A new GSDEM:
Multisource data for multiple statistic

Li-Chun Zhang1,2 and Susie Jentoft 2

1University of Southampton (L.Zhang@soton.ac.uk)
2Statistics Norway (lcz@ssb.no; susie.jentoft@ssb.no)
Scenario (e) of GSDEM (UNECE, 2015)

Generic Statistical Data Editing Model (GSDEM) V. 1.0

Statistical Data Editing (SDE) flow models

... Scenario (e): SDE of multisource statistics.

... *multiple* inputs \Rightarrow *single* output

Two examples in Norway

- register-based Employment

- register-based Household income

NB. with common inputs, e.g. Wage Payment Data
Scenario (e) of GSDEM (UNECE, 2015)
Scenario (e): *single* output
Scenario (e) \rightarrow **Parallel editing** of *multiple* statistics
Coordinated editing of *multiple* statistics
Coordinated editing of *multiple* statistics

Steady states (Rennsen & van Delden, 2009)

... In Norway, referred to as the *4 major states*:

1. Raw/input data → 2. Micro data
 → 3. Statistical data
 → 4. Public/disseminated data

Parallel editing leads to incoherent statistical data, e.g.

- Same input Wage Payment data: by transactions
- Employment statistics: re-arranged by persons
- Wage statistics: re-arranged by jobs
Coordinated editing of multiple statistics

Introducing of **BaSE** (in Norwegian)

- **BaSE** = Base Statistical Units

e.g. work relation for Employment and Wage statistics

- **common process up to a point**

 ... intermediate statistical data

- **coordinated process necessary afterwards**

 ... towards domain-specific statistical datasets

 ... and **macro accounts** as expressions of coherence
An example: A-ordning in Norway (since 2015)

Single entry for previously 5 different admin datasets

... important for alignment of reference time points

Monthly data on employment, wage and other payments

U_{11}: included in both Employment and Wage statistics

U_{10}: only included in Employment statistics

U_{01}: only included in Wage statistics

U_{00}: not included in Employment or Wage statistics

<table>
<thead>
<tr>
<th></th>
<th>September 2016</th>
<th>September 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common to both (U_{11})</td>
<td>2 678 586</td>
<td>2 653 513</td>
</tr>
<tr>
<td>Only in Employment statistics (U_{10})</td>
<td>235 468</td>
<td>132 229</td>
</tr>
<tr>
<td>Only in Wage statistics (U_{01})</td>
<td>21 234</td>
<td>17 818</td>
</tr>
<tr>
<td>Excluded from both (U_{00})</td>
<td>2 754 146</td>
<td>2 839 966</td>
</tr>
<tr>
<td>Total</td>
<td>5 689 434</td>
<td>5 643 526</td>
</tr>
</tbody>
</table>

Table 1. Partition of base statistical units for Employment and Wage Statistics.
Towards a new **Labour Force Account (LFA)**

Part I. For BaSE sub-population (U11), use accounts to connect two *observable* totals: Employed (Y) and Wage payment (W)

- Account (1): \(Y \rightarrow T \) where \(T = \text{total FTEs} \)
- Account (2): \(T \rightarrow W \) via Wage per FTE

Part II. For Employment-only BaSE sub-population (U10), one or several *normative* accounts

- e.g. would-have-been Wage cost for persons on leave, in contrast to actual benefit payments they receive
- gross flows between observable and normative parts of LFA, e.g. in terms of person, Wage cost, FTE, etc.