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I. INTRODUCTION

1. Nonresponse is often inevitable in large scale surveys. There are two types of nonresponse:
unit nonresponse and item nonresponse. Unit nonresponse occurs when the values of every variables
of the survey are missing for some sampled units. Item nonresponse occurs when some, but not all,
variables are missing for a set of sampled units. The estimators of the parameters of interest may be
seriously affected by the missing values, which can introduce a bias and cause an additional variability.
Reweighting the respondent units and imputing the missing values allow to reduce the bias and the
variance caused by nonresponse.

2. In surveys with multiple variables of interest, different types of item nonresponse can occur. In
a first case, only one variable contains missing values. The other variables of the survey are completely
observed and they can be used to impute the missing values. Several imputation methods have been
developed in this context. Haziza [2009] presents an overview of deterministic and random imputa-
tion methods, including multiple and fractional imputation. Andridge and Little [2010] present an
overview of donor imputation methods. In a second case, nonresponse can affect multiple variables
monotonously. This pattern is suitable to longitudinal studies, when units stop participating in sur-
veys over time. The third case is treated in this paper: swiss cheese nonresponse, or non-monotone
nonresponse. This type of nonresponse occurs when all the variables of a survey contain missing values
without a particular pattern. There are few treatments for such a multivariate nonresponse. It is
difficult to preserve the distributions of the variables and the relationships between the variables with
such missing values in the dataset. Judkins [1997] proposed donor imputation methods and Andridge
and Little [2010] present an overview of existing methods. Some methods allow to impute iteratively;
for instance Raghunathan et al. [2001] use a sequence of regression models between the variables.

3. In this paper, balanced K-nearest neighbor imputation [Hasler and Tillé, 2016] is extended
to the swiss cheese nonresponse case. The properties and the advantages of this method justify the
interest of developing it for the multivariate case. It is a donor imputation method, so a random
imputation method which tends to preserve the distributions of the variables. Balanced imputation is
used to reduce the additional variability caused by the random method. A donor imputation method
also allows to impute a dataset containing continuous and categorical variables. In addition, only one
donor is selected to replace all missing values of a nonrespondent. In the multivariate case, this should
ensure coherence between the imputed values of a unit. Also, a nonrespondent can be imputed by
donors that are close, or similar, to it. Last, with calibration methods and balanced sampling methods,
the donors are selected so that if the observed values were imputed, the imputed total estimators and
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the observed total estimators should be the same. The context and the requirements of the method are
presented in Sections II and III. The construction of the matrix of imputation probabilities is detailed
in Section IV. The selection of the donors is treated in Section V and the imputation in Section VI.

II. Swiss cheese nonresponse

1. Consider a finite population U of size N with J variables of interest. A sample s of size n is
randomly selected with respect to a sampling design p(s). The inclusion probability of order one of
unit k is πk and the inclusion probability of order two of units k and ` is πk`. The vector of J variables
of interest, xk = (xk1, . . . , xkj , . . . , xkJ)

>, is not necessarily fully observed for all k ∈ s. It is expected
that a set of sampled units is completely observed, while all the variables of the rest of the sample are
subject to nonresponse. Consider sr ⊂ s a set of nr units for which the J variables are completely
observed. Consider sm = s − sr, a set of nm = n − nr units such that some values, but not all, are
missing. The nonresponse is non-monotone, it has no particular pattern.

2. Suppose that the missing values are treated by imputation. The imputed value of unit k for
the variable j is x∗kj . Then the population total of the variable j, Xj =

∑
k∈Uxkj , can be estimated by

X̂j =
∑
k∈s
rkjdkxkj +

∑
k∈s

(1− rkj)dkx∗kj ,

where dk = π−1k is the sampling weight of unit k and rkj is 1 if the variable j of unit k is observed and
0 otherwise.

III. Requirements

1. The proposed method is elaborated to ensure coherence and accuracy in the imputed dataset.
Four requirements are stated:

(i) The imputed values should be selected among the values of the nr completely observed units: a
donor imputation method should be used.

(ii) Only one donor should be selected per unit: all the missing values of a unit should be imputed
by the same donor.

(iii) The donors should be selected among the K nearest neighbors of the unit with missing values.
(iv) If the observed values of the nonrespondents were imputed, the total estimator of each variable

should remain unchanged.

2. Requirement (i) ensures that the imputed values are realistic and observed, for both categorical
and continuous variables. Also, a random imputation method tends to preserve the distributions of
the variables. The aim of requirement (ii) is to preserve the relationships between the variables.
Requirement (iii) allows the imputation of a nonrespondent by a similar unit and ensures a coherence
between the imputed values and the observed values of the nonrespondent. For instance, if the gender
and the height of people are measured, a missing height of a man should be imputed by the height of
a man. The idea behind requirement (iv) is that the observed information is unchanged if the units
with missing values were completely imputed. The estimators based on known values would not be
affected.

3. To implement a donor imputation method, each fully observed unit receives a probability to
donate its values to each nonrespondent. Then, one donor per nonrespondent can be selected with
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respect to those imputation probabilities. The imputation probabilities respecting requirements (i)-(iv)
are detailed in Section IV. The selection of the donors is detailed in Section V.

IV. Matrix of imputation probabilities

1. The first step of a donor imputation method is to assign imputation probabilities to complete
respondents. Consider ψ = (ψik), where (i, k) ∈ sr × sm, the matrix of imputation probabilities. The
element ψik is the probability that respondent i gives its values to nonrespondent k and

ψik ≥ 0. (1)

Only one donor is randomly selected for each unit k ∈ sm with respect to the imputation probabilities.
The sum of the imputation probabilities associated with a nonrespondent should be 1,∑

i∈sr
ψik = 1, (2)

for all k ∈ sm. All the missing values of unit k are imputed by the corresponding values of the donor.
Requirements (i) and (ii) are then fulfilled. Requirement (iii) limits the set of possible donors of a
unit to its K nearest neighbors. In this case, the probability that unit i ∈ sr gives its values to the
nonrespondent k ∈ sm is non-zero only if i is one of the K nearest neighbors of k;

ψik = 0 if i /∈ kpp(k), (3)

where kpp(`) = {j ∈ sr| rank(d(j, `)) ≤ K} and d(., .) is a distance function.

2. Requirement (iv) suggests that if the observed values of unit k ∈ sm were imputed by the
corresponding values of the donor, the total estimator of each variable would remain the same as the
total estimator calculated with the observed values only. The imputation probabilities are then chosen
so that if the known values of the units in sm were imputed by the expectation of their imputed
value, the total estimators would correspond to the estimators based on the observed values. So the
imputation probabilities respect ∑

k∈sm
dkrkj

∑
i∈sr

ψikxij =
∑

k∈sm
dkrkjxkj , (4)

for j = 1, . . . , J .

3. Equation (4) can be rewritten as

∑
i∈sr

 ∑
k∈sm

dkrkjψik

 rijxij =
∑
k∈sm

dkrkjxkj , (5)

for j = 1, · · · , J. The imputation probabilities respecting (5) can be found by calibration [Deville and
Särndal, 1992]. Consider the initial imputation probabilities

ψ0
ik =


1

K
if i ∈ kpp(k),

0 otherwise.
(6)

Final imputation probabilities ψik close to ψ0
ik respecting (5) are sought. Consider the distance function

G(ψik, ψ
0
ik) = ψik log(

ψik

ψ0
ik

) + ψ0
ik − ψik,
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then the elements of ψ are obtained by minimizing

L =
∑
k∈sm

∑
i∈sr

G(ψik, ψ
0
ik)−

J∑
j=i

λj

∑
i∈sr

∑
k∈sm

dkrkjψikrijxij −
∑
k∈sm

dkrkjxkj

 .
Using

∂L
∂ψik

= log
ψik

ψ0
ik

−
J∑

j=1

λjdkrkjrijxij = 0,

the imputation probabilities are

ψik = ψ0
ik exp

 J∑
j=1

λjdkrkjrijxij

 . (7)

Calibration techniques are used to find λ = (λ1, . . . , λJ)
> respecting Equations (1)-(4).

V. Imputation matrix

1. Once the matrix of imputation probabilities ψ is completed, the donors can be randomly
selected. Consider φ = (φik), where (i, k) ∈ sr × sm, the imputation matrix. The element φik is
1 if unit i is selected to donate its values to unit k, 0 otherwise. Only one donor is selected per
nonrespondent, so ∑

i∈sr
φik = 1.

To respect requirement (iv), the donors should be selected so that∑
k∈sm

∑
i∈sr

φik
ψik

dkrkjψikxij =
∑

k∈sm

∑
i∈sr

dkrkjψikxij . (8)

Balanced sampling [Deville and Tillé, 2004] is used to respect the balancing constraints (8). To ensure
that only one donor is selected per nonrespondent and that the balancing constraints are respected
once the donors are selected, the matrix φ is generated with stratified balanced sampling [Chauvet,
2009, Hasler and Tillé, 2014]. A total of nm strata are created and one donor is selected per stratum.
A stratum corresponds to a nonrespondent. The inclusion probability used in the stratified balanced
sampling is ψik and the associated balancing variable is dkrkjψikxij , for (i, k) ∈ sr × sm.

VI. Imputation and discussion

1. The imputation of the dataset is based on the matrix φ. The missing value of unit k to variable
j such that rkj = 0 is imputed by

x∗kj =
∑
i∈sr

φikxij .

Requirements (i)-(iii) are perfectly respected. Requirement (iv) is either perfectly of approximately
respected, according to the limits of the balancing techniques.

2. It is also possible to use a deterministic version of the proposed imputation method. The
expectation of φik is used for (i, k) ∈ sr × sm, this is ψik. Then the missing value of unit k ∈ sm for j
such that rkj = 0 is imputed by

x∗kj =
∑
i∈sr

ψikxij .
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It is not a donor imputation method anymore, but requirement (iv) is perfectly respected.

3. Random imputation methods generally cause an additional variability of the imputed total
estimator. Balanced imputation allows to minimize this variability. In further works, a variance
estimator should be developed and a simulation study should illustrate the properties of imputed
estimators and variance estimators.
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