)]
Estimation

Our approach is as follows:

- introduce a superpopulation model that describes the population and sample frequencies \(F = (F_1, \ldots, F_K), f = (f_1, \ldots, f_K) \) (Bayesian hierarchical model)
Estimation

Our approach is as follows:

- introduce a superpopulation model that describes the population and sample frequencies $\underline{F} = (F_1, \ldots, F_K), \underline{f} = (f_1, \ldots, f_K)$ (Bayesian hierarchical model)

- derive the posterior distribution $[F_k \mid f_1, \ldots, f_K]$ of population frequencies given sample frequencies
Estimation

Our approach is as follows:

- introduce a superpopulation model that describes the population and sample frequencies $\overline{F} = (F_1, \ldots, F_K)$, $\overline{f} = (f_1, \ldots, f_K)$ (Bayesian hierarchical model)

- derive the posterior distribution $[F_k \mid f_1, \ldots, f_K]$ of population frequencies given sample frequencies

- use this posterior to estimate the risk $r_k = \mathbb{E}(1/F_k \mid f_1, \ldots, f_K)$
Estimation

Our approach is as follows:

- Introduce a superpopulation model that describes the population and sample frequencies $\underline{F} = (F_1, \ldots, F_K)$, $\underline{f} = (f_1, \ldots, f_K)$ (Bayesian hierarchical model).

- Derive the posterior distribution $[F_k | f_1, \ldots, f_K]$ of population frequencies given sample frequencies.

- Use this posterior to estimate the risk $r_k = E\left(1/F_k \mid f_1, \ldots, f_K\right)$.

EB: use Empirical Bayes approach (Efron and Morris) to estimate model parameters using the observed data distribution; then substitute these estimates into $[F_k|\underline{f}]$ to obtain an estimate of risk.
Some Superpopulation Models

We describe a variety of Bayesian Hierarchical models, all of which share an assumption of independence that implies that \(r_k \) is defined as \(E(1/F_k | f_k) \) instead of \(E(1/F_k | f) \).
Some Superpopulation Models

We describe a variety of Bayesian Hierarchical models, all of which share an assumption of independence that implies that r_k is defined as $E(1/F_k \mid f_k)$ instead of $E(1/F_k \mid f)$.

First we consider the following models:
Some Superpopulation Models

We describe a variety of Bayesian Hierarchical models, all of which share an assumption of independence that implies that \(r_k \) is defined as \(E(1/F_k | f_k) \) instead of \(E(1/F_k | f) \).

First we consider the following models:

- **Model I** Benedetti-Franconi (1998) model
- **Model II** Bethlehem, Keller and Pannekoek (1990)-type model
- **Model III** a model by Polettini and Stander (2004)
- **Model IV** a modification of the model by Polettini and Stander (2004)
Some Superpopulation Models

We describe a variety of Bayesian Hierarchical models, all of which share an assumption of independence that implies that r_k is defined as $E(1/F_k | f_k)$ instead of $E(1/F_k | f)$.

First we consider the following models:

Model I Benedetti-Franconi (1998) model

Model II Bethlehem, Keller and Pannekoek (1990)-type model

Model III a model by Polettini and Stander (2004)

Model IV a modification of the model by Polettini and Stander (2004)

Next we describe the characteristics of these models and compare with
Some Superpopulation Models

We describe a variety of Bayesian Hierarchical models, all of which share an assumption of independence that implies that r_k is defined as $E(1/F_k | f_k)$ instead of $E(1/F_k | f)$.

First we consider the following models:

Model I Benedetti-Franconi (1998) model

Model II Bethlehem, Keller and Pannekoek (1990)-type model

Model III a model by Polettini and Stander (2004)

Model IV a modification of the model by Polettini and Stander (2004)

Next we describe the characteristics of these models and compare with

Model V a Dirichlet-multinomial-multinomial model.
Let the microdata file be a random sample of size \(n \) drawn from a finite population of \(N \) units.
Let the microdata file be a random sample of size n drawn from a finite population of N units.

Define
Let the microdata file be a random sample of size n drawn from a finite population of N units.

Define

$\pi_k = P($a member of the population falls into cell $k)$
Let the microdata file be a random sample of size n drawn from a finite population of N units.

Define

\[\pi_k = P(\text{a member of the population falls into cell } k) \]

\[p_k = P(\text{a member of population cell } k \text{ falls into the sample}) \]
A model by Benedetti and Franconi (1998):
A model by Benedetti and Franconi (1998):

\[F_k | f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]
A model by Benedetti and Franconi (1998):

\[F_k | f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]

Rinott (2003) showed that this model can be derived from the following Bayesian hierarchical model:
A model by Benedetti and Franconi (1998):

\[F_k|f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]

Rinott (2003) showed that this model can be derived from the following Bayesian hierarchical model:

\[
\begin{align*}
\pi_k & \sim m(\pi_k) \propto 1/\pi_k \\
F_k|\pi_k & \sim \text{Poisson}(N\pi_k) \\
f_k|F_k, \pi_k, p_k & \sim \text{binomial}(F_k, p_k), \text{ independently across cells.}
\end{align*}
\]
A model by Benedetti and Franconi (1998):

\[
F_k | f_k, p_k \sim \text{negative binomial}(f_k, p_k)
\]

Rinott (2003) showed that this model can be derived from the following Bayesian hierarchical model:

\[
\begin{align*}
\pi_k & \sim m(\pi_k) \propto 1 / \pi_k \\
F_k | \pi_k & \sim \text{Poisson}(N \pi_k) \\
f_k | F_k, \pi_k, p_k & \sim \text{binomial}(F_k, p_k), \text{ independently across cells.}
\end{align*}
\]

We refer to this model as Model I.
A model by Benedetti and Franconi (1998):

\[F_k | f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]

Rinott (2003) showed that this model can be derived from the following Bayesian hierarchical model:

\[
\begin{align*}
\pi_k & \sim m(\pi_k) \propto 1/\pi_k \\
F_k | \pi_k & \sim \text{Poisson}(N\pi_k) \\
f_k | F_k, \pi_k, p_k & \sim \text{binomial}(F_k, p_k), \text{ independently across cells.}
\end{align*}
\]

We refer to this model as **Model I**.

- Note that the hyperprior for \(\pi_k \) is improper, so that EB for parameter estimation is not feasible as \([f_k]\) is also improper.
A model by Benedetti and Franconi (1998):

\[F_k | f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]

Rinott (2003) showed that this model can be derived from the following Bayesian hierarchical model:

\[
\pi_k \sim m(\pi_k) \propto 1/\pi_k \\
F_k | \pi_k \sim \text{Poisson}(N\pi_k) \\
f_k | F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.}
\]

We refer to this model as Model I.

- Note that the hyperprior for \(\pi_k \) is improper, so that EB for parameter estimation is not feasible as \([f_k] \) is also improper.
- BF use \(\hat{p}_k = f_k / \hat{F}_D^k \), where \(\hat{F}_D^k \) is an estimate of \(F_k \) using the sampling design weights. This can sometimes be problematic.
A Bethlehem, Keller and Pannekoek (1990)-type model:
A Bethlehem, Keller and Pannekoek (1990)-type model:

\begin{align*}
\pi_k & \sim \text{gamma}(\alpha, K\alpha); \quad \mathbb{E}[\pi_k] = \frac{1}{K}, \quad \text{Var}[\pi_k] = \frac{1}{K^2\alpha} \\
F_k|\pi_k & \sim \text{Poisson}(N\pi_k) \\
f_k|F_k, \pi_k, p_k & \sim \text{binomial}(F_k, p_k), \text{ independently across cells.}
\end{align*}
A Bethlehem, Keller and Pannekoek (1990)-type model:

\[\pi_k \sim \text{gamma}(\alpha, K\alpha); \quad \mathbb{E}[\pi_k] = \frac{1}{K}, \quad \text{Var}[\pi_k] = \frac{1}{K^2\alpha} \]

\[F_k|\pi_k \sim \text{Poisson}(N\pi_k) \]

\[f_k|F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

[in the formalisation due to Rinott]
A Bethlehem, Keller and Pannekoek (1990)-type model:

\[\pi_k \sim \text{gamma}(\alpha, K\alpha); \mathbb{E}[\pi_k] = \frac{1}{K}, \text{Var}[\pi_k] = \frac{1}{K^2\alpha} \]

\[F_k|\pi_k \sim \text{Poisson}(N\pi_k) \]

\[f_k|F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{independently across cells}. \]

We refer to this model as Model II. [in the formalisation due to Rinott]
A Bethlehem, Keller and Pannekoek (1990)-type model:

\[\pi_k \sim \text{gamma}(\alpha, K\alpha); \ E[\pi_k] = \frac{1}{K}, \ \text{Var}[\pi_k] = \frac{1}{K^2\alpha} \]

\[F_k|\pi_k \sim \text{Poisson}(N\pi_k) \]

\[f_k|F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \ \text{independently across cells} \]

We refer to this model as Model II.

- If \(\alpha \to 0 \), then the gamma prior for \(\pi_k \) tends to the improper prior \(m(\pi_k) \propto 1/\pi_k \) of Model I.
A Bethlehem, Keller and Pannekoek (1990)-type model:

\[\pi_k \sim \text{gamma}(\alpha, K\alpha); \quad E[\pi_k] = \frac{1}{K}, \quad \text{Var}[\pi_k] = \frac{1}{K^2\alpha} \]

\[F_k|\pi_k \sim \text{Poisson}(N\pi_k) \]

\[f_k|F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

We refer to this model as Model II.

- If \(\alpha \to 0 \), then the gamma prior for \(\pi_k \) tends to the improper prior \(m(\pi_k) \propto 1/\pi_k \) of Model I.

Hence, as Rinott (2003) showed, the posterior distribution tends to

\[F_k|f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]

used by Benedetti and Franconi (1998).
A Bethlehem, Keller and Pannekoek (1990)-type model:

\[\pi_k \sim \text{gamma}(\alpha, K\alpha); \quad \mathbb{E}[\pi_k] = \frac{1}{K}, \quad \text{Var}[\pi_k] = \frac{1}{K^2\alpha} \]

\[F_k | \pi_k \sim \text{Poisson}(N\pi_k) \]

\[f_k | F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

We refer to this model as Model II.

- If \(\alpha \to 0 \), then the gamma prior for \(\pi_k \) tends to the improper prior \(m(\pi_k) \propto 1/\pi_k \) of Model I.

Hence, as Rinott (2003) showed, the posterior distribution tends to

\[F_k | f_k, p_k \sim \text{negative binomial}(f_k, p_k) \]

used by Benedetti and Franconi (1998).

A drawback: gamma hyperprior strongly concentrated on a small mean by the constraints on \([\pi_k] \) (\(K \) usually large): low variation across cells. Model I is less constrained.
A New Model

A New Model

\[
\begin{align*}
\pi_k &\sim \text{gamma}(\alpha, K\alpha) \\
F_k|\pi_k &\sim \text{Poisson}(N\pi_k) \\
p_k &\sim \gamma \text{ beta}(a\hat{p}_k, a(1-\hat{p}_k)) + (1-\gamma) \delta_{\{0\}}(p_k) \\
f_k|F_k, \pi_k, p_k &\sim \text{binomial}(F_k, p_k), \text{ independently across cells.}
\end{align*}
\]
A New Model

 \[\pi_k \sim \text{gamma}(\alpha, K\alpha) \]
 \[F_k | \pi_k \sim \text{Poisson}(N\pi_k) \]
 \[p_k \sim \gamma \text{ beta}(a\hat{p}_k, a(1 - \hat{p}_k)) + (1 - \gamma) \delta_{\{0\}}(p_k) \]
 \[f_k | F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

- We refer to this model as Model IV.
A New Model

\[\pi_k \sim \text{gamma}(\alpha, K\alpha) \]

\[F_k | \pi_k \sim \text{Poisson}(N\pi_k) \]

\[p_k \sim \gamma \text{ beta}(a\hat{p}_k, a(1 - \hat{p}_k)) + (1 - \gamma) \delta_{\{0\}}(p_k) \]

\[f_k | F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

- We refer to this model as Model IV.

- Here extra variation is introduced by also modelling \(p_k \)
A New Model

 \[\pi_k \sim \text{gamma}(\alpha, K\alpha) \]

 \[F_k | \pi_k \sim \text{Poisson}(N\pi_k) \]

- \[p_k \sim \gamma \text{beta}(a\hat{p}_k, a(1 - \hat{p}_k)) + (1 - \gamma) \delta_{\{0\}}(p_k) \]

 \[f_k | F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

- We refer to this model as Model IV.

- Here extra variation is introduced by also modelling \(p_k \)

- \(p_k \) drawn from a mixture of\
 \[\text{beta}(a\hat{p}_k, a(1 - \hat{p}_k)) \] (*)

 a point mass at zero
A New Model

\[\pi_k \sim \text{gamma}(\alpha, K\alpha) \]

\[F_k | \pi_k \sim \text{Poisson}(N \pi_k) \]

▶▶▶▶ \(p_k \sim \gamma \text{beta}(a \hat{p}_k, a(1 - \hat{p}_k)) + (1 - \gamma) \delta_{\{0\}}(p_k) \)

\[f_k | F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells}. \]

▶ We refer to this model as Model IV.

• Here extra variation is introduced by also modelling \(p_k \)

• \(p_k \) drawn from a mixture of \(\{ \text{beta}(a \hat{p}_k, a(1 - \hat{p}_k)) \} \) with weights \(\gamma \) and \(1 - \gamma \).
A New Model

 \[\pi_k \sim \text{gamma}(\alpha, K\alpha) \]
 \[F_k|\pi_k \sim \text{Poisson}(N\pi_k) \]
 \[p_k \sim \gamma \text{ beta}(a\hat{p}_k, a(1 - \hat{p}_k)) + (1 - \gamma) \delta_{\{0\}}(p_k) \]
 \[f_k|F_k, \pi_k, p_k \sim \text{binomial}(F_k, p_k), \text{ independently across cells.} \]

- We refer to this model as Model IV.

- Here extra variation is introduced by also modelling \(p_k \)

- \(p_k \) drawn from a mixture of \[
\begin{cases}
\text{a beta}(a\hat{p}_k, a(1 - \hat{p}_k)) & (\ast) \\
\text{a point mass at zero} & \\
\text{with weights } \gamma \text{ and } 1 - \gamma.
\end{cases}
\]

- The mean of each beta distribution in (\ast) is \(\hat{p}_k \). Here we make use of the sampling design weights through \(\hat{p}_k \).
Some features of superpopulation Model IV:
▶ Risk is cell-specific.
Some features of superpopulation Model IV:

- Risk is cell-specific.
- Model IV takes into account the features of the sampling scheme (small regions oversampled to get estimates with the same precision across regions)
Some features of superpopulation Model IV:

- Risk is cell-specific.
- Model IV takes into account the features of the sampling scheme (small regions oversampled to get estimates with the same precision across regions)
- Calibration is based on certain population contingency tables. Using calibrated sampling weights effectively *relaxes the assumption of independence* so introducing *association* into the model.
Some features of superpopulation Model IV:

- Risk is cell-specific.
- Model IV takes into account the features of the sampling scheme (small regions oversampled to get estimates with the same precision across regions)
- Calibration is based on certain population contingency tables. Using calibrated sampling weights effectively relaxes the assumption of independence so introducing association into the model.

Estimation under Model IV

- The form of \([f_k], [F_k|f_k]\) can be evaluated analytically.
Some features of superpopulation Model IV:

- Risk is cell-specific.

- Model IV takes into account the features of the sampling scheme (small regions oversampled to get estimates with the same precision across regions)

- Calibration is based on certain population contingency tables. Using calibrated sampling weights effectively relaxes the assumption of independence so introducing association into the model.

Estimation under Model IV

- The form of $[f_k], [F_k|f_k]$ can be evaluated analytically.

- We specify α, a and γ, using available information and the loglikelihood to assess our elicitation (EB approach does not work well in Models II→IV).
Some features of superpopulation Model IV:

- Risk is cell-specific.
- Model IV takes into account the features of the sampling scheme (small regions oversampled to get estimates with the same precision across regions)
- Calibration is based on certain population contingency tables. Using calibrated sampling weights effectively relaxes the assumption of independence so introducing association into the model.

Estimation under Model IV

- The form of \(f_k, [F_k | f_k] \) can be evaluated analytically.
- We specify \(\alpha, a \) and \(\gamma \), using available information and the loglikelihood to assess our elicitation (EB approach does not work well in Models II→IV).
- Finally, we estimate the risk using mean or mode of \([1/F_k | f_k] \).
An application

• We applied the proposed methodology to an artificial sample of data drawn from the Italian 1991 Census. We used the sampling scheme of the Labour Force Survey.
An application

- We applied the proposed methodology to an artificial sample of data drawn from the Italian 1991 Census. We used the sampling scheme of the Labour Force Survey.

- $N = 15, 142, 320; n = 53, 872$.
An application

- We applied the proposed methodology to an artificial sample of data drawn from the Italian 1991 Census. We used the sampling scheme of the Labour Force Survey.

- \(N = 15,142,320; \ n = 53,872. \)

- Key variables:
 - sex (2 categories)
 - age (recorded in 14 classes)
 - region (4: Campania, Lazio, Val d’Aosta, Veneto)
 - position in profession (14 categories)
 - relation with the head of the household (13 categories)
An application

- We applied the proposed methodology to an artificial sample of data drawn from the Italian 1991 Census. We used the sampling scheme of the Labour Force Survey.
- \(N = 15,142,320; \ n = 53,872. \)
- **Key variables:**
 - sex (2 categories)
 - age (recorded in 14 classes)
 - region (4: Campania, Lazio, Val d’Aosta, Veneto)
 - position in profession (14 categories)
 - relation with the head of the household (13 categories)
- \(K = 20384 \) but the number of nonempty cells is 12526 in the population and 2966 in the sample.
Models I and IV give similar patterns:

\begin{align*}
\text{Model I, Val d’Aosta} & \quad \text{Model IV, Val d’Aosta} \\
\text{Model I, other regions} & \quad \text{Model IV, other regions}
\end{align*}

Model IV performs better with risky cells.
Another New Model

• All the above models assume *independence* across cells.
Another New Model

• All the above models assume independence across cells.
• We hope that further improvements can be achieved by making some use of the structure of the contingency table.
Another New Model

- All the above models assume *independence* across cells.
- We hope that further improvements can be achieved by making some use of the *structure of the contingency table*.

Here is our model:

\[\pi \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K) \]
\[F | \pi \sim \text{multinomial}(N; \pi_1, \ldots, \pi_K), \]
\[f | F \sim \text{multinomial}(n; F_1/N, \ldots, F_K/N), \]

in which \(\pi = (\pi_1, \ldots, \pi_K) \), *etc.*
Another New Model

- All the above models assume *independence* across cells.
- We hope that further improvements can be achieved by making some use of the *structure of the contingency table*.

Here is our model:

\[\pi \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K) \]
\[F | \pi \sim \text{multinomial}(N; \pi_1, \ldots, \pi_K), \]
\[f | F \sim \text{multinomial}(n; F_1/N, \ldots, F_K/N), \]

in which \(\pi = (\pi_1, \ldots, \pi_K) \), *etc*.

We refer to this model as **Model V**.
Another New Model

• All the above models assume *independence* across cells.

• We hope that further improvements can be achieved by making some use of the *structure of the contingency table*.

▶ Here is our model:

\[
\begin{align*}
\pi & \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K) \\
F | \pi & \sim \text{multinomial}(N; \pi_1, \ldots, \pi_K), \\
f | F & \sim \text{multinomial}(n; F_1/N, \ldots, F_K/N),
\end{align*}
\]

in which \(\underline{\pi} = (\pi_1, \ldots, \pi_K) \), *etc*.

▶ We refer to this model as Model V.

• We perform inference using *Markov chain Monte Carlo methods*, implemented using *WinBUGS* and our own code.
Some Strategies for eliciting the $(\alpha_1, \ldots, \alpha_K)$ parameters
Some Strategies for eliciting the $(\alpha_1, \ldots, \alpha_K)$ parameters

• When no additional information is available, we can make use of the sampling design weights by taking $\alpha_k \propto \hat{F}_k^D$.
Some Strategies for eliciting the \((\alpha_1, \ldots, \alpha_K)\) parameters

- When no additional information is available, we can make use of the sampling design weights by taking \(\alpha_k \propto \hat{F}_k^D\).
- If data collected at a previous census were available, we could take

\[
\alpha_k \propto F_k^{\text{previous}}.
\]
Some Strategies for eliciting the \((\alpha_1, \ldots, \alpha_K)\) parameters

- When no additional information is available, we can make use of the sampling design weights by taking \(\alpha_k \propto \hat{F}_k^D\).
- If data collected at a previous census were available, we could take
 \[\alpha_k \propto F_k^{\text{previous}}.\]
- If only marginal tables were available, we could specify a conditional independence model corresponding to these marginal tables to elicit the \((\alpha_1, \ldots, \alpha_K)\) parameters.
Some Strategies for eliciting the \((\alpha_1, \ldots, \alpha_K)\) parameters

- When no additional information is available, we can make use of the sampling design weights by taking \(\alpha_k \propto \hat{F}_k^D\).
- If data collected at a previous census were available, we could take \(\alpha_k \propto F_k^{\text{previous}}\).
- If only marginal tables were available, we could specify a conditional independence model corresponding to these marginal tables to elicit the \((\alpha_1, \ldots, \alpha_K)\) parameters.
- Loglinear models used (by region):
 - Loglin 1: sex+(rel+age+posprof)^3
 - Loglin 2: rel+(sex+age+posprof)^3
Results for Val d’Aosta region (44% sample uniques; 77% of sample frequencies in 1-5.)

<table>
<thead>
<tr>
<th>$\hat{r}_k \leq 0.05$</th>
<th>$r_k > 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>102</td>
</tr>
</tbody>
</table>

Sensitivity is 0.94
Specificity is 0.97

<table>
<thead>
<tr>
<th>$\hat{r}_k \leq 0.05$</th>
<th>$r_k > 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>92</td>
</tr>
</tbody>
</table>

Sensitivity is 0.84
Specificity is 0.96
Results for Val d’Aosta region (44% sample uniques; 77% of sample frequencies in 1-5.)

<table>
<thead>
<tr>
<th></th>
<th>$r_k \leq 0.05$</th>
<th>$r_k > 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{r}_k \leq 0.05$</td>
<td>303</td>
<td>7</td>
</tr>
<tr>
<td>$\hat{r}_k > 0.05$</td>
<td>9</td>
<td>102</td>
</tr>
</tbody>
</table>

Sensitivity is 0.94
Specificity is 0.97

<table>
<thead>
<tr>
<th></th>
<th>$r_k \leq 0.05$</th>
<th>$r_k > 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{r}_k \leq 0.05$</td>
<td>298</td>
<td>17</td>
</tr>
<tr>
<td>$\hat{r}_k > 0.05$</td>
<td>14</td>
<td>92</td>
</tr>
</tbody>
</table>

Sensitivity is 0.84
Specificity is 0.96
Results for Val d’Aosta region (44% sample uniques; 77% of sample frequencies in 1-5.)

<table>
<thead>
<tr>
<th></th>
<th>(\hat{r}_k \leq 0.05)</th>
<th>(\hat{r}_k > 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_k \leq 0.05)</td>
<td>293</td>
<td>32</td>
</tr>
<tr>
<td>(r_k > 0.05)</td>
<td>19</td>
<td>77</td>
</tr>
</tbody>
</table>

Sensitivity is 0.71
Specificity is 0.94

<table>
<thead>
<tr>
<th></th>
<th>(\hat{r}_k \leq 0.05)</th>
<th>(\hat{r}_k > 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_k \leq 0.05)</td>
<td>312</td>
<td>109</td>
</tr>
<tr>
<td>(r_k > 0.05)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sensitivity is 0
Specificity is 1
Results for Val d’Aosta region (44% sample uniques; 77% of sample frequencies in 1-5.)

<table>
<thead>
<tr>
<th>$r_k \leq 0.05$</th>
<th>$r_k > 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{r}_k \leq 0.05$</td>
<td>293</td>
</tr>
<tr>
<td>$\hat{r}_k > 0.05$</td>
<td>19</td>
</tr>
</tbody>
</table>

Sensitivity is 0.71
Specificity is 0.94

<table>
<thead>
<tr>
<th>$r_k \leq 0.05$</th>
<th>$r_k > 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{r}_k \leq 0.05$</td>
<td>312</td>
</tr>
<tr>
<td>$\hat{r}_k > 0.05$</td>
<td>0</td>
</tr>
</tbody>
</table>

Sensitivity is 0
Specificity is 1
Some References

