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Abstract 
 

The paper uses hedonic regression techniques in order to decompose the price of a house 

into land and structure components using readily available real estate sales data for a 

Dutch city. In order to get sensible results, it was useful to use a nonlinear regression 

model using data that covered multiple time periods. It also proved to be necessary to use 

some exogenous information on the rate of growth of construction costs in the 

Netherlands in order to get useful constant quality subindexes for the price of land and 

structures separately. 
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1. Introduction 

 

For many purposes, it is useful to be able to decompose residential property values into a 

structures component and a land component. At the local government level, property tax 

rates are often different on the land and structures components of a property so it is 

necessary to have an accurate breakdown of the overall value of the property into these 

two components. At the national level, statistical agencies need to construct overall 

values of land and structures for the National Balance Sheets for the nation. If a user cost 

approach is applied to the valuation of Owner Occupied Housing services, it is necessary 

to have a decomposition of housing values into land and structures components since 

structures depreciate while land does not. Thus our goal in this paper is to use readily 

available multiple listing data on sales of residential properties and to decompose the 

sales price of each property into a land component and a structures component. We will 

use the data pertaining to the sales of detached houses in a small Dutch city for 22 

quarters, starting in Quarter 1 in 2003 and running to the end of Quarter 2 in 2008. We 

utilize a hedonic regression approach to accomplish our decomposition but our approach 

is based on a cost oriented model which we call the builder’s approach to modeling 

hedonic regressions in the housing context. A feature of our suggested approach is that it 

requires relatively little information on the characteristics of the houses that are in the 

data base: information on the plot area, the area of the structure, the age of the structure 

and the number of rooms in the house suffices to generate regression models that explain 

approximately 87% of the variation in the selling prices of the houses in the data base. 

 

A more detailed outline of the contents of this paper follows.   

 

In section 2, we will consider a very simple hedonic regression model where we use 

information on only three characteristics of the property: the lot size, the size of the 

structure and the (approximate) age of the structure. We run a separate hedonic regression 

for each quarter which leads to estimated prices for land and structures for each quarter. 

These estimated characteristics prices can then be converted into land and structures 

prices covering the 22 quarters of data in our sample. We postulate that the value of a 

residential property is the sum of two components: the value of the land which the 

structure sits on plus the value of the residential structure. Thus our approach to the 

valuation of a residential property is essentially a crude cost of production approach. Note 

that the overall value of the property is assumed to be the sum of these two components.  

 

In section 3, we generalize the model explained in section 2 to allow for the observed fact 

that the per unit area price of a property tends to decline as the size of the lot increases (at 

least for large lots). We use a simple linear spline model with 2 break points. Again, a 

hedonic regression is run for each period and the results of these separate regressions 

were linked together to provide separate land and structures price indexes (along with an 

overall price index that combined these two components). 

 

The models described in sections 2 and 3 were not very successful. The problem is due to 

multicollinearity and variability in the data and this volatility leads to a tendency for the 
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regression models to fit the outliers, leading to erratic estimates for the price of land and 

structures.  

 

In section 4, in order to deal with the multicollinearity problem, we draw on exogenous 

information on new house building costs from the national statistical agency and assume 

that the price movements for new structures mirror the statistical agency movements in 

the price of new houses. We find that the use of exogenous information generates a very 

reasonable decomposition of house values into their structure and land components. 

 

In section 5, we generalize the model in section 4 to include information on the number 

of rooms in the house as an additional price determining characteristic. The idea here is 

that a higher number of rooms in a house generally indicates that the quality of 

construction of the house will be higher. Our regression results support this hypothesis: 

the estimated increase in the price of a new structure per m
2
 in Quarter 1 due to an 

additional room is about 2.7%. 

 

We conclude this section by providing a brief literature review of methods used to 

provide a decomposition of the selling price of a dwelling unit into land and structures 

components. Basically, variations of three methods have been used: 

 

 The vacant land method;  

 The construction cost method and 

 The hedonic regression method. 

 

The first two methods utilize the following empirical relationship between the selling 

price of a property V, the value of the structure pSS and the value of the plot pLL:  

 

(1) V = pLL + pSS 

 

where S is the floor space area of the structure, L is the area of the land that the structure 

sits on and pS and pL are the prices of a unit of S and L respectively. Typically, V, L and 

S will be available from real estate data on sales of houses so if either pL or pS can be 

determined somehow, then equation (1) will enable the other price to be determined. 

 

The vacant land method for the determination of the price of land in (1) is described by 

Clapp (1979; 125) (1980; 256) and he noted that the method is frequently used by tax 

assessors and appraisers. The method works as follows: a price of land per unit area pL is 

determined from the sales of “comparable” vacant land plots and then this price is applied 

to the comparable properties and equation (1) can then be used to solve for the structure 

price pS. This method was used by Thorsnes (1997) and Bostic, Longhofer and Readfearn 

(2007).
2
    

 

                                                 
2
 The set of vacant lots can be augmented by properties which are sold and the associated structure is 

immediately demolished. Clapp (1980; 256) lists several reasons why the vacant land method is not likely 

to be very accurate.  
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The construction cost method uses an estimate for the per unit area construction cost pS 

for the local area, which could be provided by a private company or a national statistical 

agency. Once pS is known, equation (1) can be used to solve for the missing land price pL. 

This method was used by Glaeser and Gyourko (2003), Gyourko and Saiz (2004) and 

Davis and Palumbo (2008) where the local construction cost data for U.S. cities was 

provided by the private company, R.S. Means. Davis and Heathcote (2007) used a variant 

of this method for the entire U.S. economy where Bureau of Economic Analysis 

estimates for both the price of structures pS and the constant dollar quantity of housing 

structures S were used.
3
 

 

A variant of the hedonic regression method is the method that will be used in this paper. 

Various versions of the method will be explained in sections 2-5. Some early papers that 

use a similar methodology include Clapp (1980), Palmquist (1984), Fleming and Nellis 

(1992) and Schwann (1998). Basically, land and structures are treated as characteristics in 

a hedonic regression model and marginal prices for land and structures for period t are 

generated as partial derivatives of the period t hedonic function and these marginal prices 

can be used to decompose the house value into land and structures components under 

certain conditions.    

 

2. Model 1: A Simple Builder’s Model 
 

Hedonic regression models are frequently used to obtain constant quality price indexes 

for owner occupied housing.
4
 Although there are many variants of the technique, the 

basic model regresses the logarithm of the sale price of the property on the price 

determining characteristics of the property and a time dummy variable is added for each 

period in the regression (except the base period). Once the estimation has been completed, 

these time dummy coefficients can be exponentiated and turned into an index.
5
 

 

A residential property has a number of important price determining characteristics: 

 

 The land area of the property (L);  

 The livable floor space area of the structure (S); 

 The age of the structure (A); 

 The number of rooms in the structure (R); 

                                                 
3
 Muth (1971; 246) and Rosen (1978; 353-354) used the private company Boeckh building cost index for 

the various U.S. cities in their sample which determined pS up to a multiplicative factor.  The value of land 

and the price of land were determined by the U.S. Federal Housing Administration for their sample of U.S. 

properties. Then using equation (1), S was determined residually. The methods we will use in sections 4 

and 5 below are close to the construction cost method but are not identical; we use only rates of change of 

construction costs, not their levels. Thus our suggested methods allow for local area quality adjustment 

factors for construction costs.    
4
 For some recent literature, see Crone, Nakamura and Voith (2009), Diewert, Nakamura and Nakamura 

(2009), Gouriéroux and Laferrère (2009), Hill (2011), Hill, Melser and Syed (2009) and Hill (2011). 
5
 An alternative approach to the time dummy hedonic method is to estimate separate hedonic regressions 

for both of the periods compared; this is called the hedonic imputation approach. See Haan (2008) (2009) 

and Diewert, Heravi and Silver (2009) for theoretical discussions and comparisons between these 

alternative approaches. 
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 The type of dwelling unit (detached, row, apartment); 

 The type of construction (wood, brick, concrete); 

 The location of the property.
6
  

 

In our empirical work below, we will restrict our sample to sales of detached houses. We 

will not take into account the type of construction or the location variable since the house 

sales all take place in a small Dutch town and location should not be much of a price 

determining factor. However, we will use information on land area A, structure size in 

meters squared S, the age A of the structure and the number of rooms, R. We will find 

that hedonic regression models that use only the first three explanatory variables give rise 

to an R
2
 that is in the range .87 to .88, which indicates that most of the variation in the 

data can be explained by using just these three variables.
7
 

 

As noted in the introduction, for some purposes, it would be very useful to decompose 

the overall price of a property into additive components that reflected the value of the 

land that the structure sits on and the value of the structure. The primary purpose of the 

present paper is to determine whether a hedonic regression technique could provide such 

a decomposition. 

 

Several researchers have suggested hedonic regression models that lead to additive 

decompositions of an overall property price into land and structures components.
8
 We 

will now outline Diewert’s (2007) justification for an additive decomposition.  

 

If we momentarily think like a property developer who is planning to build a structure on 

a particular property, the total cost of the property after the structure is completed will be 

equal to the floor space area of the structure, say S square meters, times the building cost 

per square meter,  say, plus the cost of the land, which will be equal to the cost per 

square meter,  say, times the area of the land site, L. Now think of a sample of 

properties of the same general type, which have prices Vn
t
 in period t

9
 and structure areas 

Sn
t
 and land areas Ln

t
 for n = 1,...,N(t). Assume that these prices are equal to the sum of 

the land and structure costs plus error terms n
t
 which we assume are independently 

                                                 
6
 There are many other price determining characteristics that could be added to this list such as landscaping, 

the number of floors and rooms, type of heating system, air conditioning, swimming pools, views, the 

shape of the lot, etc. The distance of the property to various amenities such as schools and shops could also 

be added to the list of characteristics but if the location of the properties in the sample of sales is small 

enough, then it should not be necessary to add these characteristics. In our example, the Dutch town of “A” 

is small enough and homogeneous enough so that these neighbourhood effects can be neglected. In other 

cities or neighborhoods where geography creates important locational differences, our rather minimal basic 

model will probably not fit the data as well. Our simple builder’s model will probably not work well for 

multiple unit structures where the height of the apartment becomes an important price determining 

characteristic.   
7
 In section 5, we add the number of rooms as an additional explanatory variable. 

8
 See Clapp (1980), Francke and Vos (2004), Gyourko and Saiz (2004), Bostic, Longhofer and Redfearn 

(2007), Davis and Heathcote (2007), Diewert (2007), Francke (2008), Koev and Santos Silva (2008), 

Statistics Portugal (2009), Diewert, Haan and Hendriks (2010) and Diewert (2010). 
9
 Note that we have labeled these property prices as Vn

0
 to emphasize that these are values of the property 

and we need to decompose these values into two price and two quantity components, where the 

components are land and structures. 
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normally distributed with zero means and constant variances.
10

 This leads to the 

following hedonic regression model for period t where 
t
 and 

t
 are the parameters to be 

estimated in the regression:
11

 

 

(1) Vn
t
 = 

t
Ln

t
 + 

t
Sn

t
 + n

t
 ;                                                           n = 1,...,N(t); t = 1,...,T. 

 

Note that the two characteristics in our simple model are the quantities of land Ln
t
 and the 

quantities of structure Sn
t
 associated with the sale of property n in period t and the two 

constant quality prices in period t are the price of a square meter of land 
t
 and the price 

of a square meter of structure floor space 
t
. Finally, note that separate linear regressions 

can be run of the form (1) for each period t in our sample. 

 

The hedonic regression model defined by (1) is the simplest possible one but it applies 

only to new structures. But it is likely that a model that is similar to (1) applies to older 

structures as well. Older structures will be worth less than newer structures due to the 

depreciation (or deterioration due to aging effects) of the structure. Thus suppose in 

addition to information on the selling price of property n at time period t, Vn
t
, the land 

area of the property Ln
t
 and the structure area Sn

t
, we also have information on the age of 

the structure at time t, say An
t
. Then if we assume a straight line depreciation model, a 

more realistic hedonic regression model than that defined by (1) above is the following 

basic builder’s model:
12

 

 

(2) Vn
t
 = 

t
Ln

t
 + 

t
(1  

t
An

t
)Sn

t
 + n

t
 ;                                            n = 1,...,N(t); t = 1,...,T 

  

where the parameter 
t
 reflects the net depreciation rate as the structure ages one 

additional period. Thus if the age of the structure is measured in years, we would expect 

an annual 
t
 to be between 0.5 and 1.5%.

13
 Note that (2) is now a nonlinear regression 

                                                 
10

 We make the same stochastic assumptions for all of the regressions in this paper. For the models that are 

not linear in the parameters, we use maximum likelihood estimation. 
11

 In order to obtain homoskedastic errors, it would be preferable to assume multiplicative errors in 

equation (1) since it is more likely that expensive properties have relatively large absolute errors compared 

to very inexpensive properties. However, following Koev and Santos Silva (2008), we think that it is 

preferable to work with the additive specification (1) since we are attempting to decompose the aggregate 

value of housing (in the sample of properties that sold during the period) into additive structures and land 

components and the additive error specification will facilitate this decomposition.    
12

 Note that the model in this section is a supply side model as opposed to the demand side model of Muth 

(1971) and McMillen (2003). Basically, we are assuming identical suppliers of housing so that we are in 

Rosen’s (1974; 44) Case (a) where the hedonic surface identifies the structure of supply. This assumption is 

justified for the case of newly built houses but we concede that it is less well justified for sales of existing 

homes. Our supply side model is also less likely to be applicable in the case of multiple unit structures 

where zoning restrictions and local geography lead to location specific land prices. 
13

 This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true” gross 

structure depreciation rate less an average renovations appreciation rate. Since we do not have information 

on renovations and additions to a structure, our age variable will only pick up average gross depreciation 

less average real renovation expenditures. Note that we excluded sales of houses from our sample if the age 

of the structure exceeded 50 years when sold. Very old houses tend to have larger than normal renovation 

expenditures and thus their inclusion can bias the estimates of the net depreciation rate for younger 

structures.   
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model whereas (1) was a simple linear regression model.
14

 Both models (1) and (2) can 

be run period by period; it is not necessary to run one big regression covering all time 

periods in the data sample. The period t price of land will the estimated coefficient for the 

parameter 
t
 and the price of a unit of a newly built structure for period t will be the 

estimate for 
t
. The period t quantity of land for property n is Ln

t
 and the period t quantity 

of structure for property n, expressed in equivalent units of a new structure, is (1  


t
An

t
)Sn

t
 where Sn

t
 is the floor space area of property n in period t. 

 

We implemented the above Model 0 using real estate sales data on the sales of detached 

houses for a small city (population is around 60,000) in the Netherlands, City “A”, for 22 

quarters, starting in Q1 2003 and extending through Q2 in 2008 (so our T = 22). The data 

that we used can be described as follows: 

 

 Vn
t
 is the selling price of property n in quarter t in units of 1,000 Euros where t = 

1,...,22; 

 Ln
t
 is the area of the plot for the sale of property n in quarter t in units of meters 

squared;
15

 

 Sn
t
 is the living space area of the structure for the sale of property n in quarter t in 

units of meters squared;  

 An
t
 is the (approximate) age in decades of the structure on property n in period t;

16
 

 Rn
t
 is the number of rooms in structure n that was sold in period t. 

 

It seems likely that the number of rooms in a structure will be roughly proportional to the 

area of the structure, so in our initial regressions in sections 3-5, we did not use the room 

variable R as an explanatory variable.
17

  

 

Initially, there were 3543 observations in our 22 quarters of data on sales of detached 

houses in City “A” that were less than 50 years old when sold. However, there were some 

obvious outliers in the data. Thus we looked at the range of our V, L, S and R variables 

and deleted 54 range outliers. There were also two duplicate observations in Q1 for 2006 

and these duplicates were also deleted. Thus we ended up with 3487 data points for the 

22 quarters.
18

  The sample means for the data with outliers excluded (standard deviations 

                                                 
14

 This formulation follows that of Diewert (2007) and Diewert, Haan and Hendriks (2010). It is a special 

case of Clapp’s (1980; 258) model except that Clapp included a constant term. 
15

 We chose units of measurement for V in order to scale the data to be small in magnitude so as to 

facilitate convergence for the nonlinear regressions. The statistical package used was Shazam (the 

nonlinear option). 
16

 The original data were coded as follows: if the structure was built 1960-1970, the observation was 

assigned the dummy variable BP = 5; 1971-1980, BP=6; 1981-1990, BP=7; 1991-2000, BP=8. Our Age 

variable A was set equal to 8  BP. Thus for a recently built structure n in quarter t, An
t
 = 0. 

17
 In section 5 below, we did use the room variable as a quality adjustment variable. 

18
 There were 3 observations where the selling price was less than 60,000 and 14 observations which sold 

for more than 550,000 Euros. There were no sales with L less than 70 m
2
 and 25 sales where L exceeded 

1500 m
2
. There were no sales with S less than 50 and one observation where S exceeded 400 m

2
. There 

were 13 sales where R was less than 2 and 3 sales where R exceeded 14. All of these observations were 

excluded. Some observations were excluded multiple times so that the total number of observations which 
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in brackets) were as follows: V = 182.26 (71.3), L = 258.06 (152.3), S = 126.56 (29.8), 

A = 1.8945 (1.23) and R = 4.730 (0.874). Thus the entire sample of houses sold at the 

average price of 182,260 Euros, the average plot size was 258.1 m
2
, the average living 

space in the structure was 126.6 m
2
 and the average age was approximately 18.9 years. 

The sample median price was 160,000 Euros. 

  

The correlations between the various variables are also of interest. The correlation 

coefficients of the selling price V with L, S, A and R are .8014, .7919, .3752 and .3790 

respectively.
19

 Thus the selling price V is fairly highly correlated with both land L and 

(unadjusted) structures S. The correlation between L and S is .6248 and thus there is the 

possibility of multicollinearity between these variables. Finally there is also a substantial 

positive correlation of .4746 between the structure area S and the number of rooms R. 

    

Instead of running 22 quarterly regressions of the form (2), we combined the data using 

dummy variables and ran one big regression, which combined all 22 quarterly regressions 

into a single regression.
20

 The R
2
 for the resulting combined regression was .8729, which 

is quite good, considering we have only 3 explanatory variables (but 66 parameters to 

estimate). The resulting log likelihood was 16231.6. The quality adjusted structures 

quantity in quarter t, S
t*

, is equal to the sum over the properties sold n in that quarter 

adjusted into new structure units; i.e., S
t*

  nN(t) (1  
t*

An
t
)Sn

t
. The estimated decade 

net depreciation rates 
t*

 were in the 6.4% to 13.7% range which is not unreasonable but 

the volatility in these rates is not consistent with our a priori expectation of a stable rate. 

We did not list our regression results because our estimated land and structures prices are 

not at all reasonable: the price of land sinks to a very low level in quarter 3 while the 

price of structures has a local peak in this quarter. In general, the land and constant 

quality structures prices are volatile in opposite directions, which is a sign of a severe 

multicollinearity problem.
21

 

 

In an attempt to improve the results for the above Model 0, we assumed that the net 

depreciation rate was constant across quarters and so the model defined by (2) is replaced 

by the following Model 1: 

 

(3) Vn
t
 = 

t
Ln

t
 + 

t
(1  An

t
)Sn

t
 + n

t
 ;                                             n = 1,...,N(t); t = 1,...,T 

  

where the parameter  reflects the sample net depreciation rate as the structure ages one 

additional decade but now it is assumed to be constant over the entire sample period. 

                                                                                                                                                 
were excluded was 54 (plus 2 more due to duplication in the data set). Exclusion of range outliers is 

important for the results.      
19

 In order to illustrate the importance of deleting range outliers for all variables, the correlation coefficients 

of V with L, S, A and R for the original data set with 3543 observations was 0.33331, 0.80795, 0.34111 

and 0.34291. Thus it is particularly important to delete land outliers. 
20

 This one big regression generates the same parameter values as running the individual quarterly 

regressions but the advantage of the one big regression approach is that we can compare the log likelihood 

of the big regression with subsequent regressions. 
21

 This period to period parameter instability problem was noted by Schwann (1998; 277) in his initial 

unconstrained model: “In addition, the unconstrained regression displays signs of multicollinearity. ... the 

attribute prices are nonsense in many of the periods, and there is poor temporal stability of these prices.” 
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Thus the new builder’s hedonic regression model has 45 unknown parameters to estimate 

as compared to the 66 parameters in the previous model defined by equations (2). 

 

The R
2
 for the resulting nonlinear regression model was .8703,

22
 which is quite good, 

considering we have only 2 independent explanatory variables in each period. However, 

this is a drop in R
2
 as compared to our previous model with variable depreciation rates 

where the R
2
 was .8729. The log likelihood for the constant depreciation rate model was 

16266.6, which is a decrease of 35.0 from the log likelihood of the previous model. This 

decrease in log likelihood seems to be a reasonable price to pay in order to obtain a stable 

estimate for the net depreciation rate. The estimated decade net depreciation rate is now 


*
 = 0.10241 or about 1% per year. The smallest t statistic for the parameters in this 

model was 11.9 for the parameter 
1*

. The results for our new model (3) are summarized 

in Table 1 below. The estimated quality adjusted structures quantity in quarter t, S
t*

, is 

equal to the sum over the properties sold n in that quarter, quality adjusted (for net 

depreciation) into new structure units; i.e.:  

 

(4) S
t*

  nN(t) (1  
*
An

t
)Sn

t
 ;                                                                              t = 1,...,22 

 

where 
*
 is the estimated net depreciation rate for the entire sample period. 

 

Table 1: Estimated Land Prices 
t*

, Structure Prices 
t*

, the Decade Depreciation 

Rate 
*
, Land Quantities L

t
 and Quality Adjusted Structures Quantities S

t*
 

 
Quarter 

t*
 

t*
 

        L
t
    S

t*
 

1 0.25162 0.97205 0.10241 35023 14677.2 

2 0.30084 0.86961 0.10241 35412 14047.9 

3 0.20130 1.07050 0.10241 39872 14680.1 

4 0.26348 0.97486 0.10241 42449 16764.0 

5 0.28792 0.95083 0.10241 37319 14787.8 

6 0.24087 1.09845 0.10241 45611 16828.1 

7 0.27564 1.02882 0.10241 33321 13234.3 

8 0.23536 1.09186 0.10241 40395 17169.1 

9 0.23548 1.10259 0.10241 38578 16680.0 

10 0.30717 1.00917 0.10241 38246 15847.6 

11 0.26523 1.14512 0.10241 39112 15831.3 

12 0.22357 1.19693 0.10241 41288 16119.8 

13 0.27415 1.09353 0.10241 43387 16873.5 

14 0.24764 1.20932 0.10241 46132 19037.4 

15 0.30056 1.11530 0.10241 39250 15889.7 

16 0.26941 1.13981 0.10241 40102 15836.9 

17 0.31121 1.08539 0.10241 39813 16234.7 

18 0.23368 1.28996 0.10241 56992 20579.3 

19 0.31558 1.10402 0.10241 35801 13661.4 

20 0.27131 1.19228 0.10241 48031 19610.7 

21 0.21835 1.29223 0.10241 37854 15344.4 

                                                 
22

 All of the R
2
 reported in this paper are equal to the square of the correlation coefficient between the 

dependent variable in the regression and the corresponding predicted variable. 
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22 0.34704 1.02324 0.10241 45878 19645.7 

 

It is of some interest to compare the above land and structures prices with the mean and 

median prices for houses in the sample for each quarter. These prices were normalized to 

equal 1 in quarter 1 and are listed as PMean and PMedian in Table 2 below. The land and 

structures prices in Table 1, 
t*

 and 
t*

, were also normalized to equal 1 in quarter 1 and 

are listed as PL1 and PS1 in Table 2. Finally, we used the price data in Table 2, 
t*

 and 
t*

, 

along with the corresponding quantity data, L
t
 and S

t*
, in Table 1 in order to calculate a 

“constant quality” chained Fisher (1922) house price index, which is listed as P1 in Table 

2.  

 

Table 2: Quarterly Mean, Median and Fisher Housing Prices P1 and the Price of 

Land PL1 and Structures PS1 

 
Quarter    PMean   PMedian      P1     PL1      PS1 

   1 1.00000 1.00000 1.00000 1.00000 1.00000 

   2 1.04916 0.97007 1.01150 1.19559 0.89461 

   3 1.08473 1.06796 0.97511 0.80001 1.10128 

   4 1.05544 0.98592 1.01626 1.04711 1.00289 

   5 1.10128 1.03521 1.03964 1.14425 0.97817 

   6 1.14688 1.10035 1.05462 0.95727 1.13004 

   7 1.10436 1.01408 1.06757 1.09546 1.05840 

   8 1.07874 1.02113 1.04559 0.93537 1.12326 

   9 1.12774 1.09155 1.05259 0.93584 1.13429 

  10 1.15032 1.15493 1.10079 1.22074 1.03819 

  11 1.18601 1.12148 1.12179 1.05409 1.17805 

  12 1.19096 1.12676 1.08897 0.88850 1.23134 

  13 1.19633 1.14789 1.10521 1.08951 1.12497 

  14 1.26120 1.28169 1.13606 0.98418 1.24409 

  15 1.20159 1.16197 1.15825 1.19450 1.14737 

  16 1.21170 1.21303 1.12513 1.07071 1.17258 

  17 1.21731 1.15493 1.15603 1.23682 1.11660 

  18 1.31762 1.26761 1.15751 0.92870 1.32705 

  19 1.22870 1.16056 1.17844 1.25419 1.13576 

  20 1.24592 1.20775 1.16364 1.07825 1.22656 

  21 1.22596 1.23239 1.14472 0.86778 1.32939 

  22 1.23604 1.19718 1.16987 1.37920 1.05266 

Mean 1.1645     1.1234 1.0941 1.0617 1.1249 

 

It can be seen that the mean and median series are rather volatile and differ substantially 

from P1, the Fisher index that is compiled using the results of our builder’s regression 

model (3) using the data on the price of land PL1 and quality adjusted structures PS1 and 

the associated quantities tabled in Table 2 above. The overall Fisher house price index P1 

is fairly smooth but its component prices PL1 and PS1 fluctuate violently. The price series 

listed in Table 2 are graphed in Chart 1. 
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Chart 1: Mean and Median Price Series, Fisher 

Price Index P1, Price of Land PL1 and the Price of 

Structures PS1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Mean Median P1 PL1 PS1
 

 

It can be seen that the Mean and Median price series are on average substantially above 

the corresponding overall Fisher house price index P1 and the series P1 is much 

smoother.
23

 It appears that the P1 series provides satisfactory estimates for the overall 

price of houses.  On the other hand, the component land and structure price series for P1, 

PL1 and PS1, are extremely volatile and hence are not very credible estimates for the 

underlying movements for the price of land and constant quality structures in the town of 

“A” over this period. It can be seen that when the price of land spikes up, the 

corresponding price of structures tends to spike downwards and vice versa. This erratic 

behavior in PL1 and PS1 is due to measurement errors in the quantity of land and the 

quantity of structures
24

 along with a substantial correlation between the quantity of land 

and structures; i.e., we have a multicollinearity problem.  

 

One possible problem with our highly simplified house price model is that our model 

makes no allowance for the fact that larger sized plots tend to sell for an average price 

that is below the price for medium and smaller sized plots. Thus in the following section, 

we will generalize the builder’s model (3) to take into account this empirical regularity.   

 

3. Model 2: The Builder’s Model with Linear Splines on Lot Size 
 

                                                 
23

 We attribute the slower rate of growth in our hedonic index P1 as compared to the Mean and Median 

indexes to the fact that new houses tend to get bigger over time. The Mean and Median indexes cannot take 

this quality improvement into account.  
24

 The measurement errors here are include recording errors but also include errors due to our imperfect 

measurement of the quality of construction and the quality of the land; e.g., we are assuming that all 

locations in our sample have access to the same amenities and share the same geography and hence should 

face the same land price schedule but in fact, this will not be true.   
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In most countries, the reality is that large lots tend to sell at a lower price per unit area 

than smaller lots.
25

 Thus in this section, we will assume that builders face a piecewise 

linear schedule of prices per unit land when they purchase a lot. This linear spline model 

will allow the price of large lots to drop as compared to smaller lots. We broke up our 

3487 observations into 3 groups of property sales: 

 

 Sales involving lot sizes less than 170 meters squared (Group S); 

 Sales involving lot sizes between 170 and less than 270 meters squared (Group 

M) and 

 Sales involving lot sizes greater than or equal to 270 meters squared (Group L). 

 

The small lot size group had 1194 sales, the medium lot size group 1108 sales and the 

large lot size group had 1185 sales, so that the three groups were roughly equal in size. 

We define the sets of observations n which belong to Group S, M and L in period t to be 

NS(t), NM(t) and NL(t) respectively. 

  

For an observation n in period t that was associated with a small lot size, our regression 

model was essentially the same as in (3) above; i.e., the following estimating equation 

was used: 

 

(5) Vn
t
 = S

t
Ln

t
 + 

t
(1  An

t
)Sn

t
 + n

t
 ;                                                 t = 1,...,22; nNS(t) 

 

where the unknown parameters to be estimated are S
t
, 

t
 for t = 1,...,22 and . For an 

observation n in period t that was associated with a medium lot size, the following 

estimating equation was used: 

 

(6) Vn
t
 = S

t 
(170) + M

t 
(Ln

t
  170) + 

t
(1  An

t
)Sn

t
 + n

t
 ;                t = 1,...,22; nNM(t) 

 

where we have added 22 new parameters to be estimated, the M
t
 for t = 1,...,22. Finally, 

for an observation n in period t that was associated with a large lot size, the following 

estimating equation was used: 

 

(7) Vn
t
 = S

t 
(170) + M

t 
(270  170) + L

t 
(Ln

t
  270) + 

t
(1  An

t
)Sn

t
 + n

t
 ;      

                                                                                                                 t = 1,...,T; nNL(t) 

 

where we have added 22 new parameters to be estimated, the L
t
 for t = 1,...,22.  Thus for 

small lots, the value of an extra marginal addition of land in quarter t is S
t
, for medium 

lots, the value of an extra marginal addition of land in quarter t is M
t
 and for large lots, 

the value of an extra marginal addition of land in quarter t is L
t
. These pricing schedules 

are joined together so that the cost of an extra unit of land increases with the size of the 

                                                 
25

 This empirical regularity was noted by Francke (2008; 168): “However, the assumption that the value is 

proportional to the lot size is not valid for large lot sizes. In practice, real estate agents often use a step 

function for the valuation of the lot, as shown in Figure 8.1. The first 300 m
2
 counts for 100%, from 300 m

2
 

until 500 m
2
 counts for 53% and so on.” At first glance, it appears that Francke is using a step function to 

model the price schedule but in fact, he used linear splines in the same way as the present authors.  
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lot in a continuous fashion.
26

 The above model can readily be put into a nonlinear 

regression format for each period using dummy variables to indicate whether an 

observation is in Group S, M or L. The nonlinear option in Shazam was used to estimate 

Model 2 defined by (5)-(7) as one big regression. 

 

The R
2
 for this model was .8756, an increase over the previous two models (without 

splines) where the R
2
 was .8729 (many depreciation rates) and .8703 (one depreciation 

rate). The new log likelihood was 16195.0, an increase of 71.6 from the previous 

model’s log likelihood. The estimated decade depreciation rate was 
*
 = 0.1019 

(0.00329).
27

 The first period parameter values for the 3 marginal prices for land were S
1*

 

= 0.2889 (0.0497), M
1*

 = 0.3643 (0.0566) and L
1*

 = 0.1895 (0.319). Thus in quarter 1, 

the marginal cost per m
2
 of small lots was estimated to be 288.9 Euros per m

2
. For 

medium sized lots, the estimated marginal cost was 364.3 Euros/m.
2
 For large lots, the 

estimated marginal cost was 189.5 Euros/m
2
. The first period parameter value for quality 

adjusted structures was 
1*

 = 0.8829 (0.0800) so that a square meter of new structure was 

valued at 882.9 Euros/m
2
. All of the estimated coefficients were positive. The lowest t 

statistic for all of the 89 parameters was 2.79 (for S
8
), so all of the estimated coefficients 

in this model were significantly different from zero. Our conclusion is that adding splines 

for the lot size gives us additional explanatory power. 

 

Once the parameters for the model have been estimated, then in each quarter t, we can 

calculate the predicted value of land for small, medium and large lot sales, VLS
t
, VLM

t
 and 

VLL
t
 respectively, along with the associated quantities of land, LLS

t
, LLM

t
 and LLL

t
 as 

follows: 

 

(8) VLS
t
    )(tNn S

S
t*

Ln
t
  ;                                                                                t = 1,...,22; 

(9) VLM
t
    )(tNn M

S
t*

[170] + M
t*

[Ln
t
  170] ;                                              t = 1,...,22; 

(10) VLL
t
    )(tNn L

S
t*

[170] + M
t*

[100] + L
t*

[Ln
t
  270] ;                           t = 1,...,22; 

(11) LLS
t
    )(tNn S

Ln
t
  ;                                                                                    t = 1,...,22; 

(12) LLM
t
    )(tNn M

Ln
t
 ;                                                                                    t = 1,...,22; 

(13) LLL
t
    )(tNn L

Ln
t
                                                                                        t = 1,...,22. 

 

The corresponding average quarterly prices, PLS
t
, PLM

t
 and PLL

t
, for the three types of lot 

are defined as the above values divided by the above quantities: 

 

(14)  PLS
t
  VLS

t
/LLS

t
 ; PLM

t
  VLM

t
/LLM

t
 ; PLL

t
  VLL

t
/LLL

t
 ;                                t = 1,...,22. 

 

                                                 
26

 Thus if we graphed the total cost C of a lot as a function of the plot size L in period t, the resulting cost 

curve would be made up of three linear segments whose endpoints are joined. The first line segment starts 

at the origin and has the slope S
t
, the second segment starts at L = 170 and runs to L = 270 and has the 

slope M
t
 and the final segment starts at L = 270 and has the slope L

t
. 

27
 Standard errors are in brackets. 
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The average land prices for small, medium and large lots defined by (14) and the 

corresponding quantities of land defined by (11)-(13) can be used to form a chained 

Fisher land price index, which we denote by PL2. This index is plotted in Chart 2. As in 

the previous model, the estimated period t price for a square meter of quality adjusted 

structures is 
t*

 and the corresponding quantity of constant quality structures is S
t*

  

nN(t) (1  
*
An

t
)Sn

t
. The structures price and quantity series 

t*
 and S

t*
 were combined 

with the three land price and quantity series to form a chained overall Fisher house price 

index P2 which is graphed in Chart 2. The constant quality structures price index PS2 (a 

normalization of the series 
1*

,...,
22*

) is also found in Chart 2.    

 

In the following Chart, we will compare the price series PL2, PS2 and P2 generated by 

Model 2 with the price series PL1, PS1 and P1 that were generated by Model 1 in the 

previous section (which did not include splines on the size of the land area).  

 

   
  

It can be seen that again there is a volatility problem with the price of land PL2 and the 

price of structures PS2 in our new builder’s model with splines on land: when the price of 

land jumps up, the price of structures drops down and in fact, the offsetting jumps are 

now bigger than they were using the no splines model with a constant depreciation rate 

that was described at the end of the previous section. This offsetting volatility is again an 

indication of a severe multicollinearity problem. However, note that both models 

generate essentially the same overall house price index, which is quite smooth and looks 

reasonable; i.e., P1 and P2 can hardly be distinguished in Chart 2. 

 

Chart 2: Price Series for Land, Structures and Houses for  

Model 1 and Model 2 
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Due to the high correlation between the size of the structure and the size of the 

underlying plot and the measurement error in our land and quality adjusted structures 

series, it is going to be a difficult task to extract meaningful price and structure 

components out of information on house sales alone. Thus in the following section, we 

will add some additional restrictions on our basic model described in this section in 

attempts to obtain more meaningful land and structures price series.
28

   

 

4. Model 3: The Use of Exogenous Information on New Construction Prices    
 

Many countries have national or regional new construction price indexes available from 

the national statistical agency on a quarterly basis.
29

 This is the case for the 

Netherlands.
30

 Thus if we are willing to make the assumption that new construction costs 

for houses have the same rate of growth over the sample period across all cities in the 

Netherlands, the statistical agency information on construction costs can be used to 

eliminate the multicollinearity problems that we encountered in the previous sections.  

 

Recall equations (5)-(7) in section 3 above. These equations are the estimating equations 

for Model 2. In the present section, the constant quality house price parameters, the 
t
 for 

t = 2,...,22 in (5)-(7), are replaced by the following numbers, which involve only the 

single unknown parameter 
1
: 

 

(15) 
t
 = 

1
p

t
 ;                                                                                                     t = 2,3,...,22 

 

where p
t
 is the statistical agency estimated construction cost price index for the location 

under consideration and for the type of dwelling, where this series has been normalized to 

equal unity in quarter 1. This new regression Model 3 is again defined by equations (5)-

(7) except that the 22 unknown 
t
 parameters are now assumed to be defined by (15), so 

that only 
1
 needs to be estimated for this new model.

31
 Thus the number of parameters to 

be estimated in this new restricted model is 68 as compared to the Model 2 number, 

which was 89.  

 

                                                 
28

 Another approach to the volatility problem is to use a smoothing method in order to stabilize the volatile 

period to period characteristics prices. This approach dates back to Coulson (1992) and Schwann (1998) 

and more recent contributions include Francke and Vos (2004), Francke (2009) and Rambaldi, McAllister, 

Collins and Fletcher (2011). We have not pursued this approach because we feel that it is not an appropriate 

one for statistical agencies who have to produce non-revisable housing price indexes in real time. The use 

of smoothing methods is appropriate when the task is to produce historical series but smoothing methods 

do not work well in a real time context due to the inability of these methods to predict turning points in the 

series.   
29

 As was seen in section 1, many countries have private companies that can provide timely construction 

price indexes for major cities in the country and this information could be used. 
30

 From the Dutch Central Bureau of Statistics online source, Statline, we obtained a quarterly series for 

“New Dwelling Output Price Indices, Building Costs, 2005 = 100, Price Index: Building costs including 

VAT” for the last 14 quarters in our sample. Data from Statline for the first 8 quarters in our sample were 

also available but using the base year 2000 = 100. The older series was linked to the newer series and the 

resulting series was normalized to 1 in the first quarter. The resulting series is denoted by p
1
 (=1), p

2
,...,p

22
.  

31
 This type of hedonic model that makes use of construction price information is similar to that introduced 

by Diewert (2010). 
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Using the data for the town of “A”, the estimated decade depreciation rate was 
*
 = 

0.1026 (0.00448). The R
2
 for this model was .8723, a drop from the previous Model 2 R-

squared of .8756. The log likelihood was 16239.7, a substantial decrease of 44.7 over 

Model 2. The first period parameter values for the 3 marginal prices for land are S
1*

 = 

0.1827 (0.0256), M
1*

 = 0.3480 (0.0640) and L
1*

 = 0.17064 (0.0311). The first period 

parameter value for quality adjusted structures is 
1*

 = 1.0735 (0.0275) or 1073.5 

Euros/m
2
 which is substantially higher than the corresponding Model 1 and 2 estimates 

which were 972.1 and 882.9 Euros/m
2
 respectively. Thus the imposition of a nationwide 

growth rate on the change in the price of quality adjusted structures for the town of “A” 

has had some effect on our previous estimates for the levels of land and structures prices.   

 

As usual, we used equations (8)-(14) in order to construct a chained Fisher index of land 

prices, which we denote by PL3. This index is plotted in Chart 3 and listed in Table 3 

below. As was the case for the previous two models, the estimated period t price for a 

square meter of quality adjusted structures is 
t*

 (which in turn is now equal to 
1*

p
t
) and 

the corresponding quantity of constant quality structures is S
t*

  n=1
N(t)

 (1  
*
An

t
)Sn

t
. 

The structures price and quantity series 
t*

 and S
t*

 were combined with the three land 

price and quantity series to form a chained overall Fisher house price index P3 which is 

graphed in Chart 3 and listed in Table 3. The constant quality structures price index PS3 

(a normalization of the series 
1*

,...,
22*

) is also found in Chart 3 and Table 3. It should 

be noted that the quarter to quarter movements in PS3 coincided with the quarter to 

quarter movements in the Statistics Netherlands New Dwellings Building Cost Price 

Index.  

 

Table 3: The Price of Land PL3, the Price of Structures PS3 and the Overall House 

Price Index P3 Generated by Model 3 with the Corresponding Quantities QL3, QS3 

and Q3 
 
Quarter PL3   PS3 P3 QL3   QS3 Q3 

   1 1.00000 1.00000 1.00000 7446.9 15749.3 23196.2 

   2 0.99248 1.01613 1.00842 7602.4 15073.6 22671.1 

   3 0.99248 1.00000 0.99769 8622.7 15752.1 24366.2 

   4 1.04399 0.99194 1.01035 9172.6 17988.4 27138.6 

   5 1.14791 0.98387 1.04007 8057.7 15868.4 23904.1 

   6 1.20958 0.95968 1.04554 9898.8 18057.6 28026.7 

   7 1.22438 0.96774 1.05593 7200.3 14201.1 21364.1 

   8 1.11160 1.00000 1.04056 8659.1 18424.2 26956.4 

   9 1.20134 0.98387 1.05818 8285.6 17899.5 26048.9 

  10 1.35900 0.97690 1.10428 8221.2 17006.0 25161.9 

  11 1.36491 0.99881 1.12097 8406.4 16988.4 25373.0 

  12 1.24923 1.02271 1.09813 8842.9 17298.3 26169.8 

  13 1.33155 0.99084 1.10504 9338.7 18106.5 27488.3 

  14 1.40580 1.00080 1.13646 9931.0 20429.3 30275.2 

  15 1.47191 0.99582 1.15492 8436.9 17050.8 25454.5 

  16 1.35274 0.99881 1.11711 8633.4 16994.4 25649.0 

  17 1.44763 1.01773 1.16136 8566.5 17421.0 25944.6 

  18 1.39479 1.02769 1.14980 12262.7 22082.7 34613.1 
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  19 1.40183 1.05159 1.16770 7709.2 14659.1 22456.3 

  20 1.32049 1.07449 1.15549 10337.4 21044.1 31382.3 

  21 1.25610 1.09540 1.14825 8141.9 16465.8 24614.7 

  22 1.31144 1.09540 1.16627 9853.6 21082.3 30881.3 

Mean 1.2541 1.0114 1.0928 8801.3 17529 26324 

 

It can be seen that the price of structures does not behave in a monotonic manner but after 

dipping 5% in quarter 6, it trends up to finish about 10% higher at the end of the sample 

period as compared to the beginning of the sample period. The variance of the land price 

series was much higher. The price of land peaked in Quarter 15, approximately 47% 

higher than the Quarter 1 level and then it generally trended downwards to finish 31% 

higher in Quarter 22. The results for this model look very reasonable since we expect the 

price of land to fluctuate much more than the price of structures. 

 

Chart 3: The House Price Indexes P1, P2 and P3 and the 

Price of Land PL3 and the Price of Structures PS3
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________________________________________________________________________ 

Note to Jan: the basic data use to make up the above chart are in the following Table: 

 
1 1 1 1 1 

1.0115 1.0056 1.00842 0.99248 1.01613 

0.97511 0.99438 0.99769 0.99248 1 

1.01626 1.01036 1.01035 1.04399 0.99194 

1.03964 1.03968 1.04007 1.14791 0.98387 

1.05462 1.04623 1.04554 1.20958 0.95968 

1.06757 1.05326 1.05593 1.22438 0.96774 

1.04559 1.03651 1.04056 1.1116 1 

1.05259 1.05271 1.05818 1.20134 0.98387 

1.10079 1.0976 1.10428 1.359 0.9769 

1.12179 1.11485 1.12097 1.36491 0.99881 
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1.08897 1.09171 1.09813 1.24923 1.02271 

1.10521 1.09851 1.10504 1.33155 0.99084 

1.13606 1.12687 1.13646 1.4058 1.0008 

1.15825 1.14963 1.15492 1.47191 0.99582 

1.12513 1.11129 1.11711 1.35274 0.99881 

1.15603 1.15468 1.16136 1.44763 1.01773 

1.15751 1.1452 1.1498 1.39479 1.02769 

1.17844 1.16228 1.1677 1.40183 1.05159 

1.16364 1.14581 1.15549 1.32049 1.07449 

1.14472 1.13869 1.14825 1.2561 1.0954 

1.16987 1.15847 1.16627 1.31144 1.0954 

 

________________________________________________________________________  

 

Chart 3 plots the price of land PL3 and structures PS3 for Model 3 along with the overall 

house price index generated by this model, P3. We also plot the overall house price 

indexes generated by Models 1 and 2, P1 and P2, and compare these indexes with P3. It 

can be seen that P1, P2 and P3 can barely be distinguished as separate series in Chart 3.
32

 

 

Although the present model seems satisfactory, in the following section, we explore how 

the model can be improved by using additional information on housing characteristics. 

 

5. Model 4: The Use of Additional Characteristics Information     
 

In the last two models, we made use of the fact that large lots are likely to have a lower 

price per meter squared than medium lots. By modeling this empirical regularity with the 

use of splines on the quantity of land, we were able to improve the fit of the regression. It 

is also likely that larger structures have a higher quality than small structures; i.e., larger 

houses are likely to use more expensive construction materials than smaller houses. Thus 

it seems likely that using the same type of spline setup, but on S rather than L, we could 

improve the fit in our regression model. However, a more parsimonious alternative to 

using spline techniques on structures is to use information on the number of rooms in the 

structure; i.e., as the number of rooms increases, we would expect the quality of the 

structure to increase so that the price per meter squared of a structure should increase as 

the number of rooms increases.
33

 However, it should be noted that some housing experts 

believe that the price should decline as the structure size increases so the issue is not 

settled.
34

  

                                                 
32

 We ran a wide variety of hedonic regressions using the same price and characteristics data but different 

functional forms for the various regressions and found that they all fitted the overall price data fairly well 

and generated similar overall housing price indexes. However, these various models did not generate 

reasonable subcomponent land and structures price indexes.  
33

 The correlation coefficient between the room variable R and the structure area S (not adjusted for 

depreciation) is 0.4746, somewhat lower than we anticipated.      
34

 Palmquist (1984; 397) is one such expert: “It would be anticipated that the number of square feet of 

living space would not simply have a linear effect on price. As the number of square feet increases, 

construction costs do not increase proportionally since such items as wall area do not typically increase 

proportionally. Appraisers have long known that price per square foot varies with the size of the house.” 

The empirical results of Coulson (1992; 77) on this issue indicate a great deal of volatility in price but for  
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Our regression Model 4 is defined by equations (5)-(7) again except that the terms 

involving the quantity of structures, 
t
(1  An

t
)Sn

t
 in each of the equations (5)-(7), are 

now replaced by the terms 
1
p

t
(1  An

t
)(1 + Rn

t
)Sn

t
 where 

1
,  and  are parameters to 

be estimated, p
t
 is the Statistics Netherlands New Dwelling Construction Cost Price Index 

for quarter t described in the previous section, An
t
 is the age in decades of property n in 

quarter t, Rn
t
 is the number of rooms less 4 for property n in quarter t and Sn

t
 is the area of 

structure n in quarter t. Note that An
t
 is equal to 0 if property n sold in quarter t is a new 

house and that Rn
t
 is equal to 0 if property n sold in quarter t has 4 rooms. In order to 

identify the parameters 
1
,  and , we need the exogenous characteristics variables An

t
 

and Rn
t
 to take on the value 0 for at least some observations (and the 0 values should not 

occur for exactly the same observations). Note that if  equals 0, then the present model 

reduces to Model 3 in the previous section. Thus the present model has 69 parameters 

compared to the 68 parameters for Model 3. A priori, we expect the new parameter  to 

be positive; i.e., as the number of rooms increases, we expect the price per m
2
 of 

construction to also increase. 

 

The R
2
 for this model was .8736, an increase from the previous Model 3 R

2
 of .8723. The 

log likelihood was 16222.6, a substantial increase of 17.1 over the previous Model 3 for 

the addition of only one new parameter, the room size parameter . The estimated decade 

depreciation rate was 
*
 = 0.1089 (0.00361). The first period parameter values for the 3 

marginal prices for land were S
1*

 = 0.2207 (0.0249), M
1*

 = 0.3465 (0.0560) and L
1*

 = 

0.1741 (0.0307). The first period parameter value for quality adjusted structures was 
1*

 

= 1.0069 (0.0212) or 1006.9 Euros/m
2
. Note that this is the estimated construction cost 

for a new building (per meter squared) with four rooms in Quarter 1. Thus this new 

estimated Q1 building cost is not comparable to the Q1 building costs estimated by the 

previous model, since the earlier estimates applied to all houses irrespective of the 

number of rooms, which ranged from 2 to 14. The smallest t statistic was 4.64 for M
3*

 so 

that all parameters were significantly different from 0. The estimated number of rooms 

parameter was 
*
 = 0.02759 (0.00493). Thus the estimated increase in the price of a new 

structure per m
2
 in Quarter 1 due to an additional room is 0.02759/1.0069, which equals 

2.74%. Thus the average premium in construction costs per m
2
 in Quarter 1 of a 10 room 

house over a 2 room house is 2.74% times 8, which is 21.9% per m
2
. This seems to be a 

reasonable quality premium. 

 

As usual, we used equations (8)-(14) in order to construct a chained Fisher index of land 

prices, which we denote by PL5. This index is plotted in Chart 4 and listed in Table 4 

below. The estimated quarter t price for a square meter of quality adjusted structures  for 

a four room house is 
t*

  
1*

p
t
 and we use this price series as our constant quality price 

series for structures. The corresponding constant quality quarter t quantity of structures is 

                                                                                                                                                 
large structures, the price of structure per unit area trended up fairly strongly for his sample of U.S. 

properties. 
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S
t*

  n=1
N(t)

 (1  
*
An

t
)(1+

*
Rn

t
)Sn

t
.
35

 The structures price and quantity series 
t*

 and S
t*
 

were combined with the three land price and quantity series to form a chained overall 

Fisher house price index P4 which is graphed in Chart 4 and listed in Table 4. The 

constant quality structures price index PS4 (a normalization of the series 
1*

,...,
22*

) is 

also found in Chart 4 and Table 4.  

 

Table 4: The Price of Land PL4, the Price of Structures PS4 and the Overall House 

Price Index P4 Generated by Model 4 with the Corresponding Quantities QL4, QS4 

and Q4 
 
Quarter PL4   PS4 P4 QL4   QS4 Q4 

   1 1.00000 1.00000 1.00000 8372.8 14816.2 23189.0 

   2 0.98919 1.01613 1.00626 8499.4 14218.0 22712.6 

   3 0.98251 1.00000 0.99362 9540.5 14929.4 24459.1 

   4 1.03180 0.99194 1.00760 10215.5 17005.8 27202.2 

   5 1.12890 0.98387 1.03902 8980.2 14954.4 23917.7 

   6 1.18484 0.95968 1.04555 10954.2 17004.3 28021.2 

   7 1.19793 0.96774 1.05555 8001.5 13397.9 21364.3 

   8 1.10152 1.00000 1.04067 9690.9 17363.8 26942.9 

   9 1.17454 0.98387 1.05632 9263.9 16952.2 26090.3 

  10 1.31868 0.97690 1.10370 9171.9 16053.3 25167.3 

  11 1.32326 0.99881 1.11928 9385.7 16035.6 25405.8 

  12 1.21947 1.02271 1.09563 9832.3 16368.2 26222.3 

  13 1.30263 0.99084 1.10718 10380.5 17003.3 27429.8 

  14 1.36153 1.00080 1.13530 11027.1 19376.0 30305.0 

  15 1.41932 0.99582 1.15332 9406.9 16109.7 25486.2 

  16 1.30854 0.99881 1.11409 9591.6 16114.3 25712.5 

  17 1.39053 1.01773 1.15633 9544.0 16562.4 26054.1 

  18 1.33811 1.02769 1.14266 13605.8 21006.0 34825.5 

  19 1.35373 1.05159 1.16328 8590.0 13876.1 22540.2 

  20 1.28629 1.07449 1.15240 11516.1 19960.1 31464.8 

  21 1.22226 1.0954 1.14219 9075.5 15670.2 24739.9 

  22 1.28276 1.0954 1.16410 11009.9 19980.8 30933.9 

Mean 1.2236 1.0114 1.0906 9802.6 16580 26372 

 

                                                 
35

 Thus we are implicitly quality adjusting the quantities of houses with different room sizes into “standard” 

houses with four rooms using the quality adjustment factors 
*
Rn

t
 for house n in quarter t. Thus we are 

forming a hedonic structures aggregate. Alternatively, instead of forming a quality adjusted aggregate, we 

could distinguish houses with differing number of rooms as separate types of housing and use index 

number theory to aggregate the 13 types of house into a structures aggregate. In this second interpretation, 

the quarter t structure price 
t*
 = 

1*
p

t
 applies to a new house with 4 rooms. The appropriate price (per m

2
) 

for a new house with 5, 6, ..., 14 rooms would be 
1*

p
t
(1+

*
), 

1*
p

t
(1+2

*
), ... , 

1*
p

t
(1+10

*
) and the price 

for a new house with 2 and 3 rooms would be 
1*

p
t
(12

*
) and 

1*
p

t
(1

*
). Thus in this second approach, 

we distinguish 13 types of house (according to their number of rooms) and calculate separate price and 

quantity series for all 13 types (adjusted for depreciation as well). However, if we then aggregate these 

series using Laspeyres, Paasche or Fisher indexes, we would find that the resulting aggregate structures 

price index would be proportional to the 
1*

p
t
 series. Thus the second method is equivalent to the first 

method.                
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It can be seen that the structures price series PS44 coincides with the structures price series 

PS3 for the previous model. This makes sense because both models impose the same rates 

of change on quality adjusted structures prices (equal to the Statistics Netherlands rates of 

change). Thus in Chart 4, we do not plot separately PS3 and PS4 since they are identical 

series. 

  

 
 

From viewing Chart 4, it can be seen that our new model that allows for a quality 

adjustment for the construction of larger houses generates a somewhat different series for 

the price of land as compared to Model 3; i.e., PL4 lies below PL3 for Quarters 2-22. Note 

that the overall house price indexes, P3 and P4, are virtually identical
36

; i.e., they are 

difficult to distinguish in Chart 4.
37

  

 

Recall that before running any regressions, we eliminated some outlier observations that 

had prices or characteristics which were either very large or very small relative to average 

prices and average amounts of characteristics. However, running the regressions 

associated with Models 1-4, there were additional outliers (i.e., observations with large 

error terms), which were not deleted. This non deletion of regression outliers could affect 

our estimated coefficients, particularly if the outliers are either mostly positive or mostly 

                                                 
36

 The correlation coefficient between P3 and P4 is .99942. 
37

 If P3 almost equals P4 and PS3 is exactly equal to PS4, one might ask how can PL3 and PL4 differ so much? 

The answer is that while the rates of growth in the price of constant quality structures is the same in Models 

3 and 4, the addition of the quality adjustment for the number of rooms has changed the initial level (and 

rates of growth) for the constant quality quantity of structures. Using Model 3, the initial levels of land and 

constant quality structures were 7446.9 and 15749.3. Using Model 4, the initial levels of land and constant 

quality structures were 8372.8 and 14816.2. Thus going from Model 3 to 4, the value of Q1 land has 

increased about 12.4% and the value of structures has decreased to offset this increase. Since land prices 

increase more rapidly than structure prices and since the overall indexes P3 and P4 are virtually equal and 

the structures indexes PS3 and PS4 are exactly equal, it can be seen that these facts will imply that PL4 must 

grow more slowly than PL3.      

Chart 4: Land Price Indexes PL3 and PL4, the Structures Price  

Index PS4 and the House Price Indexes P3 and P4 
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negative. To determine whether outliers are a problem with Model 4, we looked at the 

empirical distribution of the resulting error terms for this model. We constructed 10 error 

intervals: en
t
 < 100

38
; 100  en

t
 < 75 ; 75  en

t
 < 50; ... ; 75  en

t
 < 100; 100  en

t
. 

The number of observations that fell into these 10 bins was as follows: 9, 10, 57, 333, 

1358, 1297, 319, 64, 34 and 6. Thus the empirical distribution of error terms appears to 

be fairly symmetric with a relatively small number of very large in magnitude errors.       

 

Our conclusion at this point is that Model 4 is a satisfactory hedonic housing regression 

model that decomposes house prices into sensible land and structures components. The 

quality adjustments to the quantity of structures for the age of the structure and for the 

number of rooms also seem to be reasonable. The overall fit of the model also seems to 

be satisfactory: an R
2
 of .8736 for such a small number of characteristics is quite good.

39
 

 

The builder’s model that we developed here could be further modified to take into 

account additional characteristics but a certain amount of careful thought is required so 

that the effects of introducing additional characteristics reflect the realities of housing 

construction and locational effects.
40

 These construction realities will determine the 

appropriate functional form for the hedonic regression.     

 

6. Conclusion 
 

A number of tentative conclusions can be drawn from this study: 

 

 If we stratify housing sales by local area and type of housing and if we have data 

on the age of the dwelling unit, its land plot area (or share of the plot area in the 

case of multiple unit dwellings) and its floor space area, then a wide variety of 

hedonic regression models that use these variables seem to generate much the 

same overall house price indexes.  

 It is much more difficult to obtain sensible land and structure price indexes by 

means of a hedonic regression. However, our builder’s model, in conjunction with 

statistical agency information on the price movements of new dwelling units, 

generated satisfactory results for our data set. 

 Adding the number of rooms in the dwelling unit as an explanatory variable in our 

hedonic regressions did improve the fit but did not change the indexes 

substantially. 

 Splining land also improved the fit of our hedonic regressions and led to 

somewhat smoother land price indexes in our best builder’s model. 

 It is important to delete observations in the regressions which are range outliers. 

                                                 
38

 Thus if an observation belonged to this bin, the associated error term was less than 100,000 Euros; 

recall that we measure house prices in thousands of Euros when running our regressions. 
39

 However, the Dutch data may not be representative of other data sets where there could be more 

heterogeneity due to geography or differences in the types of houses being built over time. 
40

 In particular, the number of stories in the dwelling unit is likely to be a significant quality adjustment 

characteristic: a higher number of stories (holding structural area constant) is likely to lead to lower 

building costs due to shared floors and ceilings and less expenditures on roofing and insulation. A larger 

number of stories could also have a quality adjustment effect on the land component of the dwelling unit 

since a higher number of stories leads to more usable yard space.  
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Some topics for follow up research include the following: 

 

 Can our method be generalized to deal with the sales of condominiums and 

apartment units with shared land and facilities? 

 How exactly can other characteristics be used in more general versions of the 

builder’s model? 
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